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β-decay properties of neutron-rich Zr and Mo isotopes
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Gamow-Teller strength distributions, β-decay half-lives, and β-delayed neutron emission are investigated in
neutron-rich Zr and Mo isotopes within a deformed quasiparticle random-phase approximation. The approach is
based on a self-consistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable
particle-hole and particle-particle forces. Comparison with recent measurements of half-lives stresses the
important role that nuclear deformation plays in the description of β-decay properties in this mass region.
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I. INTRODUCTION

The rapid neutron-capture process (r process) is considered
to be the main nucleosynthesis mechanism responsible for
the production of heavy neutron-rich nuclei and for the
existence of about half of the nuclei heavier than iron [1,2].
Although the astrophysical sites for this process are still
controversial, it takes place in scenarios characterized by
very high neutron densities. The path that nucleosynthesis
follows involves neutron-rich isotopes, which can be far away
from the valley of β stability. The most relevant nuclear
properties to describe the r process are the nuclear masses
and the β-decay properties [2,3]—namely, the β-decay half-
lives (T1/2) and the β-delayed neutron-emission probabilities
(Pn). Nuclear masses define the possible r-process paths
near the neutron drip lines. The T1/2 values of r-process
waiting-point nuclei determine the pre-freeze-out isotopic
abundances and the speed of the process toward heavier
elements, as well as the r-process time scale. The Pn values of
r-process isobaric nuclei define the decay path toward stability
following the freeze-out and provide a source of late-time
neutrons.

A reliable nuclear physics description of the properties of
the extremely neutron-rich nuclei along the r-process path
is needed to interpret the astrophysical observations and to
model and simulate the r process properly. The quality of
nucleosynthesis modeling is directly affected by the quality of
the nuclear structure input. Unfortunately, most of the nuclear
properties of relevance for the r process are experimentally
unknown, although much effort has been focused on this
recently, and therefore theoretical predictions must be con-
sidered. Such calculations are particularly challenging in the
very exotic regions of interest, as they involve extrapolations
using well-established nuclear-structure models that have been
properly tuned to account mostly for the properties of nuclei
in the valley of stability. In particular, the shell structure
of neutron-rich drip-line nuclei is still unknown to a large
extent. Significant isospin dependence of shell effects in
medium-mass and heavy nuclei has been predicted [4–6]. It
has been found that the shell gaps decrease dramatically near
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the neutron drip lines because of continuum effects, and a
quenching of shell effects is apparent.

As a matter of fact, nuclear structure properties of nuclei
far from stability, where no experiments exist for direct
comparison, can be tested by exploring their influence on
the solar r-process abundance patterns. For example, the
agreement with the observed r-process abundances in the
A ∼ 120 mass region is manifestly improved [7–10] when
using nuclear structure models that include a shell quenching
effect at N = 82 [5,11].

In this work we focus our attention on the mass region of
neutron-rich A ∼ 100–110 nuclei, which is of great interest for
the astrophysical r process. In addition, neutron-rich isotopes
in this mass region are known [12] to be interesting examples
where the equilibrium shape of the nucleus is rapidly changing
and shape coexistence is present, with competing prolate,
oblate, and spherical shapes at close energies (see, e.g.,
Ref. [13] for a general review).

In a recent publication [14], the β-decay properties of
some neutron-rich Zr and Mo isotopes were measured for
the first time. The data were interpreted in terms of the
quasiparticle random-phase approximation (QRPA) [15–18],
using nuclear shapes and nuclear masses derived from the
finite-range droplet model (FRDM) [19] and the latest version
of the finite-range liquid-drop model (FRLDM) [20], which
also includes triaxial deformation. QRPA calculations for
neutron-rich nuclei have also been performed within different
approaches, such as the Hartree-Fock-Bogoliubov (HFB) [21],
the continuum QRPA, either with the extended Thomas-Fermi
plus Strutinsky integral (ETFSI) method [22] or based on
density functionals [23,24], and the relativistic mean-field
(RMF) approach [25], to mention just some of the recent
publications, all of them for spherical nuclei. However, the
mass region of concern here requires nuclear deformation as a
relevant degree of freedom to characterize the nuclear structure
involved in the calculation of the β-strength functions. The de-
formed QRPA formalism has been developed in Refs. [15–17]
and [26–28], where phenomenological mean fields based on
Nilsson or Woods-Saxon potentials were used as a starting
basis. In this work we investigate the decay properties of
neutron-rich even-even Zr and Mo isotopes within a deformed
self-consistent Hartree-Fock (HF) mean-field formalism with
Skyrme interactions and pairing correlations in the BCS
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approximation. Residual spin-isospin interactions are also
included in the particle-hole and particle-particle channels and
are treated in QRPA [29,30].

The paper is organized as follows. In Sec. II a brief review
of the theoretical formalism is presented. Sec. III contains
the results obtained within this approach for the potential
energy curves, Gamow-Teller (GT) strength distributions,
and β-decay half-lives. Section IV summarizes the main
conclusions.

II. THEORETICAL FORMALISM

In this section we show briefly the theoretical framework
used in this paper to describe the β-decay properties of Zr and
Mo neutron-rich isotopes. More details of the formalism are
given in Refs. [29] and [30]. The method consists of a self-
consistent formalism based on a deformed Hartree-Fock mean
field obtained with Skyrme interactions, including pairing
correlations. The single-particle energies, wave functions, and
occupation probabilities are generated from this mean field.
In this work we have chosen the Skyrme force SLy4 [31] as
a representative of the Skyrme forces. This particular force
includes some selected properties of unstable nuclei in the
adjusting procedure of the parameters. It is one of the more
successful Skyrme forces and has been studied extensively in
the last years.

The solution of the HF equation is found by using the
formalism developed in Ref. [32], assuming time reversal
and axial symmetry. The single-particle wave functions are
expanded in terms of the eigenstates of an axially symmetric
harmonic oscillator in cylindrical coordinates, using 12 major
shells. The method also includes pairing between like nucleons
in the BCS approximation with fixed gap parameters for pro-
tons and neutrons, which are determined phenomenologically
from the odd-even mass differences through a symmetric five-
term formula involving the experimental binding energies [33]
when available. In those cases where experimental information
for masses is still not available, we have used the same pairing
gaps as for the closer isotopes measured. The pairing gaps
for protons (�p) and neutrons (�n) obtained in this way are
roughly 1 MeV. The corresponding pairing strengths Gp and
Gn calculated from the gap equation depend sensitively on the
mass region, single-particle spectrum, and active window for
pairing. For typical values of the cutoffs of about 5 MeV
around the Fermi level, one obtains Gp ∼ 0.25 MeV and
Gn ∼ 0.30 MeV. It is worth noting that, although the BCS
formalism leads to an unphysical neutron gas surrounding the
nucleus near the drip line, the approximation is still valid in the
region considered here, where the pairing gaps are still much
lower than the Fermi energies.

The potential energy curves are analyzed as a function of
the quadrupole deformation β,

β =
√

π

5

Q0

A〈r2〉 , (1)

written in terms of the mass quadrupole moment Q0 and the
mean square radius 〈r2〉. For that purpose, constrained HF
calculations are performed with a quadratic constraint [34].

The HF energy is minimized under the constraint of keeping
the nuclear deformation fixed. Calculations of GT strengths
are performed subsequently for the equilibrium shapes of each
nucleus, that is, for the solutions, in general deformed, for
which minima are obtained in the energy curves. Because
decays connecting different shapes are disfavored, similar
shapes are assumed for the ground state of the parent nucleus
and for all populated states in the daughter nucleus. The
validity of this assumption is discussed, for example, in
Refs. [15] and [26]. In our particular case, for SLy4 and
neutron-rich Zr and Mo isotopes, the ground-state deformation
of the even-even parents (Zr, Mo) and of the corresponding
β-decay odd-odd daughters (Nb, Tc) are practically the same,
as shown in Ref. [35].

To describe GT transitions, a spin-isospin residual inter-
action is added to the mean field and treated in a deformed
proton-neutron QRPA [15–17,26–30]. This interaction con-
tains two parts, particle-hole (ph) and particle-particle (pp).
The interaction in the ph channel is responsible for the position
and structure of the GT resonance [26,29,30], and it can be
derived consistently from the same Skyrme interaction used
to generate the mean field, through the second derivatives of
the energy density functional with respect to the one-body
densities. The residual interaction is finally expressed in a
separable form by averaging the Landau-Migdal resulting
force over the nuclear volume, as explained in Refs. [29]
and [30]. The coupling strength is given by χ

ph
GT = 0.15 MeV.

The pp part is a neutron-proton pairing force in the Jπ = 1+
coupling channel, which is also introduced as a separable
force [27,28]. The strength of the pp residual interaction
in this theoretical approach is not derived self-consistently
from the SLy4 force used to obtain the mean field basis, but
nevertheless, it has been fixed in accordance with it. This
strength is usually fitted to reproduce globally the experimental
half-lives. Various attempts have been made in the past to fix
this strength, arriving at expressions such as κ

pp
GT = 0.58/A0.7

in Ref. [26], which depend on the model used to describe
the mean field, the Nilsson model in the reference cited.
Our work in the past (see Refs. [36] and [37] and references
therein), based on the Skyrme force SLy4, leads us to consider
the value κ

pp
GT = 0.03 MeV as a reasonable choice in this

mass region, improving the agreement with the experimental
half-lives.

The proton-neutron QRPA phonon operator for GT excita-
tions in even-even nuclei is written as

�+
ωK

=
∑
πν

[
XωK

πν α+
ν α+

π̄ + YωK

πν αν̄απ

]
, (2)

where α+(α) are quasiparticle creation (annihilation) opera-
tors, ωK are the QRPA excitation energies with respect to the
ground state of the parent nucleus, and XωK

πν and YωK
πν are the

forward and backward amplitudes, respectively. For even-even
nuclei the allowed GT transition amplitudes in the intrinsic
frame connecting the QRPA ground state |0〉 (�ωK

|0〉 = 0) to
one-phonon states |ωK〉 (�+

ωK
|0〉 = |ωK〉) are given by

〈ωK |σKt±|0〉 = ∓M
ωK± , (3)
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where

M
ωK− =

∑
πν

(
qπνX

ωK

πν + q̃πνY
ωK

πν

)
, (4)

M
ωK+ =

∑
πν

(
q̃πνX

ωK

πν + qπνY
ωK

πν

)
, (5)

with

q̃πν = uνvπ

νπ∑
K

, qπν = vνuπ

νπ∑
K

, (6)

v′s the occupation amplitudes (u2 = 1 − v2) and �νπ
K the spin

matrix elements connecting neutron and proton states with
spin operators,

νπ∑
K

= 〈ν|σK |π〉. (7)

The GT strength Bω(GT±) in the laboratory system for a
transition IiKi(0+0) → If Kf (1+K) can be obtained in terms
of the intrinsic amplitudes in Eq. (3) as

Bω(GT±) =
∑
ωK

[〈ωK=0|σ0t
±|0〉2δ(ωK=0 − ω)

+ 2〈ωK=1|σ1t
±|0〉2δ(ωK=1 − ω)], (8)

in units of g2
A/4π . To obtain this expression, the initial and final

states in the laboratory frame have been expressed in terms of
the intrinsic states using the Bohr-Mottelson factorization [38].

The excitation energy Eex referred to the ground state of
the odd-odd daughter nucleus is obtained by subtracting the
lowest two-quasiparticle energy E0 from the calculated ω

energy in the QRPA calculation, Eex = ωQRPA − E0, where
E0 = (En + Ep)0 is the sum of the lowest quasiparticle
energies for neutrons and protons. The GT strength B(GT)
will be plotted later versus Eex in Figs. 3–6.

The β-decay half-life is obtained by summing all the
allowed transition strengths to states in the daughter nucleus
with excitation energies lying below the corresponding Q

energy and weighted with the phase-space factors f (Z,Qβ −
Eex),

T −1
1/2 = (gA/gV )2

eff

D

∑
0<Eex<Qβ

f (Z,Qβ − Eex)B(GT, Eex),

(9)

with D = 6200 s and (gA/gV )eff = 0.77(gA/gV )free, where
0.77 is a standard quenching factor that takes into account in
an effective way all the correlations [39] tha are not properly
considered in the present approach. The bare results can be
recovered by scaling the results in this paper for B(GT) and
T1/2 with the square of this quenching factor. The Qβ− energy
is given by

Qβ− = M(A,Z) − M(A,Z + 1) − me

= BE(A,Z) − BE(A,Z + 1) + mn − mp − me, (10)

written in terms of the nuclear masses M(A,Z) or nuclear
binding energies BE(A,Z) and the neutron (mn), proton (mp),
and electron (me) masses.

The Fermi integral f (Z,Qβ − Eex) is computed numer-
ically for each value of the energy including screening and
finite-size effects, as explained in Ref. [40]:

f β±
(Z,W0) =

∫ W0

1
pW (W0 − W )2λ±(Z,W )dW, (11)

with

λ±(Z,W ) = 2(1 + γ )(2pR)−2(1−γ )e∓πy |�(γ + iy)|2
[�(2γ + 1)]2

, (12)

where γ =
√

1 − (αZ)2, y = αZW/p, α is the fine structure
constant, and R the nuclear radius. W is the total energy of the
β particle, W0 is the total energy available in mec

2 units, and
p = √

W 2 − 1 is the momentum in mec units.
This function weights the strength B(GT) differently

depending on the excitation energy. As a general rule,
f (Z,Qβ − Eex) increases with the energy of the β particle
and therefore the strengths located at low excitation energies
contribute more importantly to the half-life.

The probability of β-delayed neutron emission is given by

Pn =
∑

Sn<Eex<Qβ
f (Z,Qβ − Eex)B(GT, Eex)∑

0<Eex<Qβ
f (Z,Qβ − Eex)B(GT, Eex)

, (13)

where the sums extend to all the excitation energies in the
daughter nuclei in the indicated ranges. Sn is the one-neutron
separation energy in the daughter nucleus. In this expression
it is assumed that all the decays to energies above Sn in
the daughter nuclei always lead to delayed neutron emission,
and then γ decay from neutron unbound levels is neglected.
According to Eq. (13), Pn is mostly sensitive to the strength
located at energies around Sn, thus providing a structure probe
complementary to T1/2.

III. RESULTS

In this section we start by showing the results obtained
for the potential energy curves in the isotopes under study.
Then we calculate the energy distribution of the GT strength
corresponding to the local minima in the potential energy
curves. After showing the predictions of various mass models
for the Qβ and Sn values for more unstable isotopes, where
no data on these quantities are available, we calculate the
β-decay half-lives and discuss their dependence on the
deformation.

In previous works [29,30,41–44] we have studied the sensi-
tivity of the GT strength distributions to the various ingredients
contributing to the deformed QRPA-like calculations, namely,
to the nucleon-nucleon effective force, to pairing correlations,
and to residual interactions. We found different sensitivities
to them. In this work, all of these ingredients have been fixed
to the most reasonable choices found previously and already
mentioned, including the quenching factor. Here, we mainly
discuss effects of deformation, keeping in mind that the method
provides the self-consistent deformations as well.
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FIG. 1. Potential energy curves for even-even 100−110Zr isotopes
obtained from constrained HF + BCS calculations with the Skyrme
forces SG2 and SLy4.

A. Potential energy curves

Figures 1 and 2 show the potential energy curves for the
even-even 100−110Zr and 104−114Mo isotopes, respectively. The
energies are shown relative to that of the ground state plotted
as a function of the quadrupole deformation β. They were
obtained from constrained HF + BCS calculations with the
Skyrme forces SG2 [45] and SLy4 [31]. We observe that both
forces produce very similar results. In Fig. 1 we see that the
Zr isotopes exhibit, in all cases, two well-developed minima.
The ground states are located in the prolate sector at positive
values of β ≈ 0.4. We can also see oblate minima at higher
energies located at β ≈ −0.2. The two minima are separated
by potential energy barriers varying from E = 3 MeV, in the
lightest 100Zr isotope, up to barriers of the order of 5 MeV,
in heavier isotopes. In the 108−110Zr isotopes a spherical local
minimum is also developed.

Similar trends are shown in Fig. 2 for the Mo isotopes.
We observe well-developed oblate and prolate minima, which
are separated by barriers ranging from 3 to 5 MeV. We get
a prolate ground state with an oblate minimum very close in
energy to the lightest isotope considered, 104Mo, a practically
degenerate oblate-prolate in 106Mo, and oblate ground states
in heavier isotopes with quadrupole deformations at β ≈ −0.2
with prolate excited states at energies lower than 1 MeV.
Again, the heavier isotopes favor the appearance of a spherical
configuration at very low energies, resulting in an emergent
triple oblate-spherical-prolate shape coexistence scenario.
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FIG. 2. Same as Fig. 1, but for 104−114Mo isotopes.

These results are in qualitative agreement with similar
ones obtained in this mass region from different theoretical
approaches. As an example of these methods we can mention
the results obtained in Ref. [46], where this mass region was
studied within a macroscopic-microscopic approach based
on an energy obtained from a liquid drop or an FRLDM
modified by a shell correction taken from a deformed Woods-
Saxon potential. Zr isotopes from N = 60 to N = 72 were
predicted to have well-deformed prolate ground states, while
Mo isotopes suffered a shape transition from prolate shapes
in the lighter neutron-rich isotopes (N = 62) to oblate shapes
in the heavier ones. Similarly, the deformations obtained in
Ref. [19] from the FRDM and a folded-Yukawa single-particle
microscopic model were in the range β = 0.36–0.38 in the
Zr isotopes considered in this work and β = 0.33–0.36 in
the Mo isotopes, except in the heavier 114Mo, where an
oblate shape with β ≈ −0.25 becomes the ground state. RMF
calculations [47,48] show ground-state deformations in the
range of β = 0.36–0.40 in the Zr isotopes, while for Mo
isotopes oblate ground states are obtained, with parameters
of deformation between β = −0.28 and β = −0.23, except in
the lighter isotope 104Mo, where a prolate ground state β =
0.336 is found. Calculations including rotational states in terms
of the total Routhian surface, using nonaxial Wood-Saxon
potentials [49], predicted two coexisting prolate and oblate
minima (β ≈ 0.35 and β ≈ −0.2) for 106−116Zr isotopes,
where the prolate ground state becomes oblate beyond 110Zr.
The same calculations showed oblate (β ≈ −0.22) ground
states for N > 68 Mo isotopes. Finally, similar results in the
sense of competing oblate and prolate shapes and emergence
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of spherical configurations in the heavier isotopes are also
obtained within the HFB framework with the finite-range
effective Gogny interaction D1S [50]. Equilibrium oblate
(β ≈ −0.2) and prolate (β ≈ 0.4) coexistent deformations
were found in Ref. [50] at practically the same energy in
the Zr isotopes. In Mo isotopes an oblate shape (β ≈ −0.2) is
favored energetically with close prolate (β ≈ 0.4) solutions. In
both cases, Zr and Mo isotopes, a spherical solution decreases
in energy and becomes almost degenerate with the deformed
solutions for the heavier isotopes 110Zr and 114Mo.

Thus, a consistent theoretical picture emerges, which is
supported by the still scarce experimental information avail-
able. Experimentally, two coexisting deformed bands weakly
admixed were found in 100Zr [51,52] from an analysis of B(E2)
and ρ(E0) and a two-level mixing model analysis. One of these
bands is a highly deformed prolate yrast band (β = 0.34),
while the other is moderately deformed (|β| = 0.16) and
weakly mixed with the yrast, by about 10%. The highly
deformed band in 100Zr is nearly identical to the yrast band
in 102Zr. Hill et al. [53] have also discussed the possibility that
the 0+

2 level measured for 102Zr at 895 keV could be the head
of a band with |β| ≈ 0.2, similar to the S band of 100Zr.

Quadrupole moments were also determined [54] for rota-
tional bands in 98−104Zr isotopes and deformation parameters
were deduced, increasing gradually from β = 0.1 at N =
56 up to β = 0.4 at N = 64. More recently [55], large
deformations [β = 0.47(7)] were extracted in 104Zr and in
106Mo [β = 0.36(7)] from the half-lives of their 2+ states.
Spectroscopic studies of high-spin states of 100−104Zr and
102−108Mo have also been performed by Hua et al. [56]
within the particle-rotor model. According to those authors,
the difference in signature splitting observed for the 5/2−[532]
band between the odd Zr and the odd Mo isotopes could be
attributed to the appearance of triaxiality in Mo isotopes. As
already mentioned, the formalism employed in the present
study does not include nonaxial deformation. This limitation,
however, has no significant impact on the results discussed
here. For example, the inclusion of triaxiality in the last
version of the FRLDM [20] resulted in a small reduction
in the 106,108Mo ground-state energies (of about 250 keV)
at γ = 17.5◦, with respect to pure prolate shapes. Simi-
larly, Xu et al. [49] predicted a γ -soft triaxial minimum
for 108Mo.

B. Gamow-Teller strength distributions

In Figs. 3 and 4, we show the results obtained for the
energy distributions of the GT strength corresponding to
the oblate-prolate-spherical equilibrium shapes for which we
obtained minima in the potential energy curves in Figs. 1 and 2.
The results were obtained with the force SLy4, using constant
pairing gaps extracted from the experimental masses (or
systematics) and with residual interactions with the parameters
written in Sec. II. The GT strength, in g2

A/4π units, is plotted
versus the excitation energy of the daughter nucleus and a
quenching factor 0.77 has been included.

Figures 3 and 4 contain the results for Zr and Mo
isotopes, respectively. We show the energy distributions of the
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FIG. 3. (Color online) QRPA-SLy4 Gamow-Teller strength dis-
tributions for Zr isotopes as a function of the excitation energy in the
daughter nucleus. Calculations correspond to the various equilibrium
configurations found in the potential energy curves. Qβ and Sn values
are shown by solid and dashed vertical arrows, respectively.

individual GT strengths together with continuous distributions
obtained by folding the strength with 1-MeV-wide Breit-
Wigner functions. The vertical arrows show the Qβ and Sn

energies, taken from experiment [33] or from the mass formula
in Ref. [57] when data were not available, as we explain
later.

The main characteristic of these distributions is the ex-
istence of a GT resonance located at increasing excitation
energy as the number of neutrons N increases. The total GT
strength also increases with N , as it is expected to fulfill
the Ikeda sum rule. It is worth noting that both oblate and
prolate shapes produce quite similar GT strength distributions
on a global scale. Even the spherical profiles are quite close
to the deformed ones. Nevertheless, the small differences
among the various shapes at the low-energy tails (below Qβ)
of the GT strength distributions, which can be appreciated
because of the logarithmic scale, lead to sizable effects in
the β-decay half-lives. In Fig. 5 for Zr isotopes and Fig. 6
for Mo isotopes, we can see the accumulated GT strength
plotted up to the corresponding Qβ energy of each isotope,
which is the relevant energy range for calculation of the
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FIG. 4. (Color online) Same as Fig. 3, but for Mo isotopes.

half-lives. Also shown, by vertical dashed lines, are the Sn

energies when they are lower than Qβ . At this magnified
scale, one can appreciate the sensitivity of these distributions
to deformation and how measurements of the GT strength
distribution from β decay can be a tool to get information
about this deformation, as carried out in Refs. [58] and [59].
The accumulated strength from the oblate shapes is in general
larger than the corresponding prolate profiles. The spherical
distributions have distinct characteristics, always appearing as
a strong peak at an excitation energy of about 2 MeV. The
profiles from different shapes could be easily distinguished
experimentally. This is especially true in the case of the lighter
isotopes 100−104Zr and 104−108Mo, where the differences are
enhanced. These isotopes are, in principle, easier to measure,
as they are the less exotic.

Experimental information on GT strength distributions in
these isotopes is available only in the energy range below
1 MeV for the isotopes 106,108Mo [60], 110Mo [61], and
100,102,104Zr [62]. These data are shown in Figs. 5 and 6, to-
gether with the QRPA calculations. Unfortunately, the energy
region is still very narrow and represents only a small fraction
of the GT strength relevant for the half-life determination.
Clearly, more experimental information is needed to gain
insight into the nuclear structure of these isotopes.
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FIG. 5. (Color online) QRPA-SLy4 accumulated GT strengths in
Zr isotopes calculated for the various equilibrium shapes. In each
isotope the energy range considered corresponds to its Qβ value. Sn

values are shown by dashed vertical arrows.

C. Half-lives and β-delayed neutron-emission probabilities

The calculation of the half-lives in Eq. (9) involves
knowledge of the GT strength distribution and of the Qβ

values. Calculation of the probability of β-delayed neutron
emission Pn in Eq. (13) also involves knowledge of the Sn

energies. We use experimental values for Qβ and Sn, which are
taken from Ref. [33] or from the Jyväskylä mass database [63],
when available. But in those cases where experimental masses
are not available, one has to rely on theoretical predictions
for them. There are a large number of mass formulas on the
market, obtained from different approaches.

The strategy used in this work is, first, to compare with ex-
periment the predictions of some representative mass formulas
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FIG. 7. (Color online) Experimental Qβ and Sn energies com-
pared to the predictions of various mass models.

in the mass region where data are available. According to their
success in reproducing the Qβ and Sn energies, we finally
adopt the most convenient mass formula for extrapolations to
the unknown regions.

In Fig. 7 we show this comparison for six frequently used
mass formulas. We use the model of P. Möller et al. [19], which
belongs to a microscopic-macroscopic type of calculation. It
contains an FRDM corrected by microscopic effects obtained
from a deformed single-particle model based on a folded
Yukawa potential including pairing in the Lipkin-Nogami
approach. Then we use the ETFSI model [64], which adopts
a semiclassical approximation to the HF method including
full Strutinsky shell corrections and BCS pairing correlations.
The label SLy4 stands for the masses calculated from the
Skyrme force SLy4 with a zero-range pairing force and Lipkin-
Nogami obtained from the code HFBTHO [65] and compiled
in Ref. [35]. The results under the label Gogny have been
obtained from HFB calculations with the finite-range Gogny-
D1S force [50]. The HFB-17 model is one of the most recent
versions of the Skyrme HFB mass formulas introduced by the
Brussels-Montreal group [66,67]. As in the previous cases,
SLy4 and Gogny, this is a fully microscopic approach, as it is
based on an effective two-body nucleon-nucleon interaction.
The Duflo and Zuker (DZ) mass model [57] is written as an
effective Hamiltonian that contains two parts, a monopole term
and a multipole term. The monopole calculations are purely HF
type based on single-particle properties, while the multipole
term acts as a residual interaction and the calculation goes
beyond HF. Its predictive power has been checked recently [68]

0

0.4

0.8

1.2

1.6

2

T
1/

2 (
s)

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

-0.2 0 0.2
β

0

0.05

0.1

P
n (

%
)

-0.2 0 0.2
β

0

2

4

6

8

-0.2 0 0.2
β

0

2

4

6

8

-0.2 0 0.2
β

0

10

20

30

104
Zr

106
Zr

108
Zr

110
Zr

FIG. 8. (Color online) QRPA-SLy4 β-decay half-lives and Pn

values for Zr isotopes as a function of the quadrupole deformation β

compared to experiment (shaded area). See text for more details.

with a number of tests probing its ability to extrapolate, with
very good results. In this work we use the 10-parameter version
of the mass formula [69], which is a simplification of the more
sophisticated 28-parameter mass formula in Ref. [57].

In the upper plots in Fig. 7 we can see the experimental
Qβ values (filled circles) [33,63], available for the isotopes
100,102,104Zr and 104,106,108,110Mo. They are compared with the
predictions of the various mass models discussed previously.
The lower plots show the neutron separation energies Sn

corresponding to the daughter isotopes of Nb and Tc, where
we compare the measured energies (filled circles) with
the predictions of the DZ formula and SLy4 force. We have
selected for consistency the SLy4 predictions, but also the
DZ mass formula, as one of the the most suited formulas in
this particular mass region. They agree fairly well with the
measured values for both Qβ and Sn values. In what follows
the results for half-lives and Pn for 106,108,110Zr and 112,114Mo
are obtained using Qβ and Sn from SLy4 and the DZ mass
formula.

Figures 8 and 9 show the dependence of the half-lives T1/2

and Pn values on the quadrupole deformation β. Solid lines in
the lighter isotopes (104Zr and 108,110Mo) correspond to QRPA-
SLy4 calculations using experimental Qβ and Sn. In the heavier
isotopes (106−110Zr and 112,114Mo), where there are no data for
Qβ and Sn, solid (dashed) lines correspond to QRPA-SLy4
calculations using Qβ and Sn from SLy4 (DZ). Experimental
data are shown by horizontal dashed lines, and the shaded
region in between corresponds to a 1-σ confidence level.
The vertical dashed lines show the self-consistent quadrupole
deformations for which we obtained the equilibrium shape
configurations (see Figs. 1 and 2). The first evidence to mention
is that a spherical approach to these nuclei is far from the
measured data, demanding a deformed treatment.

In Fig. 8 we show the results for the 104−110Zr isotopes.
In the cases of 104,106Zr we reproduce the experimental half-
lives with oblate and prolate deformations very close to the
self-consistent ones. In the oblate case the calculation gives
half-lives lower than experiment, while the self-consistent
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prolate deformation produces somewhat larger ones. Thus, the
experiment would be reproduced either by nuclear deforma-
tions that do not produce shapes at equilibrium (β ≈ ±0.3) or
by a mixing of the equilibrium deformations. Interestingly,
similar results were obtained in Ref. [14] for 104Zr, from
the analysis of the measured β-decay properties of 104Y in
terms of quadrupole deformation ε2 of the daughter 104Zr
(see Ref. [19] for a formal definition of the parameters ε2

and β). In that case, the quadrupole deformation needed to
reproduce the measured half-life and Pn value was |ε2| ≈ 0.25,
although oblate deformations were ruled out at that time. An
important difference between the results shown in Fig. 8 and
those discussed in Ref. [14] is the abrupt increase seen in the
latter for the T1/2 and Pn value for a near-spherical 104Zr.
These large values were mostly produced by the location
of the GT-populated πg9/2 × νg7/2 level at rather high energies
in the spherical daughter 104Zr. This discrepancy emphasizes
the sensitivity of T1/2 and Pn to the structural details of the
mother/daughter nuclei. The experimental Pn values are only
upper limits, although they are much larger than the typical
values obtained theoretically. In the heavier isotopes there are
no data and these results are thus useful to see the sensitivity
to deformation of the predictions. The spherical minima in the
heavier isotopes predict half-lives and Pn values much lower
than the corresponding values for deformed shapes. In Fig. 9
we have the results for the isotopes 108−114Mo. In the case
of 108Mo the half-life is reproduced with the self-consistent
oblate deformation, while the prolate one generates overly
high half-lives. In the case of 110Mo the measured half-life
is well reproduced with both oblate and prolate equilibrium
deformations. In the case of 108Mo the Pn value is 0, as
experimentally [63] Sn > Qβ . For 110Mo the Pn value is not
reached by the calculations. As in the case of the heavier Zr
isotopes, the heavier Mo isotopes show that the half-lives for
the spherical minima are much smaller than the corresponding
half-lives for the self-consistent oblate and prolate shapes. In
general we observe that the half-lives (Pn values) in the heavier
Zr and Mo isotopes calculated with Qβ and Sn from SLy4
(solid lines) are shorter (longer) than the results calculated
with Qβ and Sn from DZ (dashed lines).
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FIG. 10. (Color online) Measured β-decay half-lives and Pn

values for Zr and Mo isotopes compared to theoretical QRPA
results calculated from different shape configurations, using SLy4
to compute Qβ and Sn in the heavier isotopes.

In Figs. 10 and 11 we compare the measured β-decay
half-lives (upper plots) and Pn values (lower plots) with
the theoretical results obtained with the oblate, prolate, and
spherical equilibrium shapes. In the 100−104Zr isotopes we
use experimental Qβ and Sn values, while in the heavier
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FIG. 11. (Color online) Same as Fig. 10, but using DZ instead of
SLy4 to compute Qβ and Sn in the heavier isotopes.
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106−110Zr isotopes we use SLy4 in Fig. 10 and the DZ mass
formula in Fig. 11. Similarly, for the 104−110Mo isotopes we
use experimental Qβ and Sn values, while for 112−114Mo
we use SLy4 in Fig. 10 and the DZ mass formula in
Fig. 11. In the case of Zr isotopes, we can see that the
experimental half-life is close to the oblate result in 100Zr and
it appears systematically between the prolate and the oblate
calculations in the isotopes 102,104,106Zr. One wonders whether
this result could be explained by the coexistence of a highly
deformed prolate ground-state configuration with a moderately
deformed minimum similar to that found in 100Zr [51,52] and
(more speculatively) in 102Zr [53]. The results seem to
indicate that such weakly deformed intruder configurations
may have an oblate character. In the heavier isotopes 108,110Zr
the predictions of both oblate and prolate are very close to
each other and much larger than the result obtained from
spherical shapes. Measurement of these half-lives and Pn

values will provide a good opportunity to check the role of
spherical configurations in these exotic nuclei, as the spherical
components will lower the half-lives and Pn values by factors
of about 5 and 15–50, respectively.

In the case of Mo isotopes, the experimental half-lives in
104,106,108,110Mo tend to favor the oblate theoretical results
(which are indeed the ground states) over the prolate ones.
In the heavier 112,114Mo isotopes, as in the case of the heavier
Zr isotopes, oblate and prolate results are very similar and
much larger than the spherical predictions, again offering a
sensitive test to analyze the deformation of these heavy nuclei,
for which spectroscopic measurements are more difficult.
Experimental Pn values are only upper limits except for
the case 110Mo, which is much larger than the calculations.
This implies that the relative GT strength contained in the
energy region below Sn is overestimated theoretically, and
therefore the relative contribution coming from the strength
above Sn is too small. This is shown in Fig. 6 for 110Mo,
where the accumulated strength is practically flat above Sn. The
half-lives and Pn values of the A ∼ 110 nuclei, predicted here
for spherical configurations, would have clear consequences
in the calculation of r-process abundances. In particular, the
abrupt reduction in the Pn values may contribute to filling the
artificial trough around A = 110 predicted by current r-process
nucleosynthesis models. Furthermore, the confirmation of
spherical shapes in these nuclei may be an indirect signature of
the N = 82 shell quenching, as both phenomena are predicted
by the SLy4 force used in our calculations.

IV. CONCLUSIONS

In this paper we have studied the β-decay properties of
neutron-deficient Zr and Mo isotopes within a deformed QRPA
approach based on mean fields generated from self-consistent

Skyrme Hartree-Fock calculations. In particular, we have
analyzed the experimental information on the half-lives and
β-delayed neutron-emission probabilities in the neutron-rich
100−110Zr and 104−114Mo isotopes in terms of the nuclear
deformation.

We have shown that the measured half-lives in Zr isotopes
are placed between the results obtained from the oblate and
prolate coexistent shapes that appear to be very close in
energy in the potential energy curves. The predicted half-lives
for the heavier Zr isotopes 108,110Zr, for which there are
no experimental data yet, are, however, very close to each
other for both oblate and prolate shapes and much larger
than the predictions from the spherical shapes. In contrast,
the measured half-lives in Mo isotopes agree better with the
calculations from oblate shapes, which are lower than the
corresponding prolate ones. Once more, in the heavier isotopes
112,114Mo, the predicted half-lives for both shapes are very
close and larger than the spherical ones. Thus, comparison
with experimental half-lives indicates that in some cases (Mo
isotopes) a single shape accounts for this information, while
in other cases (most of the Zr isotopes) a more demanding
treatment in terms of mixing of different shapes seems to be
more appropriate. Pn values are in general not well reproduced,
although experimentally only upper limits are measured in
most cases. Hence, it will certainly be worth measuring those
heavier isotopes and checking whether they are properly
described by the deformed shapes or whether a spherical
component is needed as well.

Nevertheless, one should keep in mind that half-lives are
integral properties that collect all the information of the decay
in a single number and do not tell us about the detailed
internal structure of the GT strength distribution, which is
much more sensitive to the nuclear structure. From a more
detailed analysis of the GT strength distributions in the
Qβ energy range accessible in β decay, we have shown
that the differences between the predictions of the different
nuclear shapes could be clearly distinguished experimentally.
Although these spectroscopic measurements are not feasible
at present because of the still low production rates of exotic
nuclei at modern radioactive-beam facilities, they will provide
precise tests of the nuclear structure in exotic nuclei in the
future.
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C. R. Chinn, and J. Dechargé, Phys. Rev. C 53, 2809 (1996).

[6] T. Otsuka, T. Matsuo, and D. Abe, Phys. Rev. Lett. 97, 162501
(2006).

[7] B. Chen, J. Dobaczewski, K.-L. Kratz, K. Langanke, B. Pfeiffer,
F.-K. Thielemann, and P. Vogel, Phys. Lett. B 355, 37 (1995).

[8] B. Pfeiffer, K.-L. Kratz, and F.-K. Thielemann, Z. Phys. A 357,
235 (1997).

[9] B. Pfeiffer, K.-L. Kratz, F.-K. Thielemann, and W. B. Walters,
Nucl. Phys. A 693, 282 (2001).

[10] B. Sun, F. Montes, L. S. Geng, H. Geissel, Yu. A. Litvinov, and
J. Meng, Phys. Rev. C 78, 025806 (2008).

[11] J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett. B 387,
455 (1996).

[12] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. Van
Duppen, Phys. Rep. 215, 101 (1992).

[13] R. F. Casten, Nucl. Phys. A 443, 1 (1985).
[14] J. Pereira et al., Phys. Rev. C 79, 035806 (2009).
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