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The nuclear level densities of 118,119Sn and the γ -ray strength functions of 116,118,119Sn below the neutron
separation energy are extracted with the Oslo method using the (3He,αγ ) and (3He,3He′γ ) reactions. The
level-density function of 119Sn displays steplike structures. The microcanonical entropies are deduced from
the level densities, and the single neutron entropy of 119Sn is determined to be 1.7 ± 0.2 kB . Results from a
combinatorial model support the interpretation that some of the low-energy steps in the level density function
are caused by neutron pair breaking. An enhancement in all the γ -ray strength functions of 116−119Sn, compared
to standard models for radiative strength, is observed for the γ -ray energy region of �4–11 MeV. These small
resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of
the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin
oscillations or to an enhancement of the giant magnetic dipole resonance.

DOI: 10.1103/PhysRevC.81.064311 PACS number(s): 21.10.Ma, 24.10.Pa, 24.30.Gd, 27.60.+j

I. INTRODUCTION

The level-density and the γ -ray strength function are av-
erage quantities describing atomic nuclei. They are important
for many aspects of fundamental and applied nuclear physics,
including calculations of nuclear properties, like reaction cross
sections. Such cross sections are used for calculations in, e.g.,
reactor physics and nuclear waste management, and of nuclear
reaction rates in astrophysics for modeling of nucleosynthesis
in stars.

The nuclear level density of nuclei is defined as the number
of levels per unit of excitation energy. The entropy and other
thermodynamic properties may also be determined from the
level density. Structures in the level density are expected to be
due to shell gaps, breaking of nucleon Cooper pairs, and/or
changes in the nuclear shape. In the majority of previous
experiments, the level density is measured either only at low
energy by direct counting (conventional spectroscopy) or at
higher energy around the neutron/proton separation energies
(nuclear resonance measurements).

The γ -ray strength function may be defined as the reduced
average transition probability as a function of γ -ray energy.
This quantity characterizes average electromagnetic properties
of excited nuclei. The strength function reveals essential
information about the nuclear structure. Electric transitions
are mostly influenced by the proton charge distribution, while
magnetic transitions are also affected by the neutron distribu-
tion due to the magnetic dipole moment of the neutron. The
shape and softness of the nuclear surface are other important
factors for the nuclear response to electromagnetic radiation.
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The large number of stable isotopes in Sn makes the
element suitable for systematic studies. This article presents
the level densities of 118,119Sn and the γ -ray strength functions
of 116,118,119Sn for energies in the quasicontinuum below
the neutron separation energy. The measurements have been
performed at the Oslo Cyclotron Laboratory (OCL). The
118,119Sn results are compared with earlier OCL studies on
other isotopes. In Ref. [1], the level-density functions of
116,117Sn were shown to display steps that are much more
distinctive than previously measured for other mass regions.
The steps were interpreted as neutron pair breaking. In Ref. [2],
a resonance-like structure in the γ -ray strength function was
measured below the neutron threshold in 117Sn. A combinato-
rial model is also used in this article to study, e.g., the origin
of the level-density steps and the impact of collective effects.

The experimental setup and the data analysis are briefly
described in Sec. II. The normalized experimental results
for level density and entropy are presented in Sec. III.
Section IV discusses the nuclear properties extracted from
the level density with the combinatorial model. Section V
presents the normalized experimental γ -ray strength functions.
Conclusions are drawn in Sec. VI.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The self-supporting 119Sn target was enriched to 93.2%
and had a mass thickness of 1.6 mg/cm2. For three days
the target was exposed to a 38-MeV 3He beam with an
average current of ∼1.5 nA. The reaction channels studied
were 119Sn(3He,3He′γ )119Sn and 119Sn(3He,αγ )118Sn.

Particle-γ coincidences were recorded with seven colli-
mated Si particle �E-E telescopes and 26 collimated NaI(Tl)
γ -ray detectors. The �E and E detector thicknesses were
about 140 and 1500 µm, respectively. These detectors were
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placed at 45◦ with respect to the beam axis. The NaI detectors
are distributed on a sphere and constitute the CACTUS
multidetector system [3]. The total solid-angle coverages out
of 4π were approximately 1.3% for the particle detectors and
16% for the γ -ray detectors.

In the data analysis, the measured ejectile’s energy is
transformed into excitation energy of the residual nucleus
using reaction kinematics. The γ -ray spectra for various initial
excitation energies are unfolded with the known response func-
tions of CACTUS and the Compton subtraction method [3].
The Compton subtraction method preserves the fluctuations
in the original spectra without introducing further, spurious
fluctuations.

The first-generation γ -ray spectra are extracted from the
unfolded total γ -ray spectra by the subtraction procedure
described in Ref. [4]. The main assumption is that the γ decay
from any excitation energy bin is independent of the method of
formation—whether it is directly formed by a nuclear reaction
or indirectly by γ decay from higher lying states following the
initial reaction.

The first-generation γ -ray spectra are arranged in a two-
dimensional matrix P (E,Eγ ). The entries of P are the
probabilities P (E,Eγ ) that a γ ray of energy Eγ is emitted
from an energy bin of excitation energy E. This matrix is used
for the simultaneous extraction of the γ -ray strength function
and the level-density function.

The first-generation matrix P is factored into the level-
density function ρ and the radiative transmission coefficient
T [5]:

P (E,Eγ ) ∝ T (Eγ )ρ(E − Eγ ). (1)

The factorization of P into two components is justified for
nuclear reactions leading to a compound state prior to a
subsequent γ decay [6]. Equation (1) may also be regarded as
a variant of Fermi’s golden rule: The decay rate is proportional
to the density of the final state and the square of the matrix
element between the initial and final state. The factorization
is performed by an iterative procedure where the independent
functions ρ and T are adjusted until a global χ2 minimum
with the experimental P (E,Eγ ) is reached.

As shown in Eq. (1), the transmission coefficient is assumed
to be a function of only Eγ , in accordance with the generalized
form of the Brink-Axel hypothesis [7,8]. This hypothesis states
that a giant electric dipole resonance, and all other collective
excitation modes, may be built on any excited state and still
have the same properties as the one built on the ground
state. Hence, the transmission coefficient is independent of
excitation energy.

Equation (1) determines only the functional forms of ρ

and T . The entries of P are invariant under the following
transformations [5]:

ρ̃(E − Eγ ) = A exp[α(E − Eγ )]ρ(E − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

The final step of the Oslo method is to determine the
normalization parameters. The parameters A and B will define
the absolute values of ρ andT , respectively, while α will define
their common slope.

III. LEVEL DENSITIES

A. Normalization and experimental results

The constants A and α in Eq. (2), which are needed to
normalize the experimental level density ρ, are determined
using literature values of the known discrete energy levels at
low energy and of the level spacing D at the neutron separation
energy Sn, obtained from neutron resonance experiments.

The normalization value ρ(Sn) is calculated either from the
s-wave level spacing D0(Sn) or from the p-wave level spacing
D1(Sn). The level spacings are taken from Refs. [9,10]. To
establish an expression for the value of ρ(Sn), it is necessary
to assume models for the spin distribution g(E, I ) and the
spin cut-off parameter σ . We choose the back-shifted Fermi
gas (BSFG) model with the original parametrization of von
Egidy et al. [11], because this parametrization gives the most
appropriate normalization of these nuclei when comparing to
other experimental measurements (see also Ref. [1]).

Here, these functions are kept as the original Gilbert and
Cameron expressions [12], but with a redefined parametriza-
tion of the nucleus’ intrinsic excitation energy U and the level-
density parameter a. The spin distribution is expressed as [11]:

g(E, I ) � 2I + 1

2σ 2
exp [−(I + 1/2)2/2σ 2], (4)

where I is the spin and where the spin cut-off parameter σ (E)
is given by:

σ 2 = 0.0888A2/3aT , (5)

where A is the mass number of the isotope and T is the nuclear
temperature given by T = √

U/a. Here, the level-density
parameter is defined as a = 0.21A0.87MeV−1, while the shifted
excitation energy U is defined as U = E − Epair − C1. The
back-shift parameter is defined as C1 = −6.6A−0.32 MeV.
The pairing energy Epair is calculated from the proton
and neutron pair-gap parameters: Epair = �p + �n. The
pair-gap parameters are evaluated from the even-odd mass
differences found in Ref. [13] according to the method of
Ref. [14].

Assuming this spin distribution and equal numbers of levels
with positive and negative parity, the level density at Sn may
be expressed as, for s-wave neutron resonances [5,15]:

ρ0(Sn) = 2σ 2

D0

{
(It + 1) exp

[− (It + 1)2

2σ 2

]

+ It exp

[−It
2

2σ 2

]}−1

, (6)

and for p-wave resonances [15]:

ρ1(Sn) = 2σ 2

D1

{
(It − 1) exp

[− (It − 1)2

2σ 2

]
+ It exp

[−It
2

2σ 2

]

+ (It + 1) exp

[− (It + 1)2

2σ 2

]

+ (It + 2) exp

[− (It + 2)2

2σ 2

]}−1

, (7)

where the spin cut-off parameter is evaluated at Sn and where
It is the spin of the target.
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TABLE I. Input parameters and the resulting values for the calculation of the normalization value ρ(Sn) and the input parameters for the
BSFG interpolation and the required values of the scaling parameter η.

Nucleus Sn D0(Sn) a C1 �n �p σ (Sn) ρ(Sn) η

(MeV) (eV) (MeV−1) (MeV) (MeV) (MeV) (104 MeV−1)

119Sn 6.485 700(150) 13.43 −1.43 0 1.02 4.55 6.05(175) 0.44
118Sn 9.326 61(7) 13.33 −1.43 1.19 1.24 4.74 38.4(86) 0.59

A higher ρ(Sn) is obtained from the level spacing of D0

than of D1, according to calculations on both isotopes. As the
highest value of the level density is presumed to be the best
estimate, D0 is chosen in the following. The input parameters
and the resulting values of the normalization data ρ(Sn) are
given in Table I.

The experimental data for the level densities are not
obtained up to the excitation energy of Sn. There is a gap, and
the level density in the gap and below is estimated according
to the level-density prediction of the BSFG model with the
parametrization of von Egidy et al. [11]. This is a consistency
choice in order to keep the spin distribution and the spin cut-off
parameter the same as the ones used during the calculation of
ρ(Sn) based on the neutron resonance data. The BSFG level
density, for all spins and as a function of excitation energy, is
given by

ρ(E)BSFG =
exp

(
2
√

aU
)

12
√

2a1/4U 5/4σ
. (8)

A scaling parameter η is applied to the BSFG formula,

ρ(E)BSFG → ηρ(E)BSFG, (9)

in order to make its absolute value at Sn agree with the
normalization value ρ(Sn). We then get a level-density in-
terpolation that overlaps with the measurements, and to which
the measurements are normalized. The values of η are shown
in Table I.

Figure 1 shows the normalized level densities in 118,119Sn.
The arrows indicate the regions used for normalization. As
expected, the level densities of 119Sn and 118Sn are very similar
to those of 117Sn and 116Sn [1], respectively. The figure also
shows that the known discrete levels [16] seem to be complete
up to ∼2 MeV in 119Sn and up to ∼3 MeV in 118Sn. Hence,
our experiment has filled a region of unknown level density
from the discrete region and to the gap, approximately at Sn −
1 MeV. Unlike 119Sn, the ground state of the even-even nucleus
118Sn has no unpaired neutron, and accordingly it has fewer
available states than 119Sn. Therefore, measuring all levels to
higher excitation energies by conventional methods is easier
in 118Sn.

An alternative interpolation method to describe the gap
between our measured data and the neutron-resonance-data–
based ρ(Sn) is the constant temperature (CT) model [12]. This
approximation gives

ρ(E) = 1

T
exp [(E − E0) /T ] , (10)

where the “temperature” T and the energy shift E0 are treated
as free parameters. Figure 2 shows a comparison of the CT
model and the BSFG model as interpolation methods for 118Sn.
The small difference in the region of interpolation is negligible
for the normalization procedure.
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FIG. 1. Normalized level densities of 119Sn (upper panel) and
118Sn (lower panel) as a function of excitation energy. Our ex-
perimental data are marked with filled squares. The dashed lines
are the BSFG predictions that are used for interpolation, scaled
to coincide with ρ(Sn) (open squares), which are calculated from
neutron resonance data. The solid lines represent the discrete level
densities obtained from counting the known levels. The arrows
indicate the regions used to normalize the absolute values and
the slope. The energy bins are 360 and 240 keV/ch for 118,119Sn,
respectively.
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FIG. 2. (Color online) Comparison of the BSFG model (dashed
line) and the CT model (solid line) as interpolation means for the level
density of 118Sn. The arrows indicate the region of normalization. The
parameters in the CT model (T = 0.86 MeV and E0 = −1.7 MeV)
have been found from a least χ 2 fit to the data points in this region
and from matching ρ(Sn), and the parametrization is not intended to
be appropriate elsewhere.

B. Steplike structures

In Fig. 1, the level density of 119Sn shows a steplike
structure superimposed on the general level density, which
is smoothly increasing as a function of excitation energy. A
step is characterized by an abrupt increase of level density
within a small energy interval. The phenomenon of steps was
also seen in 116,117Sn [1].

Distinctive steps in 119Sn are seen below ∼4 MeV. They
are, together with the steps of 116,117Sn [1], the most distinctive
steps measured so far at OCL. This may be explained by Sn
having a magic number of protons, Z = 50. As long as the
excitation energy is less than the energy of the proton shell
gap, only neutron pairs are broken. The steps are distinc-
tive since no proton pair breaking smears the level-density
function.

The steps are less pronounced for 118Sn than for 119Sn. This
is in contradiction to what is expected, as 118Sn is an even-even
nucleus without the unpaired neutron reducing the clearness
of the steps in 119Sn. The explanation probably lies in poorer
statistics for the (3He,α) reaction channel than for (3He, 3He′).
To reduce the error bars, a larger energy bin is chosen for 118Sn,
leading to smearing the data and less clear structures.

Two steps in 119Sn are particularly distinctive: one at
∼1.0 MeV and another at ∼2.0 MeV, leading to bumps in
the region around 1.2–1.4 MeV and around ∼2.2–2.6 MeV,
respectively. The steps in 119Sn are found at approximately the
same locations as in 117Sn [1].

Also for 116Sn, two steps were clearly seen for low
excitation energy [1]. The first of these is probably connected
to the isotope’s first excited state, at 1.29 MeV [16]. A similar
step in 118Sn would probably also had been found connected

to the first excited state, at 1.23 MeV [16], if the measured
data had had better statistics.

Microscopic calculations based on the seniority model
indicate that step structures in level-density functions may
be explained by the consecutive breaking of nucleon Cooper
pairs [17]. The steps for 119Sn in Fig. 1 are probable
candidates for the neutron pair-breaking process. The neutron
pair-breaking energy of 119Sn is estimated1 to be 2�n = 2.5
MeV, which supports neutron pair breaking as the origin of the
pronounced bump around ∼2.2–2.6 MeV.

However, if the applied values of the neutron pair-gap
parameters are accurate, the pronounced step at ∼1.0 MeV
in 119Sn and other steps below this energy are probably not
due to pure neutron pair breaking. They might be due to
more complex structures, involving collective effects such
as vibrations and/or rotations. In subsection IV C, the pair
breaking in our isotopes will be investigated further.

C. Entropy

In many fields of natural science, the entropy is used to
reveal the degree of order/disorder of a system. In nuclear
physics, the entropy may describe the number of ways the
nucleus can arrange for a certain excitation energy. Various
thermodynamic quantities may be deduced from the entropy,
e.g., temperature, heat capacity, and chemical potential. The
study of nuclear entropy also exhibits the amount of entropy
gained from the breaking of Cooper pairs. We would like to
study the entropy difference between odd-A and even-even Sn
isotopes.

The microcanonical entropy is defined as

Ss(E) = kB ln 	s(E), (11)

where kB is the Boltzmann constant, which is set to unity to
make the entropy dimensionless, and where 	s(E) is the state
density (multiplicity of accessible states). The state density is
proportional to the experimental level density ρ(E) by

	s(E) ∝ ρ(E) [2〈I (E)〉 + 1] , (12)

where 〈I (E)〉 is the average spin within an energy bin of
excitation energy E. The factor 2〈I (E)〉 + 1 is the spin
degeneracy of magnetic substates.

The spin distribution is not well known, so we assume the
spin degeneracy factor to be constant and omit it. Omitting
this factor is first grounded by the spin being averaged over
each energy bin, leading to only the absolute value of the state
density at high excitation energies being altered, and not the
structure.

Second, the average spin 〈I (E)〉 is expected to be a slowly
varying function of energy (see Sec. IV). Hence, a “pseudo”

1The values of the neutron pair-breaking 2�n and the proton pair-
breaking 2�p for 118,119Sn are estimated from the �n/p values in
Table I, except for �n of 119Sn. We estimate the energy for breaking
a neutron pair in 119Sn as the mean value of 2�n of the neighboring
even-even nuclei, redefining its value to be 2�n = 2.5 MeV.
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FIG. 3. (Upper panel) Experimental pseudo entropies Sl of
119Sn (filled squares) and 118Sn (open squares) as a function of
excitation energy. (Lower panel) The respective experimental entropy
difference, �S = Sl

119 − Sl
118, as a function of excitation energy. An

average value of �S(E) = 1.7 ± 0.2 kB is obtained from a χ 2 fit
(dashed line) to the experimental data above ∼3 MeV.

entropy Sl may be defined based only on the level density ρ(E):

Sl (E) = kB ln

[
ρ(E)

ρ0

]
. (13)

The constant ρ0 is chosen so that Sl = 0 in the ground
state of the even-even nucleus 118Sn. This is satisfied for
ρ0 = 0.135 MeV−1. The same value of ρ0 is used for 119Sn.

Figure 3 shows the experimental results for the pseudo
entropies of 118,119Sn. These pseudo entropy functions are very
similar to those of 116,117Sn [1], which is as expected from
the general similarity of the level-density functions of these
isotopes.

We define the entropy difference as

�S(E) = Sl
A − Sl

A−1, (14)

where the superscript denotes the mass number of the isotope.
Assuming that entropy is an extensive quantity, the entropy
difference will be equal to the entropy of the valence neutron,
i.e., the experimental single neutron entropy of ASn.

For midshell nuclei in the rare-earth region, a semiempirical
study [18] has shown that the average single nucleon entropy
is �S � 1.7 kB . This is true for a wide range of excitation
energies, e.g., both for 1 and 7 MeV. Hence for these nuclei,
the entropy simply scales with the number of nucleons not
coupled in Cooper pairs, and the entropy difference is merely
a simple shift with origin from the pairing energy.

Figure 3 also shows the entropy difference �S of 118,119Sn,
which are midshell in the neutrons only. Above ∼3 MeV, the
entropy difference may seem to approach a constant value.
In the energy region where the entropy difference might
be constant (shown as the dashed line in Fig. 3), we have
calculated its mean value as �S = 1.7 ± 0.2 kB . Within the
uncertainty, this limit is in good agreement with the general
conclusion of the above-mentioned semiempirical study [18]
and with the findings for 116,117Sn [1]. For lower excitation
energy, however, Fig. 3 shows that the entropy difference of
118,119Sn is not a constant, unlike the rare-earth midshell nuclei.
Hence, the 118,119Sn isotopes have an entropy difference that
is more complicated than a simple excitation energy shift of
the level-density functions.

IV. NUCLEAR PROPERTIES EXTRACTED WITH A
COMBINATORIAL BCS MODEL

A simple microscopic model [19–21] has been developed
for further investigation of the underlying nuclear structure
resulting in the measured level-density functions. The model
distributes Bardeen-Cooper-Schrieffer (BCS) quasiparticles
on single-particle orbitals to make all possible proton and
neutron configurations for a given excitation energy E. On
each configuration, collective energy terms from rotation
and vibration are schematically added. Even though this is
a very simple representation of the physical phenomena,
this combinatorial BCS model reproduces rather well the
experimental level densities. As a consequence, the model
is therefore assumed to be able to predict also other nuclear
properties of the system. We are first and foremost interested
in investigating the level-density steps and in investigating
the assumption of parity symmetry used in the normalization
processes of the Oslo method.

A. The model

The single-particle energies esp are calculated from the
Nilsson model for a nucleus with an axially deformed core
of quadrupole deformation parameter ε2. The values of the
deformation parameters are ε2 = 0.111 and ε2 = 0.109 [22]
for 118,119Sn, respectively. Also needed for the calculation of
the Nilsson energy scheme are the Nilsson parameters κ and µ

and the oscillator quantum energy between the main oscillator
shells: h̄ω0 = 41A−1/3. The adopted values are κ = 0.070
and µ = 0.48 for both neutrons and protons and for both
nuclei, in agreement with the suggestion of Ref. [23]. All
input parameters are listed in Table II. The resulting Nilsson
scheme for 118Sn is shown in Fig. 4.

The parameter λ represents the quasiparticle Fermi level. It
is iteratively determined by reproducing the right numbers of
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FIG. 4. (Color online) The Nilsson level scheme, showing single-
particle energies as functions of quadrupole deformation ε2, for 118Sn,
which has ε2 = 0.111. The Nilsson parameters are set to κ = 0.070
and µ = 0.48. The Fermi levels are illustrated as curled lines (λπ for
protons and λν for neutrons).

neutrons and protons in the system. The resulting Fermi levels
for our nuclei are listed in Table II and illustrated for 118Sn in
Fig. 4.

The microscopic model uses the concept of BCS quasi-
particles [24]. Here, the single quasiparticle energies eqp are
defined by the transformation of:

eqp =
√

(esp − λ)2 + �2. (15)

The pair-gap parameter � is treated as a constant, as before,
and with the same values.

The proton and neutron quasiparticle orbitals are character-
ized by their spin projections on the symmetry axes 	π and
	ν , respectively. The energy due to quasiparticle excitations
is given by the sum of the proton and neutron energies and of

a residual interaction V :

Eqp(	π,	ν) =
∑

{	′
π ,	′

ν }
eqp(	′

π ) + eqp(	′
ν) + V (	′

π ,	′
ν).

(16)

In the model, quasiparticles having 	’s of different sign will
have the same energy, i.e., one has a level degeneracy. Since no
such degeneracy is expected, a Gaussian random distribution
V is introduced to compensate for a residual interaction
apparently not taken into account by the Hamiltonian of the
model. The maximum allowed number of broken Cooper pairs
in our system is three, giving a total of seven quasiparticles for
the even-odd nucleus 119Sn. Technically, all configurations are
found from systematic combinations.

On each configuration, both a vibrational band and rotations
are built. The energy of each level is found by adding the energy
of the configuration and the vibrational and rotational terms:

E = Eqp(	π,	ν) + h̄ωvibν + ArotR (R + 1) . (17)

The vibrational term is described by the oscillator quantum
energy h̄ωvib and the phonon quantum number ν = 0, 1, 2, . . .

The values of h̄ωvib are found from the 2+ and 3− vibrational
states of the even-even nucleus and are shown in Table II.
The last term of Eq. (17) represents the rotational energy.
The quantity Arot = h̄2/2J is the rotational parameter with J
being the moment of inertia, and R is the rotational quantum
number. The rotational quantum number has the values of
R = 0, 1, 2, 3 . . . for the even-odd nucleus 119Sn, and R =
0, 2, 4 . . . for the even-even nucleus 118Sn.

For low excitation energy, the value of the rotational
parameter Arot is determined around the ground state Ags.
At high energy, the rotation parameter is found from a rigid,
elliptical body, which is [25]:

Arigid = 5h̄2

4MR2
A (1 + 0.31ε2)

. (18)

Here, M is the mass and RA the radius of the nucleus. For
nuclei in the medium mass region, A ∼ 50 − 70, the rotational
parameter Arigid is obtained at the neutron separation energy,
according to a theoretical prediction [26]. We assume that Arigid

is obtained at the neutron separation energy also for our nuclei.
The applied values of Ags and Arigid are listed in Table II. The
function Arot as a function of energy is estimated from a linear
interpolation between these.

TABLE II. Input parameters used in the combinatorial BCS model and the resulting values for the Fermi levels λν (neutrons) and λπ

(protons).

Nucleus ε2 κ µ h̄ω0 Ags Arigid h̄ωvib,e−e λν λπ

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

119Sn 0.109 0.070 0.48 8.34 0.200 0.0122 1.23; 2.32 48.9 44.1
118Sn 0.111 0.070 0.48 8.36 0.205 0.0124 1.23; 2.32 48.9 44.2
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FIG. 5. Level densities of 119Sn (upper panel) and 118Sn (lower
panel) as a function of excitation energy. The solid lines are the
theoretical predictions of the combinatorial BCS model. The squares
are our experimental data.

B. Level density

In Fig. 5, the level-density functions calculated by our
model are compared with the experimental ones. We see
that the model gives a very good representation of the level
densities in the statistical area above 3 MeV for both isotopes.
Not taking into account all collective bands known from
literature, the model is not intended to reproduce the discrete
level structure below the pair-breaking energy. The model also
succeeds in reproducing the bump around ∼2.2–2.6 MeV for
both isotopes, even though the onset of this bump in 119Sn
appears to be slightly delayed. Above ∼2.6 MeV, the step
brings the level density to the same order of magnitude as the
experimental values.

According to Eq. (8) and the relation between the intrinsic
excitation energy U and the pair-gap parameters �p and �n,
the log-scale slope of the level-density function is dependent
on the pair-gap parameters. Figure 5 shows that the model
reproduces well the slopes of the level densities for both
isotopes. This supports the applied values of the pair-gap
parameters.
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FIG. 6. (Color online) The average number of broken quasiparti-
cle pairs 〈Nqp〉 (solid line) as a function of excitation enegy for 119Sn
(upper panel) and 118Sn (lower panel), according to the combinatorial
BCS model. Also shown is how this quantity breaks down into neutron
pairs (dashed line) and proton pairs (dashed-dotted line).

C. Pair breaking

The pair-breaking process produces a strong increase in the
level density. Typically, a single nucleon entropy of 1.6–1.7
kB represents a factor of ∼5 more levels due to the valence
neutron. Thus, the breaking of a Cooper pair represents about
25 more levels. Pair breaking is the most important mechanism
for creating entropy in nuclei as function of excitation
energy.

The average number of broken Cooper pairs per energy bin,
〈Nqp〉, is calculated as a function of excitation energy by the
model, using the adopted pair-gap parameters as input values.
All configurations obtained for each energy bin are traced,
and their respective numbers of broken pairs are counted. The
average number of broken pairs is also calculated separately
for proton and neutron pairs. The result for 118,119Sn is shown
in Fig. 6.

Figure 6 shows that the first pair breaking for both 118,119Sn
is at an excitation energy around 2.2–2.6 MeV. That energy
corresponds to the pair-breaking energy plus the extra energy
needed to form the new configuration. The figure also shows
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that, according to the model, the pair breakings here are only
due to neutrons. The step in the average number of broken
pairs is abrupt, and this number increases from 0 to almost 1.
This means that there is a very high probability for the nucleus
to undergo a neutron pair breaking at this energy. Provided that
our values of the pair-gap parameters are reasonable, so this
intense step in the number of broken neutron pairs in the model
corresponds to the distinctive step in level density at ∼2.0 MeV
in 119Sn (see Sec. III); that step in level density is probably
purely due to neutron pair breaking.

The increases in the average number of broken pairs are
abrupt also for certain other excitation energies, namely around
5–6 MeV and 8–9 MeV, as shown in Fig. 6. Here, we predict
increases of the number of levels caused by pair breaking,
even though they are not necessarily visible with the applied
experimental resolution. In between the abrupt pair breakings,
the number of broken pairs is almost constant and close to
integers. Saturation has been reached, and significantly more
energy is needed for the next pair breaking.

Neutron pair breaking dominates over proton pair breaking
for the energies studied. Even though there is a large shell
gap for the protons, breaking of proton pairs also occurs, but
then only for energies above the proton pair-breaking energy of
2�p plus the shell-gap energy. According to Fig. 6, proton pair-
breaking contributes for excitation energies above 3.5 MeV in
both isotopes. An increased number of broken proton pairs at
higher energies is expected to lead to the level-density steps at
high excitation energy being smeared out and becoming less
distinctive, in accordance with the experimental findings of
subsection III B.

Two effects due to the Pauli principle are notable in Fig. 6.
In 119Sn compared to 118Sn, (i) the increases of the total
average number of broken pairs occur at higher energies and
(ii) the average number of broken proton pairs is generally
higher. The explanation probably is that the valence neutron
in 119Sn to some extent hinders the neutron pair breaking. The
presence of the valence neutron makes fewer states available
for other neutrons, due to the Pauli principle. Therefore, in
119Sn compared to 118Sn, more energy is needed to break
neutron pairs, and for a certain energy, proton pair breaking is
more probable. Of course, an increase in the number of broken
proton pairs leads to a corresponding decrease in the number
of broken neutron pairs.

D. Collective effects

We have made use of the model to make a simple estimate of
the relative impact on the level density of collective effects, i.e.,
rotations and vibrations, compared to that of the pair-breaking
process. The enhancement factor of the collective effects is
defined as

Fcoll(E) = ρ(E)

ρnon−coll(E)
, (19)

where ρnon−coll is the level-density function excluding collec-
tive effects.

Figure 7 shows the calculated level density with and
without collective contributions from vibrations and from
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FIG. 7. (Color online) The impact of collective effects on the
level density of 119Sn according to the combinatorial BCS model.
The upper panel shows experimental level density (data points)
compared with model calculations with collective effects (solid line)
and without collective effects (dashed line). The lower panel shows
the corresponding enhancement factor of the collective effects, Fcoll

(linear scale).

rotational bands for 119Sn. The model prediction is assumed
to be reasonably valid above ∼3 MeV of excitation energy.
According to these simplistic calculations, the enhancement
factor of collective effects F sharply decreases at the energies
of the steps in the average number of broken quasiparticle pairs
(see Fig. 6). For 119Sn, we find that F decreases for excitation
energies of approximately 2.5 and 6 MeV, where the average
number of broken quasiparticle pairs increases from ∼0 to ∼1
and from ∼1 to ∼2, respectively. For the energies studied,
the maximum value of F is about 10, found at E � 6 MeV.
For 118Sn, the enhancement factor would be less than for
119Sn, since this nucleus does not have unpaired valence
neutrons.

As a conclusion, the collective phenomena of vibrations and
rotations seem to have a significantly smaller impact on the
creation of new levels than the nucleon pair-breaking process,
which has an enhancement factor of typically about 25 for
each broken pair.
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E. Parity asymmetry

The parity asymmetry function α is defined as

α = ρ+ − ρ−
ρ+ + ρ−

, (20)

where ρ+ is the level density of positive-parity states, and ρ−
is the level density of the negative-parity states. The values of
α range from −1 to +1. A system with α = −1 is obtained
for ρ+ = 0, implying that all states have a negative parity. A
system with α = 0 has equally many states with positive as
negative parity and is obtained for ρ− = ρ+.

The Nilsson scheme in Fig. 4 shows that the single-particle
orbitals both above and below the neutron Fermi level are a
mixture of positive and negative parities. In addition, each of
these states may be the head of vibrational bands, for which
the parity of the band may be opposite of that of the band
head.

The parity asymmetry functions of 118,119Sn are drawn in
Fig. 8. For energies below the neutron pair-breaking energy
approximately at 2.5 MeV, the even-odd isotope has a parity
asymmetry function with large fluctuations between positive
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FIG. 8. The parity asymmetry function α, according to the
combinatorial BCS model, shown as a function of excitation energy
for 119Sn (upper panel) and 118Sn (lower panel).

and negative values, while the even-even isotope has positive
parities. This is as expected when vibrational bands of opposite
parity are not introduced. (The zero parity of 118Sn for certain
low-energy regions is explained by the nonexistence of energy
levels.)

Above the pair-breaking energies, the asymmetry functions
begin to approach zero for both isotopes. This is also as
expected, since we then have a group of valence nucleons that
will randomly occupy orbitals of positive and negative parity
and on average give an α close to zero. Above ∼4 MeV, the
parity distributions of 118,119Sn are symmetric with ρ+ � ρ−.
This is a gratifying property, since parity symmetry is an
assumption in the Oslo method normalization procedure for
both the level density and the γ -ray strength function (see
Sec. V).

F. Spin distribution

The combinatorial BCS model determines the total spin I

for each level from the relation:

I (I + 1) = R (R + 1) +
∑

	π ,	ν

	π + 	ν, (21)

from which the spin distribution of the level density ρ may be
estimated.

The resulting spin distribution is compared with the
theoretical spin distribution of Gilbert and Cameron in Eq. (4),
using the same parametrization of the spin cut-off parameter
as Eq. (5). Figure 9 shows the comparison for four different
excitation energies: 5, 6, 7, and 8 MeV. The agreement is
generally good. Hence, the spin calculation in Eq. (21), and
the assumption of the rigid rotational parameter Arigid obtained
at Sn, are indicated to be reasonable assumptions. We also
note from the figure that the average spin, 〈I (E)〉, is only
slowly increasing with excitation energy, justifying the pseudo
entropy definition introduced in Eq. (13).

V. γ -RAY STRENGTH FUNCTIONS

A. Normalization and experimental results

The γ -ray transmission coefficient T , which is deduced
from the experimental data, is related to the γ -ray strength
function f by

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ), (22)

where X denotes the electromagnetic character and L the
multipolariy of the γ ray. The transmission coefficient T is
normalized in slope α and in absolute value B according to
Eq. (3). The slope was determined in Sec. III in the case of
118,119Sn and in Ref. [1] in the case of 116Sn. The absolute value
normalization is yet to be determined. This is done using the
literature values of the average total radiative width at the
neutron separation energy, 〈�γ (Sn)〉, which are measured for
neutron capture reactions (n,γ ).

The γ -ray transmission coefficient T is related to the
average total radiative width 〈�γ (E, I, π )〉 of levels with
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malized to 1.

energy E, spin I , and parity π by [27]:

〈�γ (E, I, π )〉 = 1

2πρ(E, I, π )

∑
XL

∑
If ,πf

∫ E

Eγ

dEγTXL(Eγ )

× ρ(E − Eγ , If , πf ). (23)

The summations and integration are over all final levels of spin
If and parity πf that are accessible through a γ -ray transition
categorized by the energy Eγ , electromagnetic character X,
and multipolarity L.

For s-wave neutron resonances and assuming a major
contribution from dipole radiation and parity symmetry for
all excitation energies, the general expression in Eq. (23) will
at Sn reduce to

〈�γ (Sn, It ± 1/2, πt )〉 = B

4πρ(Sn, It ± 1/2, πt )

×
∫ Sn

0
dEγT (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

g(Sn − Eγ , It ± 1/2 + J ).

(24)

Here, It and πt are the spin and parity of the target nucleus in
the (n,γ ) reaction. Indeed, the results from the combinatorial
BCS model in Sec. IV supports the symmetry assumption
of the parity distribution. The normalization constant B

in Eq. (24) is determined [28] by replacing T with the
experimental transmission coefficient, ρ with the experimental
level density, g with the spin distribution given in Eq. (4), and
〈�γ (Sn)〉 with its literature value.

The input parameters needed for determining the normal-
ization constant B for 118,119Sn are shown in Table III and
taken from Ref. [10]. For 116Sn, the level spacing D0(Sn) is
not available in the literature. Therefore, ρ(Sn) was estimated
from systematics for the normalization of α in Ref. [1]. The
value of D0 in Table III is estimated from ρ(Sn). Note that
there was an error in the spin cut-off parameters σ (Sn) of
116,117Sn in Refs. [1,2]. The impact of this correction on
the normalization of level densities and strength functions is
very small. Moreover, updated values of D0(Sn) and 〈�γ (Sn)〉
are now available for 117Sn [10]. All the new normalization
parameters for 116,117Sn are presented in Table IV. The value
of 〈�γ (Sn)〉 of 116Sn is taken from the indicated value in
Ref. [10].

The resulting γ -ray strength functions of 116−119Sn are
shown in Fig. 10. For all isotopes, it is clear that there is a
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TABLE III. Input parameters for normalization of the γ -ray
transmission coefficient T for 118,119Sn.

Nucleus It D0(Sn) 〈�γ (Sn)〉
(h̄) (eV) (meV)

119Sn 0 700 45
118Sn 1/2 61 117

change of the log-scale derivate at Eγ ∼ 4 MeV, leading to
a sudden increase of strength. Such an increase may indicate
the onset of a resonance. The comparison in Fig. 10 of the
new 117Sn strength function with the earlier published one [2]
confirms that correcting the σ (Sn) and the D0(Sn) had only a
minor impact on the normalization.

Figure 11 shows the four normalized strength functions of
116−119Sn together. They are all approximately equal except
for 118Sn, which has a lower absolute normalization than
the others. This is surprising considering the quadrupole
deformation parameter of 118Sn (ε2 = 0.111) being almost
identical to that of 116Sn (ε2 = 0.112) [22]. In the following,
we therefore multiply the strength of 118Sn with a factor of
1.8 to get it on the same footing as the others. The values of
ρ(Sn) and the scaling parameter η (see also subsection III A) of
these Sn isotopes are collected in Table V. For 118Sn, the ρ(Sn)
may be expected to be larger, while η may be expected to be
smaller. It would be desirable to remeasure both D0(Sn) and
〈�γ 〉 for this isotope, since the apparent wrong normalization
of the strength function of 118Sn depends on these parameters.

B. Pygmy resonance

Comparing our measurements with other experimental data
makes potential resonances easier to localize. Experimental
cross-section data σ (Eγ ) are converted to γ -ray strength
f (Eγ ) through the relation:

f (Eγ ) = 1

3πh̄2c2

[
σ (Eγ )

Eγ

]
. (25)

Figure 12 shows the comparison of the Oslo strength
functions of 116−119Sn with those of the photoneutron cross-
section reactions 116,117Sn(γ ,n) from Utsunomiya et al. [29]
and 119Sn(γ ,n) from Varlamov et al. [30], photoabsorption
reactions 116−119Sn(γ ,x) from Fultz et al. [31], 116−118Sn(γ ,x)
from Varlamov et al. [32], and 116−118Sn(γ ,x) from Leprêtre
et al. [33]. Clearly, the measurements on 117,119Sn both from
Oslo and from Utsunomiya et al. [29] independently indicate
a resonance from the changes of slopes. For 116,118Sn, the
Oslo data clearly shows the presence of resonances. Hence,
the resonance earlier observed in 117Sn [2] is confirmed also in

TABLE IV. New normalization parameters for 116,117Sn.

Nucleus σ (Sn) D0(Sn) ρ(Sn) 〈�γ (Sn)〉 η

(eV) (104 MeV−1) (meV)

117Sn 4.58 450(50) 9.09(2.68) 52 0.43
116Sn 4.76 59 40(20) 120 0.45

TABLE V. The Fermigas approximation for ρ(Sn)BSFG, the calcu-
lated ρ(Sn), and the resulting scaling parameter η for 116−119Sn.

Nucleus ρ(Sn)BSFG ρ(Sn) η

(104 MeV−1) (104 MeV−1)

119Sn 14 6.05(175) 0.44
118Sn 65 38.4(86) 0.59
117Sn 22 9.09(2.68) 0.43
116Sn 89 40.0(20.0) 0.45

116,118,119Sn. This resonance will be referred to as the pygmy
resonance.

In order to investigate the experimental strength functions
further, and in particular the pygmies, we have applied
commonly used models for the giant electric dipole resonance
(GEDR) and for the magnetic spin-flip resonance, also known
as the giant magnetic dipole resonance (GMDR).

For the GEDR resonance, the generalized Lorentzian
(GLO) model [34] is used. The GLO model is known to agree
well both for low γ -ray energies, where we measure, and for
the GEDR centroid at about 16 MeV. The strength function
approaching a nonzero value for low Eγ is not a property
specific for the Sn isotopes but has been the case for all nuclei
studied at the OCL so far.

In the GLO model, the E1 strength function is given by [34]:

f GLO
E1 (Eγ ) = 1

3π2h̄2c2
σE1�E1

×
{

Eγ

�KMF(Eγ , Tf )(
Eγ

2 − EE1
2
)2 + Eγ

2[�KMF(Eγ , Tf )]2

+ 0.7
�KMF(Eγ = 0, Tf )

EE1
3

}
(26)

in units of MeV−3, where the Lorentzian parameters are the
GEDR’s centroid energy EE1, width �E1 and cross section σE1.

We use the experimental parameters of Fultz [31], shown in
Table VI. The GLO model is temperature dependent from the
incorporation of a temperature-dependent width �KMF. This
width is the term responsible for ensuring the nonvanishing
GEDR at low excitation energy. It has been adopted from the
Kadmenskii, Markushev, and Furman (KMF) model [35] and
is given by:

�KMF(Eγ , Tf ) = �r

Er
2

(
Eγ

2 + 4π2Tf
2) , (27)

in units of MeV.
Usually, Tf is interpreted as the nuclear temperature of

the final state, with the commonly applied expression Tf =√
U/a. On the other hand, we are assuming a constant

temperature, i.e., the γ -ray strength function is independent
of excitation energy. This approach is adopted for consistency
with the Brink-Axel hypothesis (see Sec. II), where the
strength function was assumed to be temperature independent.
Moreover, we treat Tf as a free parameter in order to fit in the
best possible way the theoretical strength prediction to the low
energy measurements. The applied values of Tf are listed in
Table VI.
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The M1 spin-flip resonance is modeled with the functional
form of a standard Lorentzian (SLO) [22]:

f SLO
M1 (Eγ ) = 1

3π2h̄2c2

σM1�M1
2Eγ(

Eγ
2 − EM1

2
)2 + Eγ

2�M1
2
, (28)
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FIG. 11. (Color online) The four normalized strength functions
of 116−119Sn shown together.

where the parameter EM1 is the centroid energy, �M1 the width,
and σM1 the cross section, of the GMDR. These Lorentzian
parameters are predicted from the expressions in Ref. [22],
with the results as shown in Table VI.

In the absence of any established theoretical prediction
about the pygmy resonance, we found that the pygmy is
satisfactorily reproduced by a Gaussian distribution [2]:

fpyg(Eγ ) = Cpyg
1√

2πσpyg

exp

[−(Eγ − Epyg)2

2σpyg
2

]
, (29)

where Cpyg is the pygmy’s normalization constant, Epyg the
energy centroid, and σpyg is the standard deviation. These
parameters are treated as free. The total model prediction of
the γ -ray strength function is then given by:

ftotal = fE1 + fM1 + fpyg. (30)

By adjusting the Gaussian pygmy parameters to make the
best fit to the experimental data of 116−119Sn, we obtained the
values as presented in Table VII. The pygmy fit of 117Sn is
updated and corresponds to the present normalization of the
strength function. This pygmy fit also gave an excellent fit for
116Sn. For 118,119Sn, it was necessary to slightly reduce the
values of Tf and σpyg. The similarity of the sets of parameters
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for the different nuclei is gratifying. As is seen in Fig. 12, these
theoretical predictions describe the measurements rather well.

The pygmy centroids of all the isotopes are estimated to
be around 8.0(1) MeV. It is noted that an earlier experiment
by Winhold et al. [36] using the (γ,n) reactions determined
the pygmy centroids for 117,119Sn to approximately 7.8 MeV,

in agreement with our measurements. Extra strength has
been added in the energy region of ∼4–11 MeV. The total
integrated pygmy strengths are 30(15) MeV mb for all four
isotopes. This constitutes 1.7(9)% of the classical Thomas-
Reiche-Kuhn (TRK) sum rule, assuming all pygmy strength is
E1. Even though these resonances are rather small compared

TABLE VI. Parameters used for the theoretical γ -ray strength functions of 116−119Sn. The value of Tf in 118Sn has been found for the
measured strength function multiplied by 1.8.

Nucleus EE1 �E1 σE1 EM1 �M1 σM1 Tf

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

119Sn 15.53 4.81 253.0 8.34 4.00 0.963 0.40(1)
118Sn 15.59 4.77 256.0 8.36 4.00 0.956 0.40(1)
117Sn 15.66 5.02 254.0 8.38 4.00 1.04 0.46(1)
116Sn 15.68 4.19 266.0 8.41 4.00 0.773 0.46(1)
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TABLE VII. Empirical values of 116−119Sn pygmies Gaussian parameters, the integrated pygmy strengths, and the TRK values. For 118Sn,
the values have been found from fitting to the measured strength function multiplied by 1.8.

Nucleus Cpyg Epyg σpyg Integrated strength TRK value
(10−7MeV−2) (MeV) (MeV) (MeV mb) (%)

119Sn 3.2(3) 8.0(1) 1.2(1) 30(15) 1.7(9)
118Sn 3.2(3) 8.0(1) 1.2(1) 30(15) 1.7(9)
117Sn 3.2(3) 8.0(1) 1.4(1) 30(15) 1.7(9)
116Sn 3.2(3) 8.0(1) 1.4(1) 30(15) 1.7(9)

to the GEDR, they may have a non-negligible impact on
nucleosynthesis in supernovas [37].

If one does not multiply the strength function of 118Sn by
1.8 for the footing equality, then the pygmy of 118Sn differs
significantly from those of the other isotopes, and the total
prediction is not able to follow as well the measurements for
low Eγ . A pygmy fit of the original normalization does, how-
ever, give: Tf = 0.28(2) MeV, Cpyg = 1.8(6) × 10−7 MeV−2,
Epyg = 8.0(2) MeV, and σpyg = 1.0(1) MeV. This represents
a smaller pygmy, giving an integrated strength of 17(8) MeV
mb and a TRK value of 1.0(5)%.

The commonly applied SLO was also tested as a model of
the baseline and is included in Fig. 12. The SLO succeeds in
reproducing the (γ, x) data but clearly fails for the low-energy
strength measurements, both when it comes to absolute value
and to shape. The same has been the case also for many other
nuclei measured at the OCL. Therefore, we deem the SLO
to be inadequate below the neutron threshold. Most likely,
the pygmies of all the Sn isotopes are caused by the same
phenomenon. It is still indefinite whether the Sn pygmy is
of E1 or M1 character. Clarification would be of utmost
importance.

Earlier studies indicate an E1 character of the Sn pygmy.
Among these studies are the nuclear resonance fluores-
cence experiments (NRF) performed on 116,124Sn [38] and
112,124Sn [39] and the Coulomb dissociation experiments
performed on 129−132Sn [40,41]. If the Sn pygmy is of E1
character, it may be consistent with the so-called E1 neutron
skin oscillation mode, discussed in Refs. [42–44].

However, the possibility of an M1 character cannot be ruled
out. Figure 4 shows that the Sn isotopes have their proton
Fermi level located right in between the g7/2 and g9/2 orbitals,
and their neutron Fermi level between h11/2 and h9/2. Thus,
an enhanced M1 resonance may be due to proton g7/2 ↔
g9/2 and neutron h11/2 ↔ h9/2 magnetic spin-flip transitions.
The existence of an M1 resonance in this energy region has
been indicated in an earlier experimental study via the proton
inelastic scattering experiment on 120,124Sn [45].

VI. CONCLUSIONS

The level-density functions of 118,119Sn and the γ -ray
strength functions of 116,118,119Sn have been measured using
the (3He, αγ ) and (3He,3He′γ ) reactions and the Oslo method.

The level-density function of 119Sn shows pronounced
steps for excitation energies below ∼4 MeV. This may be
explained by the fact that Sn has a closed proton shell so
only neutron pairs are broken at low energy. Without any
proton pair breaking smearing out the level-density function,
the steps from neutron pair breaking remain distinctive. The
entropy has been deduced from the experimental level-density
functions, with a mean value of the single neutron entropy in
119Sn determined to 1.7 ± 0.2 kB . These findings are in good
agreement with those of 116,117Sn.

A combinatorial BCS model has been used to extract
nuclear properties from the experimental level density. The
number of broken proton and neutron pairs as a function
of excitation energy is deduced, showing that neutron pair
breaking is the most dominant pair-breaking process for the
entire energy region studied. The enhancement factor of
collective effects on level density contributes a maximum
factor of about 10, which is small compared to that of pair
breaking. The parity distributions are found to be symmetric
above ∼4 MeV of excitation energy.

In all the 116−119Sn strength functions, a signifi-
cant enhancement is observed in the energy region of
Eγ � 4–11 MeV. The integrated strength of the resonances
correspond to 1.7(9)% of the TRK sum rule. These findings
are in agreement with the conclusions of earlier studies.
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