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Role of ground-state correlations in hypernuclear nonmesonic weak decay
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The contribution of ground-state correlations (GSCs) to the nonmesonic weak decay of 12
� C and other medium

to heavy hypernuclei is studied within a nuclear-matter formalism implemented in a local-density approximation.
We adopt a weak transition potential including the exchange of the complete octets of pseudoscalar and vector
mesons, as well as a residual strong interaction modeled on the Bonn potential. Leading GSC contributions, at
first order in the residual strong interaction, are introduced on the same footing for all isospin channels of one-
and two-nucleon induced decays. Together with fermion antisymmetrization, GSCs turn out to be important for
an accurate determination of the decay widths. Besides opening the two-nucleon stimulated decay channels, for
12
� C GSCs are responsible for 14% of the rate �1 while increasing the �n/�p ratio by 4%. Our final results
for 12

� C are �NM = 0.98, �n/�p = 0.34, and �2/�NM = 0.26. The saturation property of �NM with increasing
hypernuclear mass number is clearly observed. The agreement with data of our predictions for �NM, �n/�p , and
�2 is rather good.
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I. INTRODUCTION

Nuclear systems with strangeness play an important role
in modern nuclear and hadronic physics [1]. They imply
important links with astrophysical processes and observables,
as well as with QCD, the underlying theory of strong
interactions. Various strange nuclear systems can be studied
in the laboratory, ranging from hypernuclei and kaonic nuclei
to exotic hadronic states such as strangelets, H -dibaryons,
and pentaquark baryons. Strangeness production can also be
investigated in relativistic heavy-ion collision experiments,
whose main aim is to establish the existence of a quark-gluon
plasma. Moreover, the cold and dense matter contained in
neutron stars is expected to be composed of strange hadrons,
in the form of hyperons and Bose-Einstein condensates of
kaons, and eventually by strange quark matter for sufficiently
dense systems.

The existence of hypernuclei—bound systems of non-
strange and strange baryons—opens up the possibility to study
the hyperon-nucleon and hyperon-hyperon interactions in both
the strong and the weak sectors. In turn, such interactions are
important inputs, for instance, when investigating the macro-
scopic properties (masses and radii) of neutron stars. The best
studied hypernuclei contain a single � hyperon. In a nucleus
the � can decay by emitting a nucleon and a pion (mesonic
mode) as it happens in free space, but its (weak) interaction
with the nucleons opens new channels which are indicated as
nonmesonic decay modes (for recent reviews, see Refs. [2–6]).
These are the dominant decay channels of medium-heavy
hypernuclei, where the mesonic decay is disfavored by the
Pauli blocking effect on the outgoing nucleon. In particular,
one can distinguish between one- and two-body induced
decays, �N → nN and �NN → nNN . The hypernuclear
lifetime is given in terms of the mesonic (�M = �π− + �π0 )
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and nonmesonic decay widths (�NM = �1 + �2) by τ =
h̄/�T = h̄/(�M + �NM). The various isospin channels con-
tribute to the one- and two-nucleon induced nonmesonic rates
as follows: �1 = �n + �p ≡ �(�n → nn) + �(�p → np)
and �2 = �nn + �np + �pp ≡ �(�nn → nnn) + �(�np →
nnp) + �(�pp → npp).

One should note that, strictly speaking, the only observables
in hypernuclear weak decay are the lifetime τ , the mesonic
rates �π− and �π0 (hence the total nonmesonic rate �NM),
and the spectra of the emitted particles (nucleons, pions, and
photons). None of the aforementioned nonmesonic partial
decay rates (�n, �p, �np, etc.) is an observable from a
quantum-mechanical point of view. The reason is as follows.
Each one of the possible elementary nonmesonic decays
occurs in the nuclear environment; thus, subsequent final-
state interactions (FSIs) modify the quantum numbers of
the weak decay nucleons and new, secondary nucleons are
emitted as well. This prevents the measurement of any of
the nonmesonic partial decay rates. Instead, the total width
�T can be measured; being an inclusive quantity, for its
measurement one has to detect any of the possible products
of either mesonic or nonmesonic decays (typically protons
from nonmesonic decays) as a function of time and then fit the
observed distribution with an exponential decay law. The fact
that the detected particles undergo FSI does not appreciably
alter the lifetime measurement, because strong interactions
proceed on a much shorter time scale than weak decays and
τmeasured = τ + τ strong � τ ≡ h̄/�T.

To achieve a proper knowledge of the various decay
mechanisms (in particular of the strangeness-changing baryon-
baryon interactions), a meaningful comparison between theory
and experiment must be possible. The preceding discussion
shows that such a comparison requires the introduction of
nonstandard definitions for the nonmesonic partial decay rates
(which, as mentioned, are not quantum-mechanical observ-
ables). The only constraint that these definitions must meet
is to be in accord with the experimental methods adopted for
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determining these rates. In our opinion, this point has not been
adequately addressed in previous works and, among others, it
has impacted on the well-known puzzle of the ratio �n/�p

between the neutron- and the proton-induced nonmesonic
rates; the same applies to today’s discussion of �2/�NM.

To explain how the total nonmesonic rate can be measured
in an experiment, we have to discuss first the measurement of
the mesonic rates. The pion and nucleon emitted in a mesonic
decay both have a momentum of about 100 MeV/c. Nucleons
of a few MeV kinetic energy cannot be observed because
they are below the experimental detection thresholds. Mesonic
decays are thus identified by measuring pions (π−’s or π0 →
γ γ decays). The mesonic width �π− (�π0 ) is determined from
the observed π− (π0 → γ γ ) energy spectra and the total
width �T. For instance, one obtains �

exp
π− = (Nπ−/Nhyp)�exp

T ,
Nπ− being the total number of detected π−’s and Nhyp the
total number of produced hypernuclei (both these numbers
are corrected for the detection efficiencies and the detector
acceptances implied in the measurements). The mesonic rates
measured in this way thus include the effect of in-medium
pion renormalization. Theoretical models [7,8] also taking
into account distorted pion waves obtained mesonic widths
in agreement with the experimental values (in particular, the
importance of the pion wave-function distortion was first
demonstrated in the works of Ref. [7]).

The experimental total nonmesonic rate is then obtained as
the difference between the total and the mesonic rates, �exp

NM =
�

exp
T − �

exp
M . The determination of the so-called experimental

value of �n/�p is much more involved. Indeed, because it is
not an observable, this ratio must be extracted from the nucleon
emission spectra; this requires some theoretical input [9,10].
FSIs are very important for the nonmesonic processes and nu-
cleons that have or have not suffered FSIs are indistinguishable
between each other. A theoretical simulation of nucleon FSI is
thus needed and, in principle, a coherent sum of both kinds of
nucleons must be considered when evaluating the spectra. Gen-
erally, FSIs are accounted for by an intranuclear cascade (INC)
model [11], which is a semiclassical scheme representing the
effect of nucleon rescattering. To avoid double counting, the
nucleon correlations implied in the rescattering must not be
included in the evaluation of the decay widths. This important
question has never been discussed in the literature. Although
it is not the aim of the present contribution to progress on this
issue, we analyze its main features in the next section.

The relevance of the nucleon-nucleon interaction in the
nonmesonic decay is twofold: It concerns both the nucleon
rescattering process which allows one to extract the ex-
perimental values for the decay widths, and it also affects
the evaluation of the decay widths themselves. As an ex-
ample of the last point, the decay width �2 results from
nuclear correlations. The inclusion of these correlations in
the evaluation of the decay widths is a difficult task in a
microscopic model. The calculation of �2 was addressed in an
approximate way in the pioneering work of Alberico et al. [12],
where a phenomenological description of the two-particle,
two-hole (2p2h) polarization propagator was introduced by
adapting previous results by the same authors on electron
scattering off nuclei to nuclear pion absorption. Thereafter, in
Refs. [13,14], an approximate phase-space argument for the

2p2h configurations and data on real pion absorption in nuclei
were adopted for an improved evaluation of �2. The first
microscopic calculation of the nonmesonic rates was attempted
in Ref. [15] by means of a path integral method which allowed
a classification of the 2p2h contributions according to the
so-called boson loop expansion. For technical reasons, it was
not possible to separate the total width �NM = �1 + �2 into
the partial contributions �1 and �2 in that work.

In the microscopic evaluation of �1 and �2 it is possible
to differentiate between correlations acting on the initial or
ground state [resulting in the so-called ground-state corre-
lations (GSCs)] and correlations on the final state (they are
thus part of FSIs). To the best of our knowledge, there is no
microscopic calculation of the FSI contribution to the decay
widths. As already mentioned, for the inclusion of FSIs in the
evaluation of the decay widths we have the additional problem
of a potential double counting with the rescattering process.
At variance, the GSCs are less controversial because they only
contribute to the decay widths. The effect of GSCs, which has
been studied in some former works [16–19], is the main subject
of the present work. Up to now, GSCs have been discussed only
in connection with the two-nucleon stimulated decay. In the
present work we estimate for the first time their effect on the
one-nucleon induced decay.

More specifically, we study the nonmesonic weak de-
cay of hypernuclei ranging from 11

�B to 208
�Pb by using

a nuclear-matter approach implemented in a local-density
approximation. All the possible isospin channels for one- and
two-body induced mechanisms are included in a microscopic
approach based on the evaluation of Goldstone diagrams. The
partial decay rates are derived by starting from a two-body
weak transition potential. Leading-order GSC contributions
are introduced on the same ground for one- and two-nucleon
induced processes. The weak transition potential contains the
exchange of mesons of the pseudoscalar and vector octets,
π , η, K , ρ, ω, and K∗, while for the nucleon-nucleon strong
interaction contributing to GSCs we adopt a Bonn potential
with the exchange of π , ρ, σ , and ω mesons. The general
formalism we use was established in Refs. [16–20].

The article is organized as follows. In Sec. II we start with
general considerations about FSIs, the definitions we employ
for the weak decay rates, as well as the method usually adopted
for the determination of the partial rates (for instance �n/�p)
from data on nucleon spectra. In Sec. III we introduce the gen-
eral framework for the evaluation of the one- and two-nucleon
induced decay widths with the inclusion of GSC. Explicit
expressions for the considered GSC diagrams contributing
to the one-nucleon induced rates are given in Sec. IV and
Appendix A. Then, in Sec. V our results are presented and com-
pared with data. Finally, in Sec. VI some conclusions are given.

II. CONSIDERATIONS ON FSI EFFECTS AND THE
DETERMINATION OF THE WEAK DECAY RATES

The �n/�p ratio is defined as the ratio between the
total number of primary (i.e., weak decay) neutron-neutron
and neutron-proton pairs, Nwd

nn and Nwd
np , emerging from the

processes �n → nn and �p → np, respectively. Owing to
nucleon FSIs and two-body induced decays, the following
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inequality is expected between �n/�p and the observables nn

and np coincidence numbers, Nnn and Nnp [9]1:

�n

�p

≡ Nwd
nn

Nwd
np

�= Nnn

Nnp

. (1)

Nnn/Nnp is surely a quantum-mechanical observable: Gener-
ally, its measurement is affected by thresholds on the nucleon
energies and the pair opening angles [6,21,22]. The preceding
inequality and the discussion of Ref. [9] clearly establish the
nonobservable character of �n/�p. Theoretical models are
thus required to determine the “experimental” value of �n/�p

from a measurement of Nnn/Nnp. This unusual procedure
for determining (�n/�p)exp makes complete sense provided
different models are at disposal and lead to the same extracted
ratio: Only in such a case one is allowed to define this value as
the experimental result for �n/�p. In the present section we
go deeper into questions of this kind to show some ambiguities
that need to be emphasized for a meaningful comparison
between theory and experiment.

Each one of the nonmesonic weak decay channels takes
place by the emission of two or three primary nucleons.
These nucleons then propagate within the nuclear environment
and cannot be measured. The strong interactions with the
surrounding nucleons can change the charge and the energy-
momentum of the primary nucleons; some of them can be
absorbed by the medium and the emission of additional
(secondary) nucleons can occur as well. All these processes are
generically designated as FSIs: the observable nucleon spectra,
that is, Nnn and Nnp in Eq. (1), are crucially affected by them.

FSIs pertain to the same quantum-mechanical problem
which starts with the weak interaction involving the � hyperon
and ends with the detection of the particles emitted by the
hypernucleus. In a strict quantum-mechanical scheme, FSIs
cannot thus be disentangled from the weak interaction part
of the problem: This is an analogous way of expressing the
fact that the partial weak decay rates are not measurable. As
explained in the Introduction, only the total nonmesonic rate
is an observable.

The question thus arises of which FSI contributions have
to be included in the calculation of the decay rates. A
first kind of FSI that one has to consider consist of the
baryon-baryon short-range correlations (SRCs) acting on the
nucleon-nucleon final state. SRCs for both the initial and
the final states (as well as mean field effects on the single-
particle wave functions) are genuine contributions to the
decay rates. This is so because SRCs act on two-particle
states involving primary baryons and therefore do not alter
the number nor the species of nucleons involved in the weak
decays. Given the nonobservable character of the partial decay
rates, one has no prescription to determine which kind of FSI
has to be included in the calculations of these rates. Although
we make here some considerations about this question, which

1Note that an analogous inequality exists between �n/�p and the
ratio between the total number of emitted neutrons and protons,
Nn/Np [10]. For the present discussion, either of these two expres-
sions is suitable.

does not have a simple solution, we believe that a complete
answer to it goes beyond the present contribution.

To analyze this important point in more detail, it is
convenient to consider the way FSI contributions are included
in the calculation of observables such as the nucleon spectra. To
date, nucleon rescattering effects have always been taken into
account in an approximate way, by resorting to INC models
[11] rather than by solving the exact quantum-mechanical
problem (as far as we know, the only attempts to develop
a microscopic many-body model for FSIs are the ones of
Refs. [23–25]). The INC approach is based on a semiclassical
picture in which both the nucleon de Broglie wavelength
λ = h/p and the range of the nucleon-nucleon hard-core
interaction rNN are much smaller than the in-medium nucleon
mean free path. Subsequent nucleon-nucleon collisions in
the rescattering process are thus independent of one another.
Between collisions the nucleons are treated as classical
particles: They are on shell, with definite positions and
momenta, and move along straight-line trajectories under the
influence of a local mean field. Each collision is described by
free-space nucleon-nucleon cross sections σNN corrected to
account for medium effects such as Pauli blocking and nucleon
Fermi motion. Roughly speaking, collisions occur whenever
two nucleons come closer than l � 2 rNN � √

σNN/π ; the
scattering angle is chosen randomly according to the free-
space differential nucleon-nucleon cross sections. Long-range
interactions (responsible for instance of the nuclear mean-field
potential) are thus neglected in INC calculations; short-range
nucleon-nucleon interactions (involved in collisions) play a
dominant role instead.

This discussion makes evident two aspects of the INC
rescattering that are important in our analysis of the relevance
of FSIs for the microscopic calculation of the decay widths:
(i) nucleons that propagate between two successive interaction
points of the cascade are almost on shell; (ii) the nucleon
collisions proceed by the (repulsive) short-range part of the
nucleon-nucleon interaction.

Let us now analyze the same rescattering problem in terms
of a microscopic quantum-mechanical calculation. In general
terms, one could wonder if it is possible to identify those
quantum-mechanical contributions whose classical limit leads
to a factorization between the weak decay process and the INC
rescattering. This is a relevant question because in the theoreti-
cal evaluation of the nonmesonic decay rates FSI contributions
to the INC rescattering must not be included; one indeed
aims to extract the contribution of the elementary �N → nN

and �nn → nNN processes by studying hypernuclear decay.
Unfortunately, this question does not seem to have a simple
answer, at least from a technical standpoint. Consider indeed
the � self-energy diagram in Fig. 1(a) with the pole on the
3p2h configuration, as indicated by the dotted line. This is a
(time-ordered) Goldstone diagram, where the weak transition
potential V �N→NN , which is a two-body operator, produces
an intermediate 2p1h configuration; afterward, the action of
the nucleon-nucleon strong interaction V NN creates a further
1p1h pair and leads to a 3p2h final state. In terms of amplitudes,
V �N→NN produces two nucleons, one of which then strongly
interacts with another nucleon, ending in the emission of three
nucleons. Because the potential V NN acts after V �N→NN ,
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(a) (b) (c1) (c2)

hi

pi

FIG. 1. Goldstone diagrams for three-nucleon emission origi-
nated by FSI (a), 2p2h GSC (b), and FSI-GSC interferences (c1)
and (c2). The dashed and wavy lines stand for the potentials
V �N→NN and V NN , respectively. Part (a) has poles on the 2p1h
and 3p2h configurations, while part (b) has a single pole on the 3p2h
configuration. For the discussion made in the text, only the 3p2h poles
indicated by the dotted lines are relevant. The interference diagrams
(c1) and (c2) are vanishing because pi = hi .

Fig. 1(a) contains by definition a FSI effect. Note that the
idea of an interaction taking place after or before another one
is a valid statement here as we are working with Goldstone
diagrams. In our discussion we are using Goldstone diagrams
instead of Feynman diagrams because our aim here is to
isolate those nucleon FSI effects that contribute to nucleon
spectra but not to the decay widths (in other words, the use
of Goldstone diagrams is attributable to the nonobservability
of the decay rates). According to the considerations made
in the previous paragraph, Fig. 1(a) partially contributes to
nucleon rescattering: This occurs when the nucleon connecting
V �N→NN with V NN (in both the upper and the lower parts
of the diagram) is almost on shell and V NN contains only
the repulsive part of the nucleon-nucleon potential (i.e., the
exchange of heavy mesons). For all the other kinematics and
dynamical conditions, Fig. 1(a) in principle contributes to the
decay widths. This conclusion agrees with the method nor-
mally adopted to extract the partial decay widths (for instance,
�n/�p and �2/�NM) from the measured nucleon spectra:
The procedure of correcting these spectra for the nucleon
rescattering supplies the distributions of primary nucleons
from which one can easily deduce the partial decay rates.

We therefore see that each Goldstone diagram with at least
one V NN acting after the V �N→NN may partially contribute to
the decay rates. It is important to stress that such contributions
originate from the method adopted to determine these rates
from the measured nucleon spectra. This method, which is
obviously the only one available to us to define the decay
widths, leads us to an unfortunate situation. On the one hand,
the inclusion of diagrams like Fig. 1(a) in the calculation of the
rates would introduce some unknown double counting with the
INC rescattering and would probably lead to an overestimation
of the two-nucleon induced decay rate �2. On the other hand,
by neglecting these diagrams, one may underestimate �2.
Given the difficulty in identifying accurately the parts of
Goldstone diagrams contributing to the decay widths, as an
operating procedure it seems more convenient to neglect in
the present work all those diagrams [like Fig. 1(a)] embedding
nucleon rescattering effects: The assumption that can at present
justify this approximation being that these diagrams give a
relevant contribution to the rescattering (this is demonstrated

by the microscopic approach of [25]) and thus their effect on �2

should be limited. Furthermore, the comparison of our results
with the experimental values of �2 could be used as a parameter
for the assessment of the goodness of this approximation.

The problem posed by the impossibility of identifying
diagrams that only contribute to the decay rates can be
overcome if one instead evaluates the nucleon emission
spectra, which are observable and thus must be evaluated in
terms of Feynman diagrams. A microscopic model for the
evaluation of these spectra was developed in Refs. [23–25]. In
particular, the diagram in Fig. 1(a) (together with the other FSI
diagrams at the same order in V NN ) was evaluated in Ref. [25],
finding a rather important contribution to the single-nucleon
spectra at low energy, that is, to nucleon rescattering.

In the present contribution our main concern is instead the
role played by GSCs in the evaluation of the decay rates. As
we show in the next two sections, the addition of GSCs is a
rather complex task in a microscopic model. A typical GSC
contribution to �2 is depicted in Fig. 1(b). It corresponds to
an amplitude in which the � decays by interacting with a
correlated nucleon pair. Because the nucleon-nucleon interac-
tion takes place before the action of the weak transition, this
diagram correspond to a GSC and is a genuine contribution to
the decay rates. Note that the Goldstone diagrams in Figs. 1(a)–
1(c2) are different time orderings of the same Feynman
diagram. Figures 1(a) and 1(b) have a positive contribution
from the 3p2h cut, because each of them results from the square
of a transition amplitude. At variance, Figs. 1(c1) and 1(c2) are
both identically vanishing because the momenta carried by the
particle pi and the hole hi indicated in the figure have the same
value, that is, the conditions pi > kF and hi � kF , where kF

is the Fermi momentum, cannot be fulfilled simultaneously.
It should be emphasized that the comparison between

our results for the decay widths and the corresponding
experimental values makes complete sense. This comparison,
addressed in Sec. V, tests the consistency in our model between
the decay widths and the experimental values of the rates
obtained by a deconvolution of the nucleon rescattering effects
contained in the measured spectra.

III. MANY-BODY TERMS IN THE NONMESONIC
DECAY RATES

Let us consider the one and two-body induced nonmesonic
weak decay width for a � hyperon with four-momentum k =
(k0, k) inside infinite nuclear matter with Fermi momentum
kF . In a schematic way, one can write

�1 (2)(k, kF ) =
∑
f

|〈f |V �N→NN |0〉kF
|2δ(Ef − E0), (2)

where |0〉kF
and |f 〉 are the initial hypernuclear ground state

(whose energy is E0) and the possible 2p1h or 3p2h final states,
respectively. The 2p1h (3p2h) final states define �1 (�2). The
final-state energy is Ef and V �N→NN is the two-body weak
transition potential.

The decay rates for a finite hypernucleus are obtained by
the local-density approximation [26], that is, after averaging
the preceding partial width over the � momentum distribution
in the considered hypernucleus, |ψ̃�(k)|2, and over the local
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Fermi momentum, kF (r) = {3π2ρ(r)/2}1/3, ρ(r) being the
density profile of the hypernuclear core. One thus has

�1 (2) =
∫

dk |ψ̃�(k)|2
∫

dr |ψ�(r)|2�1 (2)[k, kF (r)], (3)

where for ψ�(r), the Fourier transform of ψ̃�(k), we adopt
the 1s1/2 harmonic oscillator wave function with frequency
h̄ω (=10.8 MeV for 12

� C) adjusted to the experimental energy
separation between the s and p � levels in the considered
hypernucleus. The � total energy in Eqs. (2) and (3) is given by
k0 = m� + k2/(2m�) + V�, V�(=−10.8 MeV for 12

� C) being
a binding energy term.

Because V �N→NN is a two-body operator, the emission
of two nucleons is originated either from the Hartree–Fock
vacuum or from GSCs induced by the nucleon-nucleon
interaction. At variance, the emission of three nucleons can
be achieved only when V �N→NN acts over a GSC. It is
therefore convenient to introduce the following hypernuclear
ground-state wave function [17]:

|0〉kF
= N (kF )

⎛⎝| 〉 −
∑

p,h,p′,h′

〈php′h′|V NN | 〉D+E

εp − εh + εp′ − εh′
|php′h′〉

⎞⎠
× ⊗ |p�〉, (4)

where | 〉 is the uncorrelated core ground-state wave function,
that is, the Hartree–Fock vacuum, and the second term in the
right-hand side represents 2p2h correlations and contains both
direct (D) and exchange (E) matrix elements of the nuclear
residual interaction V NN . Besides, |p�〉 is the normalized state
of the �, the particle and hole energies are denoted by εi and

N (kF ) =
⎛⎝1 +

∑
p,h,p′,h′

∣∣∣∣ 〈php′h′|V NN | 〉D+E

εp − εh + εp′ − εh′

∣∣∣∣2
⎞⎠−1/2

(5)

is the ground-state normalization function. The particular
labeling of Eqs. (4) and (5) is explained in Fig. 2. The explicit
expression for N (kF ) is given in Ref. [18].

By inserting Eq. (4) into Eq. (2), for �1 one obtains

�1(k, kF ) = N 2(kF )
∑
f

δ(Ef − E0)

∣∣∣∣∣〈f |V �N→NN |p�〉D+E

−
∑

p,h,p′,h′
〈f |V �N→NN |php′h′; p�〉D+E

× 〈php′h′; p�|V NN |p�〉D+E

εp − εh + εp′ − εh′

∣∣∣∣∣
2

, (6)

FIG. 2. Direct (D) and exchange (E) Goldstone diagrams for the
2p2h GSC induced by the nuclear residual interaction V NN .

the final states |f 〉 being restricted to 2p1h states. For �2 one
has

�2(k, kF ) = N 2(kF )
∑
f

δ(Ef − E0)

×
∣∣∣∣∣ ∑

p,h,p′,h′
〈f |V �N→NN |php′h′; p�〉D+E

× 〈php′h′; p�|V NN |p�〉D+E

εp − εh + εp′ − εh′

∣∣∣∣∣
2

, (7)

where the final states are given by 3p2h states. Note that
all the matrix elements of V NN and V �N→NN appear in the
antisymmetrized form.

Let us focus now on the kind of diagrams contributing
to �1 and �2. This discussion is done in terms of transition
amplitudes rather than self-energies. In Fig. 3 we report
some of the most representative transition amplitudes that
contribute to �1. All diagrams but Fig. 3(a) are originated
by a GSC. Only the contribution of Fig. 3(a) to �1 has been
calculated microscopically up to now. The Figs. 3(b1)–3(b3)
represent typical 2p2h correlations. Figure 3(c) is a contact
term involving a ππNN strong vertex, while Figs. 3(d) and
3(d2) represent the contribution of the �(1232) resonance.
It should be mentioned that there has been a great deal
of controversy around the theoretical determination of the

FIG. 3. Transition amplitudes contributing to �1. A double line
(without arrow) represents the �(1232) resonance.

064315-5



E. BAUER AND G. GARBARINO PHYSICAL REVIEW C 81, 064315 (2010)

FIG. 4. Transition amplitudes contributing to �2.

�n/�p ratio and the challenging comparison with data. In
these discussions, all theoretical efforts were devoted to the
Fig. 3(a) term only; the remaining ones have simply been
ignored.

A similar analysis can be done for �2 starting from the
amplitudes of Fig. 4. Again, only the term in Fig. 4(a) has
been evaluated up to now in microscopic calculations [16].
Note that the diagrams in Figs. 3 and 4 are only representative
cases. For instance, the amplitude of Fig. 5 should also be
included when calculating �1. Unlike the other amplitudes of
Figs. 3 and 4, the one in Fig. 5 involves a strong interaction
V �N between the � and a 1p1h pair (i.e., a 1p1h GSC)
and then the usual action of the weak transition potential.
Rather than calculating this diagram explicitly, it is common
to include it in an effective way by incorporating short-range
correlation effects in the weak potential V �N→NN ; we follow
this practice. Other amplitudes are relevant in a microscopic
approach. In Fig. 4(a) the weak transition potential can also be
connected to a hole line [16]. In addition, because V NN and
V �N→NN are two-body operators whose matrix elements are
antisymmetrized, Pauli exchange terms must be considered as
well [18].

All the diagrams in Figs. 3 and 4 have the same initial
state, which is the hypernuclear ground state. The final state
of the diagram in Fig. 3 (Fig. 4) is a 2p1h (3p2h) state. To
obtain the various decay widths, all diagrams representing
transition amplitudes with the same initial and final states are
added and then squared. For instance, from Fig. 4 one obtains
a total of six direct diagrams: the square of each individual
amplitude plus the three interference terms. For the amplitudes
in Fig. 3 there is a total of 28 different direct terms. In addi-
tion, antisymmetrization considerably increases the number
of diagrams. Our previous work indicates that a complete
microscopic evaluation is important for several reasons. First,
a raw estimation of a remarkable amount of different diagrams
makes the final result quite uncertain. Second, there is no

FIG. 5. Transition amplitude contributing to �1 and involving a
strong interaction V �N between the hyperon and a 1p1h pair.

ground to evaluate differently the diagrams originated from
Fig. 3 and those from Fig. 4: Once a microscopic calculation
is performed for the square of diagrams (a) of Figs. 3 and 4, the
same should be done for the remaining contributions, which
are all leading-order GSC contributions.

In the present work, as a further step toward the calculation
of the whole set of diagrams relevant for the nonmesonic decay,
the one-nucleon induced widths originated from the sum of the
transition amplitudes (a) plus (b1) of Fig. 3 are evaluated for
the first time. Accordingly, the two-nucleon induced rates are
instead obtained from the amplitude (a) of Fig. 4 by following
Ref. [18]. Antisymmetrization is coherently applied to all
contributions. In the next section we proceed with the formal
derivation of the decay widths.

IV. FORMAL DERIVATION OF THE DECAY RATES �n

AND �p INCLUDING GSC

In Fig. 3 we have shown a set of amplitudes that contribute
to the decay rate �1 of Eq. (2). Only amplitude (a) has
been evaluated explicitly up to now. In the present work we
extend the microscopic approach to include amplitude (b1),
which originates from GSC contributions that we expect to be
important.

Before proceeding with the derivation of decay widths, it
is convenient to give the expressions for the potentials. The
weak transition potential V �N→NN and the nuclear residual
interaction V NN read

V �N→NN(NN)(q) =
∑

τ�(N)=0,1

Oτ�(N)V�N→NN(NN)
τ�(N)

(q), (8)

where the isospin dependence is given by

Oτ�(N) =
{

1 for τ�(N) = 0,

τ1 · τ2 for τ�(N) = 1.
(9)

The values 0 and 1 for τ�(N) refer to the isoscalar and isovector
parts of the interactions, respectively. The spin and momentum
dependence of the weak transition potential is given by

V�N→NN
τ�

(q)

= (
GF m2

π

){Sτ�
(q) σ 1 · q̂ + S ′

τ�
(q) σ 2 · q̂ + PC,τ�

(q)

+PL,τ�
(q) σ 1 · q̂ σ 2 · q̂ + PT,τ�

(q)( σ 1 × q̂) · ( σ 2 × q̂)

+ iSV,τ�
(q) (σ 1 × σ 2) · q̂}, (10)

where the functions Sτ�
(q), S ′

τ�
(q), PC,τ�

(q), PL,τ�
(q),

PT,τ�
(q), and SV,τ�

(q), which include short-range correlations,
can be adjusted to reproduce any weak transition potential. The
corresponding expression for the nuclear residual interaction
is given by

VNN
τN

(q) = f 2
π

m2
π

{VC, τN
(q) + VL, τN

(q) σ 1 · q̂ σ 2 · q̂

+VT , τN
(q)( σ 1 × q̂) · ( σ 2 × q̂)}, (11)

where the functions VC, τN
(q), VL, τN

(q), and VT , τN
(q) can also

be adjusted to reproduce any nuclear residual interaction. In
particular, V �N→NN is represented by the exchange of the π ,
η, K , ρ, ω, and K∗ mesons, within the formulation of Ref. [27],
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with strong coupling constants and cutoff parameters deduced
from the Nijmegen soft-core interaction NSC97f of [28]. For
V NN we have used a Bonn potential [29] in the framework of
the parametrization presented in Ref. [30], which contains the
exchange of π , ρ, σ , and ω mesons.

We give now explicit expressions for the partial decay width
�1(k, kF ) of Eq. (6), which for convenience is expressed in
terms of its isospin components �n(k, kF ) and �p(k, kF ). Let
us first rewrite Eq. (6) as follows:

�n(p)(k, kF ) = �0
n(p)(k, kF ) + �0−GSC

n(p) (k, kF ) + �GSC
n(p) (k, kF ),

(12)

where

�0
n(p)(k, kF ) = N 2(kF )

∑
f

δ(Ef − E0)

× |〈f |V �N→NN |p�〉D+E|2, (13)

�0−GSC
n(p) (k, kF ) = −2N 2(kF )

∑
f

∑
p,h,p′,h′

δ(Ef − E0)

×〈p�|(V �N→NN )†|f 〉D+E

×〈f |V �N→NN |php′h′; p�〉D+E

× 〈php′h′; p�|V NN |p�〉D+E

εp − εh + εp′ − εh′
,

�GSC
n(p) (k, kF ) = N 2(kF )

∑
f

∑
p,h,p′,h′

δ(Ef − E0)

×
∣∣∣∣∣∣〈f |V �N→NN |php′h′; p�〉D+E

× 〈php′h′; p�|V NN |p�〉D+E

εp − εh + εp′ − εh′

∣∣∣∣∣∣
2

.

The first component, �0
n(p), is the contribution from the

uncorrelated hypernuclear ground state, the third one, �GSC
n(p) ,

results from ground-state correlations, while �0−GSC
n(p) is the

interference term between correlated and uncorrelated ground
states.

It is now convenient to consider the following decomposi-
tion, dictated by the isospin quantum number:

�0
n(p)(k, kF ) =

∑
P,Q=D, E

�
PQ
n(p)(k, kF )

=
∑

P,Q=D, E

∑
τ�′ ,τ�=0,1

T PQ
τ�′ τ�, n (p)

×�PQ
τ�′ τ�

(k, kF ),

�0−GSC
n(p) (k, kF ) =

∑
P,Q,Q′=D, E

�
PQQ′
n (p) (k, kF )

=
∑

P,Q,Q′=D, E

∑
τ�′ ,τ�,τN=0,1

T PQQ′
τ�′ τ�τN , n (p)

×�PQQ′
τ�′ τ�τN

(k, kF ),

�GSC
n(p) (k, kF ) =

∑
P ′,P ,Q,Q′=D, E

�
P ′PQQ′
n (p) (k, kF )

=
∑

P ′,P ,Q,Q′=D, E

∑
τN ′ ,τ�′ ,τ�,τN =0,1

T P ′PQQ′
τN ′ τ�′ τ�τN , n (p)

×�P ′PQQ′
τN ′ τ�′ τ�τN

(k, kF ), (14)

where P ′, P , Q, Q′ = D or E refer to the direct or exchange
character of the matrix elements of Eq. (13). The isospin factors
are given by

T PQ
τ�′ τ�, n (p) =

∑
f, isospin

〈t�|Oτ�′ |f 〉P 〈f |Oτ�
|t�〉Q,

T PQQ′
τ�′ τ�τN , n (p) =

∑
f, isospin

〈t�|Oτ�′ |f 〉P 〈f |

×Oτ�
|tpthtp′ th′, t�〉Q

×〈tpthtp′ th′ , t�|OτN
|t�〉Q′ ,

T P ′PQQ′
τN ′ τ�′ τ�τN , n (p) =

∑
f, isospin

〈t�|OτN ′ |tp̃th̃tp̃′ tp̃′ , t�〉P ′

× 〈tp̃th̃tp̃′ tp̃′ , t�|Oτ�′ |f 〉P 〈f |Oτ�

× |tpthtp′ th′, t�〉Q〈tpthtp′ th′, t�|OτN
|t�〉Q′ ,

where the summations run over all the isospin projections t’s,
with the constraint that the emitted particles are nn for �n and
np for �p. For the partial decay widths we instead find

�PQ
τ�′ τ�

(k, kF ) = N 2(kF ) (−1)n
∑
f

δ(Ef − E0)

×〈p�|[V�N→NN
τ�′ (q ′)

]†|f 〉P 〈f |
×V�N→NN

τ�
(q)|p�〉Q, (15)

�PQQ′
τ�′ τ�τN

(k, kF ) = −2N 2(kF )(−1)n
∑
f

∑
p,h,p′,h′

δ(Ef − E0)

×〈p�|[V�N→NN
τ�′ (q ′)

]†|f 〉P
×〈f |V�N→NN

τ�
(q)|php′h′; p�〉Q

× 〈php′h′; p�|VNN
τN

(t)|p�〉Q′

εp − εh + εp′ − εh′
, (16)

�P ′PQQ′
τN ′ τ�′ τ�τN

(k, kF ) = N 2(kF ) (−1)n
∑
f

×
∑

p̃,h̃,p̃′,h̃′

∑
p,h,p′,h′

δ(Ef − E0)

×〈p�|[VNN
τN ′ (t ′)

]†|p̃, h̃, p̃′, h̃′; p�〉P ′

εp̃ − εh̃ + εp̃′ − εh̃′

× 〈p̃, h̃, p̃′, h̃′; p�|[V�N→NN
τ�′ (q ′)

]†|f 〉P
×〈f |V�N→NN

τ�
(q)|php′h′; p�〉Q

× 〈php′h′; p�|VNN
τN

(t)|p�〉Q′

εp − εh + εp′ − εh′
. (17)

Note that the values of the energy momentum carried by
the particle and hole lines depends on the topology of the
corresponding diagram, while n is the number of crossing
between fermionic lines.

Let us now apply the preceding formalism to a model
including amplitudes (a) and (b1) of Fig. 3. Four direct
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DD

+

DDD

+

DDD

+

DDDD

FIG. 6. Direct Goldstone diagrams corresponding to the square
of the amplitude sum (a) + (b1) of Fig. 3. See the decomposition of
Eq. (14).

self-energy diagrams correspond to the square of the amplitude
sum (a) + (b1); they are given in Fig. 6. Note that these
diagrams admit a single cut, giving rise to a 2p1h final state.
The DD diagram contributes to the partial widths �0

n (p) of
Eq. (14). The two DDD diagrams, which have the same
numerical value and are interferences between amplitudes (a)
and (b1) of Fig. 3, are included in the partial widths �0−GSC

n (p) .
Finally, the diagram DDDD contributes to �GSC

n (p). Many
exchange diagrams are obtained from the antisymmetrized
amplitude sum (a) + (b1): One PQ exchange diagram is the
partner of the DD one of Fig. 6; 7 PQQ′ exchange diagrams
are companions of each of the DDD ones; 15 P ′PQQ′
exchange diagrams add to the DDDD one.

Formal expressions for �0
n(p) can be found in Ref. [20]. The

�
PQQ′
n(p) ’s contributing to �0−GSC

n(p) [see Eq. (14)] correspond to
the diagrams of Fig. 7. By replacing, in Eq. (16), the sum
over momenta by integrals and by performing the energy
integrations and the spin summation, the following expression
for �PQQ′

τ�′ τ�τN
can be obtained:

�PQQ′
τ�′ τ�τN

(k, kF ) = N 2(kF )
1

4

(−1)n

(2π )8

(
GF m2

π

)2 f 2
π

m2
π

×
∫ ∫ ∫

dq dh dh′WPQQ′
τ�′ τ�τN

(q, q ′, t)

×�(k, q, q ′, t, h, h′, kF )
1

−ε
PQQ′
2p2h

× δ[q0 − (εh′+q − εh′)], (18)

where q0 = k0 − εk−q − VN , VN being the nucleon-
binding energy, while the functions WPQQ′

τ�′ τ�τN
(q, q ′, t) and

�(k, q, q ′, t, h, h′, kF ) and the energy denominator ε
PQQ′
2p2h

are specific to each PQQ′ contribution. The function
WPQQ′

τ�′ τ�τN
(q, q ′, t) contains the momentum dependence of the

nuclear residual interaction and the weak transition potentials
and the spin summation, while �(k, q, q ′, t, h, h′, kF ) is a
product of step functions that define the phase space of
particles and holes.

In the present section we present the explicit expression for
the direct term �DDD

τ�′ τ�τN
; the seven other ones are displayed in

Appendix A. We obtain

�DDD
τ�′ τ�τN

(k, kF ) = N 2(kF )
1

4

1

(2π )8

(
GF m2

π

)2 f 2
π

m2
π

×
∫ ∫ ∫

dq dh dh′ WDDD
τ�′ τ�τN

(q)

× θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)

DDD

DDE DED EDD

DEE EDE EED

EEE

FIG. 7. Goldstone diagrams for the partial rates �
PQQ′
n(p) contribut-

ing to Eq. (14).

× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|)
× 1

−q0 − (εh−q − εh)
δ[q0 − (εh′+q − εh′)].

(19)

The expressions for �(k, q, q ′, t, h, h′, kF ) and εDDD
2p2h are self-

evident. Moreover,

WDDD
τ�′ τ�τN

(q)

= 8{[S ′
τ�′ (q)S ′

τ�
(q) + PC,τ�′ (q)PC,τ�

(q)]VC, τN
(q) (20)

+ [Sτ�′ (q)Sτ�
(q) + PL,τ�′ (q)PL,τ�

(q)]VL, τN
(q)

+ 2 [SV,τ�′ (q)SV,τ�
(q) + PT,τ�′ (q)PT,τ�

(q)]VT , τN
(q)}.

(21)

Equation (19) can be simplified by introducing the functions

I(q0, q) = −π

(2π )3

∫
dh′θ (|q + h′| − kF |)

× θ (kF − |h′|)δ(q0 − εh′+q + εh′ ),
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R(q0, q) = 1

(2π )3
P

∫
dh

θ (|q − h| − kF |)θ (kF − |h|)
q0 − (εh−q − εh)

,

(22)

where I(q0, q) is the imaginary part of the Lindhard function
and the explicit expression forR(q0, q) is given in Appendix B.
Therefore,

�DDD
τ�′ τ�τN

(k, kF )

= −N 2(kF )

(2π )3

(
GF m2

π

)2 f 2
π

m2
π

∫
dq θ (q0)θ (|k − q| − kF )

×{[
S ′

τ�′ (q)S ′
τ�

(q) + PC,τ�′ (q)PC,τ�
(q)

]
VC, τN

(q)

+ [
Sτ�′ (q)Sτ�

(q) + PL,τ�′ (q)PL,τ�
(q)

]
VL, τN

(q)

+ 2
[
SV,τ�′ (q)SV,τ�

(q) + PT,τ�′ (q)PT,τ�
(q)

]
VT , τN

(q)
}

×R(−q0, q)I(q0, q). (23)

Then one has to perform the isospin summation to obtain

�DDD
n (p) (k, kF ) =

∑
τ�′ ,τ�,τN=0,1

T PQQ′
τ�′ τ�τN , n (p) �DDD

τ�′ τ�τN
(k, kF ).

(24)

The final results obtained after the local-density approximation
are therefore

�DDD
n = 2

{
�DDD

111 + �DDD
000 + �DDD

010 + �DDD
101

}
,

(25)
�DDD

p = 2
{
5 �DDD

111 + �DDD
000 − �DDD

010 − �DDD
101

}
.

Finally, we present the partial rates corresponding to
diagram DDDD of Fig. 6. By applying the same procedure
used for �DDD

τ�′ τ�τN
to Eq. (17) we obtain

�DDDD
τN ′ τ�′ τ�τN

(k, kF ) = −N 2(kF )

(2π )2

(
GF m2

π

)2
(

f 2
π

m2
π

)2

×
∫

dq θ (q0)θ (|k − q| − kF )

× {(
S ′

τ�′ S
′
τ�

+ PC,τ�′ PC,τ�

)
V2

C, τN

+ (
Sτ�′ Sτ�

+ PL,τ�′ PL,τ�

)
V2

L, τN

+ 2
(
SV,τ�′ SV,τ�

+ PT,τ�′ PT,τ�

)
V2

T , τN

}
×R2(−q0, q)I(q0, q), (26)

and

�DDDD
n = 4

{
�DDD

1111 + �DDD
0000 + �DDD

0101 + �DDD
1010

}
,

(27)
�DDDD

p = 4
{
5 �DDD

1111 + �DDD
0000 − �DDD

0101 − �DDD
1010

}
,

after performing the local density approximation.
In this article the �

P ′PQQ′
n (p) exchange terms will be neglected.

Indeed, from our numerical results discussed in the next section
it turns out that already the direct contribution �DDDD

n (p) is
small and approximately one order of magnitude smaller than
�DDD

n(p) . Moreover, according to the results obtained for the

�
PQQ′
n(p) ’s, P ′PQQ′ exchange contributions are expected to be

even smaller than the DDDD direct term.

V. RESULTS

In the previous section we have seen how the neutron- and
proton-induced decay widths can be written in the form

�n (p) = �0
n(p) + �0−GSC

n(p) + �GSC
n(p)

≡
∑

P,Q=D,E

�
PQ
n(p) +

∑
P,Q,Q′=D,E

�
PQQ′
n(p)

+
∑

P ′,P ,Q,Q′=D,E

�
P ′PQQ′
n(p) , (28)

�0
n(p) being the rates obtained for an uncorrelated hypernuclear

ground state, �GSC
n(p) the rates originated by ground-state corre-

lations and �0−GSC
n(p) the rates resulting from the interference

between uncorrelated and correlated ground states.
For the present scheme containing the transition amplitudes

(a) and (b1) of Fig. 3, where antisymmetrization is considered
for the weak transition potential V �N→NN and the nuclear
residual interaction V NN , we obtained 2 contributions to �0

n(p),
which are �DD

n(p) = �EE
n(p) and �DE

n(p) = �ED
n(p) and are generated

by the square of amplitude (a); 8 different �PQQ′
n(p) contributions

to �0−GSC
n(p) , which are interferences between the (a) and

(b1) amplitudes; 16 different �
P ′PQQ′
n(p) contributions to �GSC

n(p) ,
which originate from the square of amplitude (b1). An early
evaluation of �0

n(p) has been performed in Ref. [20], while

�0−GSC
n(p) and �GSC

n(p) are discussed here for the first time. Among

the �
P ′PQQ′
n(p) ’s, here we only calculate the direct terms �DDDD

n(p) .

A. 12
� C

We start by discussing the relevance of the Pauli exchange
terms in �0

n(p) and �0−GSC
n(p) . Our results for �PQ

n and �PQ
p

are given in Table I for the decay of 12
� C. Note that, for

symmetry, �0
n(p) are twice the sum of �DD

n(p) and �DE
n(p). Exchange

terms contribute to the uncorrelated rates for neutron-induced
(proton-induced) decays by 5.1% (0.3%). Thus, they tend to
increase �n/�p while having a very small effect on �1.

In Table II we present predictions for the �PQQ′
n and

�PQQ′
p contributions derived from the Goldstone diagrams of

Fig. 7, again for 12
� C. As expected, the direct terms �DDD

n

and �DDD
p are the main contributions. Nevertheless, the effect

of antisymmetry on the two isospin channels is significant: It
increases �0−GSC

n by 34% while decreasing �0−GSC
p by 8%. The

overall effect on �0−GSC
1 = �0−GSC

n + �0−GSC
p is a very small

TABLE I. Direct and exchange �PQ
n and �PQ

p terms for 12
� C in

units of the free �-decay rate, �0 = 2.52 × 10−6 eV. The first column
indicates the two different isospin channels and their sum. Note that
�DD

n(p) = �EE
n(p) and �DE

n(p) = �ED
n(p).

Channel 2 �DD 2 �DE �0

�n → nn 0.146 0.008 0.154
�p → np 0.469 0.002 0.470
Sum 0.615 0.009 0.624
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TABLE II. Direct and exchange �PQQ′
n and �PQQ′

p terms for 12
� C

obtained from the diagrams of Fig. 7.

Channel �DDD �DDE �DED �EDD

�n → nn 0.022 −0.002 −0.009 −0.004
�p → np 0.071 0.005 −0.027 −0.011
Sum 0.093 0.003 −0.036 −0.015

�DEE �EDE �EED �EEE �0−GSC

�n → nn 0.006 0.008 0.006 0.002 0.029
�p → np −0.008 0.009 0.025 0.002 0.066
Sum −0.003 0.017 0.031 0.004 0.095

increase, of 2%. We note that, with topologically equivalent
diagrams, in Ref. [24] a similar quasicancellation between
neutron- and proton-induced decays has been found in nucleon
spectra calculations. Moreover, in Ref. [18] it has been shown
that the evaluation of the GSC exchange terms is important for
the rate �2 as well. We emphasize that the exact evaluation of
exchange diagrams has been mostly ignored in the literature.
It is usually a quite involved (but necessary) task, given the
rapidly increasing number of terms one has to consider when
going to higher orders in the nuclear residual interaction.
Unfortunately, there is no general rule for anticipating the need
for the evaluation of exchange terms when the corresponding
direct contribution is important.

In Table III we present the different contributions to the
rates �n and �p of Eq. (28). The uncorrelated parts �0

n

and �0
p dominate over the remaining ones: �0

1 = �0
n + �0

p

constitutes 86% of the total �1. Then, �0−GSC
1 = �0−GSC

n +
�0−GSC

p and �GSC
1 = �GSC

n + �GSC
p represent 13% and 1% of

�1, respectively. We remind the reader that �GSC
n(p) are calculated

from the direct diagram DDDD in Fig. 6, while P ′PQQ′
exchange terms are neglected. This omission is justified by the
smallness of the direct contributions �DDDD

n(p) : The neglected
exchange part of �GSC

1 should contribute to �1 by less than 1%.
Thus, a challenging calculation of the 15 P ′PQQ′ exchange
diagrams can be reasonably avoided.

Our predictions for the one- and two-nucleon induced decay
rates for 12

� C are given in Table IV. For completeness, we report
results without and with the inclusion of antisymmetrization
and GSCs. It should be noted that the hypernuclear ground-
state normalization function N (kF ) of Eq. (5) equally affects
�1 and �2. This function is not identically equal to one only
when GSCs are present. Therefore, the �1 result without GSC
and with exchange terms of Table IV, 0.74, is bigger than the
prediction for �0

1 of Table III, 0.62, which has been obtained
instead by including both GSCs and antisymmetrization in

TABLE III. Predictions for the one-nucleon induced decay rates
of Eq. (28) for 12

� C.

Channel �0 �0−GSC �GSC �

�n → nn 0.154 0.029 0.002 0.185
�p → np 0.470 0.066 0.008 0.544
Sum 0.624 0.095 0.010 0.729

the normalization function. This comparison gives an idea of
the importance of a proper normalization of the hypernuclear
ground state. GSCs produce a sizable increase in the value
of �NM, thanks to the opening of the two-nucleon induced
channel, while �1 remains practically unaffected. The effect
of GSCs on the �n/�p ratio is a small increase of 4%, which
is attributable entirely to the exchange terms in �0−GSC

n and
�0−GSC

p (see Table II). Antisymmetrization, on the contrary,
introduces an increase of �1 and a reduction of �2 and as a
result a sizable reduction of �2/�1.

In Table IV our predictions are compared with the most
recent data by KEK [31] and FINUDA [32]. It must be noted
that the partial decay rates of both data sets were obtained
by deconvoluting the effect of nucleon rescattering from the
measured nucleon spectra, as discussed in Sec. II. From this
comparison we conclude that GSCs are important for getting
agreement with data on �NM, while antisymmetrization is
crucial for reproducing the data for �2/�NM: Only with the
set of results including both exchange terms and GSCs can
we achieve an overall agreement with all data. This agreement
leads us to believe that the effect of final-state nucleon-nucleon
correlations on the decay rates, which we have not included
in the calculation but that can in principle affect the data, is of
limited size.

Nevertheless, we have to admit that more refined and
systematic theoretical studies should be performed before one
can reach definite conclusions from the comparison between
theory and experiment. For instance, the result obtained
for �NM requires a comment on the eventual inclusion of
the full set of diagrams stemming from the amplitudes in
Figs. 3 and 4 and eventually from other amplitudes. At first
glance, one may think that the final outcome from all these
diagrams would be a bigger value for �NM, thus spoiling the
good agreement with data of the present result. This is not
necessarily the case, for two reasons. First, amplitudes (d1)
and (d2) in Fig. 3 and amplitude (c) in Fig. 4 originate from the
1�1p2h GSC. The inclusion of these correlation amplitudes
requires the introduction of new terms in the ground-state
normalization function (5); this leads to a reduction of the
individual values for each decay width, including the ones we
have obtained in the preceding. From the previous studies in
Refs. [17,18] one observes the following property, introduced
by ground-state normalization: A certain redistribution of the
total nonmesonic decay strength among the partial contribu-
tions occurs when new self-energy terms are included. Second,
the presence of several additional self-energy diagrams which
are interference terms between different amplitudes could also
bring a reduction of the decay rates �1 and �2.

B. Medium and heavy hypernuclei

To have a further indication of the reliability of our
framework, which adopts the local density approximation to
obtain results for finite hypernuclei, we have extended the
calculation to medium and heavy � hypernuclei. All the GSC
contributions and the antisymmetrization terms discussed in
detail for 12

� C have been taken into account. The results we
have obtained are given in Table V and are compared with
recent data in Fig. 8.
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TABLE IV. The nonmesonic weak decay widths of 12
� C. Results are given without and with the contributions of antisymmetrization and

ground-state correlations. The most recent data, from KEK [31] and FINUDA [32], are given for comparison.

Ant./GSC �n �p �1 �2 �NM �n/�p �2/�NM

No/No 0.15 0.47 0.62 0 0.62 0.31 0
Yes/No 0.18 0.56 0.74 0 0.74 0.33 0
No/Yes 0.15 0.47 0.61 0.31 0.91 0.31 0.34
Yes/Yes 0.19 0.55 0.73 0.25 0.98 0.34 0.26
KEK 0.23 ± 0.08 0.45 ± 0.10 0.68 ± 0.13 0.27 ± 0.13 0.95 ± 0.04 0.51 ± 0.13 ± 0.05 0.29 ± 0.13
FINUDA 0.24 ± 0.10

The GSC-free rate �0
1 represents 86% of the rate �1 =

�0
1 + �0−GSC

1 + �GSC
1 for 12

� C. For increasing hypernuclear
mass number A, this contribution decreases and reaches 81%
for 208

� Pb. As expected, GSC contributions are thus more
important for heavy hypernuclei.

The one- and two-nucleon induced rates increase with
A and rapidly saturate. Saturation is expected to begin for
those hypernuclei whose radius becomes sensitively larger
than the range of the nonmesonic processes. The fact that for
40
� Ca and 208

� Pb we obtain very similar predictions informs us
that in 208

� Pb the nonmesonic decay (both one- and two-nucleon
stimulated) involves the same nucleon shells that participate
in the decay of 40

� Ca. Indeed, the � wave function (s level
of the �-nucleus mean potential) is well overlapped to the
hypernuclear core already in 40

� Ca.
It should be noted that the slight decrease of the nonmesonic

rate �NM going from 89
� Y to 139

� La is attributable to the
special value of the oscillator parameter h̄ω adopted for this
hypernucleus. Such a parameter, which is obtained as the
difference between the measured s and p � energy levels
in 139

� La, is indeed smaller than the values measured for the
two neighboring hypernuclei of our calculation, 89

� Y and 208
� Pb.

The contribution of the two-nucleon induced width is
almost independent of the hypernuclear mass number and
oscillates between 22% and 26% of �NM. We note from
Fig. 8 that the datum recently determined at KEK, �2(12

� C) =
0.27 ± 0.13 [31] is well reproduced by our calculation.
Also, the recent determination obtained by FINUDA [32] of
�2/�NM = 0.22 ± 0.08 for hypernuclei from 5

�He to 16
� O is in

agreement with our predictions.

TABLE V. Decay rates predicted for medium to heavy hypernuclei.

Hypernucleus �0
1 �1 �2 �NM

11
�B 0.56 0.64 0.18 0.82
12
�C 0.62 0.73 0.25 0.98
27
�Al 0.80 0.94 0.28 1.22
28
�Si 0.81 0.96 0.29 1.25
40
�Ca 0.87 1.03 0.29 1.33
56
�Fe 0.88 1.06 0.33 1.39
89
�Y 0.87 1.06 0.33 1.39

139
�La 0.86 1.04 0.32 1.36

208
�Pb 0.86 1.06 0.34 1.40

Concerning �NM, the agreement of our predictions with
data is also rather good. The only exception is the large
underestimation of the datum for the A � 200 region, which,
however, is also difficult to reconcile with the decay rate
measured at KEK for 56

� Fe. No known mechanism can be
responsible for a large increase in the nonmesonic decay rate
when going from 56

� Fe to the A � 200 region. Concerning
the datum for A � 200, we have to note that, given the
difficulty in employing direct timing methods for heavy
hypernuclei, it has been obtained in experiments (performed
at COSY, Juelich [33]) that measured the fission fragments
(which are supposed to be generated by the nonmesonic decay)
emitted by hypernuclei produced in proton-nucleus reactions.
Large uncertainties affect such delayed fission experiments
because of the limited precision of the employed recoil shadow
method. The produced hypernuclei cannot be unambiguously
identified with this method. It is also possible that mechanisms
other than the nonmesonic decay contributed to hypernuclear
fission in these experiments. The datum reported in Fig. 8
has been obtained as an average from measurements for
hypernuclei produced in proton-Au, proton-Bi, and proton-U
reactions.

We think that the results of the evaluation for medium
and heavy hypernuclei are encouraging: They give us some
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FIG. 8. The predictions for the decay rates �1, �2, and �NM =
�1 + �2 are given as a function of the hypernuclear mass number A.
The results for �NM are compared with experimental data for 11

� B [34],
12
� C [35], 27

� Al [34], 28
� Si [34], 56

� Fe [34], and the region of A between
180 and 220 [33]. The datum for �2 is from Ref. [31].
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confidence in using the local density approximation for
obtaining results in finite hypernuclei, even in light systems
such as 12

� C.

C. Closing remarks

Before concluding, we make here some further comments
on our calculation. Through our work we wish to emphasize the
importance of a detailed many-body treatment of nonmesonic
decay. This requires the identification and evaluations of a
large number of diagrams, working on a step-by-step basis
with the perspective of reaching the condition in which the
terms that are not taken into account can be safely neglected.
Considering the evolution in the predictions obtained in recent
works (see especially Refs. [17,18]) and here, this stability of
results has not been achieved yet, and new many-body terms
must be considered. In our opinion, one should explore the
dependencies of predictions on the weak transition potential
model only after these complicated many-body aspects are
properly understood. Finally, one should attempt to reach a
detailed agreement with experiment for �NM, �n/�p, and
�2/�NM and thus extract sensible information on strangeness-
changing baryon interactions. From the experimental side,
new and improved data are expected from FINUDA@Daphne
[36], JPARC [37,38], and GSI [39]. Questions of particular
importance will be a direct experimental identification of
the two-nucleon induced channels together with the deter-
mination of their contributions to the measured nucleon
spectra.

We end this section with a comment to emphasize the
importance of evaluating exchange terms. In our many-body
inspired calculation, such terms are considered together with
GSC contributions, which are included on the same ground
for one- and two-nucleon induced decays. GSC and exchange
terms improve by 10% the value of �n/�p. Once GSCs
are included, antisymmetrization turns out to be particularly
important for both the one– and the two-nucleon induced
channels, reducing �2 by 18% and increasing �1 by 20%. It
would thus be pointless to neglect exchange terms and evaluate
only direct ones. Although the introduction of antisymmetry is
a difficult task in a many-body framework, one should evaluate
all those exchange diagrams that are companions of a direct
diagram that one knows to be relevant.

VI. CONCLUSIONS

In this contribution we have studied the effects of GSCs
in the nonmesonic weak decay of � hypernuclei. A non-
relativistic nuclear-matter scheme has been adopted together
with the local-density approximation for calculations in
hypernuclei ranging from 11

� B to 208
� Pb. All isospin channels

contributing to one- and two-nucleon induced decays have
been considered. The employed weak transition potential
contains the exchange of mesons of the pseudoscalar and
vector octets π , η, K , ρ, ω, and K∗. The residual strong
interaction, responsible for GSCs, has been modeled on a Bonn
potential based on π , ρ, σ , and ω exchange.

By using the Goldstone diagrams technique, GSCs have
been introduced on the same footing for one- and two-nucleon

stimulated decays. The normalization of the hypernuclear
ground state introduced by GSCs has been taken into account.
We have devoted particular attention to those GSCs affecting
the decay widths �n and �p. The many-body � self-energy
terms we have considered originate from transition amplitudes
(a) and (b1) of Fig. 3 (for one-nucleon induced decays) and
by amplitude (a) of Fig. 4 (for two-nucleon induced decays).
Our approach embodies fermion antisymmetry; that is, both
direct and exchange interactions are considered in the various
diagrams. Concerning one-nucleon induced decays, we have
evaluated GSC-free rates �0

n(p), generated by amplitude
3(a), purely GSC terms �GSC

n(p) , produced by amplitude 3(b1),

and interference terms �0−GSC
n(p) between uncorrelated and

correlated hypernuclear ground states, that is, between
amplitudes 3(a) and 3(b1).

The dominant contribution to �1 = �0
1 + �0−GSC

1 + �GSC
1

turned out to be �0
1 = �0

n + �0
p. For 12

� C, �0−GSC
1 = �0−GSC

n +
�0−GSC

p and �GSC
1 = �GSC

n + �GSC
p represented 13% and 1% of

the rate �1, respectively; GSCs are thus responsible for 14%
of the one-nucleon induced width (such contribution increases
up to 19% for 208

� Pb). The preceding results justify the fact
that we have neglected the exchange terms in �GSC

n(p) . Exchange

contributions are rather relevant in the calculation of �0−GSC
n(p)

(for 12
� C, they increase �0−GSC

n by 34% and decreases �0−GSC
p

by 8%), while only scarcely contribute to �0
n(p). GSCs and

exchange terms together increase the value of �n/�p for 12
� C

by 10%. Thanks to the opening of the two-nucleon induced
channel, GSC produces a sizable increase (of 32% for 12

� C
when exchange terms are included) in the value of �NM =
�1 + �2.

The agreement among our final results and recent data
is quite good and clearly demonstrates the necessity of
including GSC and antisymmetrization effects. Nevertheless,
we believe that a refinement of the present scheme must be
pursued. Additional many-body terms should be considered,
involving for instance the �(1232) resonance. Only after
a certain stability of predictions is reached within such a
microscopic approach should one explore the dependencies
on the weak transition potential model and determine, through
detailed comparison with experiment, sensible information on
strangeness-changing baryon interactions.
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APPENDIX A

In this appendix we present explicit expressions for the
decay rates �

PQQ′
n(p) with PQQ′ �= DDD associated with the

Goldstone diagrams of Fig. 7 and contributing to Eq. (14). In
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the main text, these widths have been written as

�
PQQ′
n(p) =

∑
τ�′ ,τ�,τN =0,1

T PQQ′
τ�′ τ�τN , n (p) �PQQ′

τ�′ τ�τN
(k, kF ), (A1)

where

�PQQ′
τ�′ τ�τN

(k, kF ) = N 2(kF )
1

4

(−1)n

(2π )8

(
GF m2

π

)2 f 2
π

m2
π

×
∫ ∫ ∫

dq dh dh′ WPQQ′
τ�′ τ�τN

(q, q ′, t)

×�(k, q, q ′, t, h, h′, kF )
1

−ε
PQQ′
2p2h

× δ[q0 − (εh′+q − εh′)]. (A2)

The isospin index τ� (τ�′) of the weak transition potential is
associated to an energy-momentum q (q ′), while the nuclear
strong interaction isospin index is τN and the corresponding
energy-momentum t . In the following subsections we give the
functions WPQQ′

τ�′ τ�τN
(q, q ′, t) and �(k, q, q ′, t, h, h′, kF ), the

energy denominator ε
PQQ′
2p2h , and n (the number of crossing

between fermionic lines) for the various cases. Finally, we
show the isospin sums of Eq. (A1).

1. �DDE
n(p)

The WDDE
τ�′ τ�τN

(q, q ′, t) function, where q ′ = q and t = h′ −
h + q, is identical to the Sded

τ ′τN τ (q, q ′, t) function in Eq. (A1)
of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A3)

εDDE
2p2h = εDDD

2p2h ≡ k0 − εk − q + εh − q − εh − VN, (A4)

and n = 0. The isospin sums are given by

�DDE
n = −�DDE

111 + �DDE
000 + 3�DDE

101 + �DDE
110 − �DDE

011

+�DDE
100 + 3�DDE

001 + �DDE
010 ,

�DDE
p = −5�DDE

111 + �DDE
000 − 3�DDE

101 + 5�DDE
110 + �DDE

011

−�DDE
100 + 3�DDE

001 − �DDE
010 .

2. �DED
n(p)

The WDED
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − h and t =
q, is identical to the Sdde

τ ′τN τ (q, q ′, t) function in Eq. (A3) of
Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A5)

εDED
2p2h = εDDD

2p2h , (A6)

and n = 0. The isospin sums are given by

�DED
n = −�DED

111 + �DED
000 + �DED

101 + 3�DED
110 − �DED

011

+�DED
100 + 3�DED

001 + 3�DED
010 ,

�DED
p = −5�DED

111 + �DED
000 + 5�DED

101 − 3�DED
110 + �DED

011

−�DED
100 − �DED

001 + 3�DED
010 .

3. �EDD
n(p)

The WEDD
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − q − h′ and
t = q, is identical to the Sdde

τ ′τN τ (q, q ′, t) function in Eq. (A3)
of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A7)

εEDD
2p2h = εDDD

2p2h , (A8)

and n = 1. The isospin sums are given by

�EDD
n = −�EDD

111 + �EDD
000 − �EDD

101 + 3�EDD
110 + �EDD

011

+ 3�EDD
100 + �EDD

001 + �EDD
010 ,

�EDD
p = −5�EDD

111 + �EDD
000 + �EDD

101 − 3�EDD
110 + 5�EDD

011

+ 3�EDD
100 − �EDD

001 − �EDD
010 .

4. �DEE
n(p)

The WDEE
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − h and
t = h − h′ − q, is identical to the Seed

τ ′τN τ (q, q ′, t) function in
Eq. (A7) of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A9)

εDEE
2p2h = εDDD

2p2h , (A10)

and n = 1. The isospin sums are given by

�DEE
n = 5�DEE

111 + �DEE
000 + �DEE

101 + �DEE
110 + 5�DEE

011

+�DEE
100 + �DEE

001 + �DEE
010 ,

�DEE
p = −2�DEE

111 − 4�DEE
101 + 4�DEE

110 + 2�DEE
011 + 2�DEE

100

+ 2�DEE
001 + 2�DEE

010 .

5. �EDE
n(p)

The WEDE
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − q − h′ and
t = h′ − h + q, is identical to the Seed

τ ′τN τ (q, q ′, t) function in
Eq. (A7) of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q − h| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A11)

εEDE
2p2h = εDDD

2p2h , (A12)

and n = 1. The isospin sums are given by

�EDE
n = −�EDE

111 + �EDE
000 + 3�EDE

101 + �EDE
110 − �EDE

011

+�EDE
100 + 3�EDE

001 + �EDE
010 ,

064315-13



E. BAUER AND G. GARBARINO PHYSICAL REVIEW C 81, 064315 (2010)

�EDE
p = 4�EDE

111 + 6�EDE
101 − 4�EDE

110 − 2�EDE
011

+ 2�EDE
100 + 2�EDE

010 .

6. �EED
n(p)

The WEED
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − h and
t = k − q − h′, is identical to the Sede

τ ′τN τ (q, q ′, t) function in
Eq. (A5) of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|q + h + h′ − k| − kF |)
× θ (kF − |h|)θ (|q + h′| − kF |)θ (kF − |h′|), (A13)

εEED
2p2h = k0 − εh + εq+h+h′−k − εq+h′ − VN, (A14)

and n = 1. The isospin sum are given by

�EED
n = −�EED

111 + �EED
000 + �EED

101 + 3�EED
110 − �EED

011

+�EED
100 + �EED

001 + 3�EED
010 ,

�EED
p = 4�EED

111 − 4�EED
101 + 6�EED

110 − 2�EED
011

+ 2�EED
100 + 2�EED

001 .

7. �EEE
n(p)

The WEEE
τ�′ τ�τN

(q, q ′, t) function, where q ′ = k − h and
t = h + q − k, is identical to the Seee

τ ′τN τ (q, q ′, t) function in
Eq. (A9) of Ref. [24]. Moreover,

�(k, q, q ′, t, h, h′, kF )

= θ (q0)θ (|k − q| − kF )θ (|h′ + q| − kF |)θ (kF − |h′|)
× θ (kF − |k − h + h′|)θ (kF − |h|), (A15)

εEEE
2p2h = k0 − εh + εh′ − εk−h+h′ − VN, (A16)

and n = 0. The isospin sums are given by

�EEE
n = 5�EEE

111 + �EEE
000 + �EEE

101 + �EEE
110 + 5�EEE

011

+�EEE
100 + �EEE

001 + �EEE
010 ,

�EEE
p = 7�EEE

111 + �EEE
000 + 5�EEE

101 + 5�EEE
110 + �EEE

011

−�EEE
100 − �EEE

001 − �EEE
010 .

APPENDIX B

The explicit expressions of the functionR(q0, q) of Eq. (22)
reads

R(q0, q)

= π

(2π )3

m

q

{
m2

q2

[
2

(
q0 − q2

2m

)
q

m
kF

+
((

q0 − q2

2m

)2

− q2

m2
k2
F

)
ln

∣∣∣∣2mq0 − q2 − 2qkF

2mq0 − q2 + 2qkF

∣∣∣∣]
+ θ (2kF − q)

[
− m2

q2

(
2q0

q

m

(
kF − q

2

)
+

(
q2

0 − q2

m2

×
(

kF − q

2

)2)
ln

∣∣∣∣2mq0 + q2 − 2qkF

2mq0 − q2 + 2qkF

∣∣∣∣)
+ q

(
q

4
− kF

)
ln

∣∣∣∣2mq0 − q2 + 2qkF

2mq0 + q2 − 2qkF

∣∣∣∣
− q0m ln

∣∣∣∣q2
0m2 − q2(kF − q/2)2

m2q2
0

∣∣∣∣]}
,

where q = |q| and m is the nucleon mass.
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