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I. INTRODUCTION

Quartet condensation is relevant in several domains of
physics. So far, it has been considered mostly in nuclear
physics with the strongly bound α-particle cluster playing
a dominant role in certain states of lighter nuclei [1] and,
eventually, also in the surface of heavy nuclei, as may
be indicated by the observed α-decay processes. α-Particle
condensation may eventually occur in compact stars [2].
However, trapping of multicomponent fermionic atoms makes
fast progress. The case of trions is already quite advanced,
experimentally [3,4] and also theoretically [5–13]. One may
be able to trap fermions with four different “colors” in the
near future. This is a prerequisite for quartet formation and
quartet condensation. Theoretical work on this subject already
has appeared [14–18]. The condensation of biexcitons in
semiconductors also may be of relevance [19,20].

In the recent past, we published several papers on α-particle
condensation in infinite nuclear matter. For instance, we
studied the onset of α-particle condensation and evaluated
the corresponding critical temperature [21,22] with a proce-
dure analogous to the pairing case via a four-body generaliza-
tion of the famous Thouless criterion [23]. However, quartet
condensation not only is formally much more complicated
than condensation of (Cooper) pairs, but also it turns out
that also certain aspects of the physics are quite different.
The most striking feature is that quartets exist only in the
so-called Bose-Einstein condensate (BEC) limit where they
do not overlap very much in space. Contrary to the pairing
case, quartets cannot strongly intermingle in real space, and
therefore, a coherence length much longer than the inter-α-
particle distance cannot exist. We give the reason for this
different behavior in the main text.

In this article, we treat quartet condensation at zero Kelvin
temperature and establish and solve a full nonlinear equation
for the quartet order parameter, which is the analog to
the gap equation for pairing. A direct solution of such a
highly nonlinear four-body problem seems hopeless, even in

homogeneous matter. However, we recently showed that a
simplifying approximation works very well, at least in the
domain of negative chemical potentials, that is, in the strong
coupling regime. This approximation consists in making a
mean-field ansatz (i.e., a Slater determinant) for the quartet
but projected onto zero total momentum as it is relevant for
condensation [21]. Such a mean-field treatment may work each
time the quartet is in its lowest energy configuration. However,
one may think of generalizations for excited configurations as
well. Since the four fermions of the quartet are all different
in the nuclear case (proton/neutron, spin up/down), all are
in the same 0S mean-field wave function, and the problem
boils down in the end to solving the equation by iterating on
this single one-particle mean-field wave function. The same
happens, of course, if the four fermions are components of an
F = 3/2 spin as in [16]. The problem still is complicated
but can be solved with effective interactions of separable
form. It was shown that that approximation gives results
comparable to the four-body Faddeev-Yakubovsky equation
with a more realistic interaction in the nuclear case. So, in
the present work, we calculate the order parameter equa-
tion with the projected mean-field ansatz and a separable
potential.

The article is organized as follows: in the next section,
we discuss the BCS gap equation. In Sec. III, we show
the full expression of the single-particle mass operator for
quartet condensation. Because this is too difficult to calculate
numerically, we suggest an approximate mass operator in
Sec. IV. Before we show the numerical result employed
by the approximated mass operator, we discuss in Sec. V
the significant difference between pairing condensation and
quartet condensation through the different level densities
involved in the condensation processes. In Sec. VI, we
present the results. Finally, we conclude in the last section.
In the appendices, we describe the detailed derivation of the
equations and discuss various methods to formulate the order
parameter equation for quartet condensation.
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II. RECAPITULATION OF THE PAIRING CASE

To prepare the terrain for our procedure in the quartetting
case, in this section we rederive standard BCS theory in a way
somewhat different than the usual.

The one-body Green’s function (GF) for BCS is represented
by [24]

G1;1′ (ω) = δ11′

ω − ε1 − MBCS
1;1 (ω)

, (1)

where MBCS
1;1 (ω) is the BCS mass operator

MBCS
1;1′ (ω) =

∑
2

�12�
∗
1′2

ω + ε2
, (2)

where

�12 = −1

2

∑
34

v̄12,34〈c4c3〉, (3)

with 〈cc〉 being the thermal average of the pair operator.
The indices 1, 2, 3, . . . correspond to momentum and spin.

In nuclear matter, we have to add isospin. The term v̄12,34 is the
antisymmetrized matrix element of the two-body interaction
(v̄12,34 = −v̄12,43 = −v̄21,34). The single-particle energies εi

are in principle given by the kinetic energies plus the mean-
field shifts. The direct term is in homogeneous matter a
constant that can be incorporated into the chemical potential,
and the Fock-term gives rise to an effective mass. Because we
mostly deal with very-low-density nuclear matter, we do not
consider a mass renormalization here. Therefore, in Eq. (1)
we have ε1 = k2

1/(2m) − µ1 with the chemical potential µ1,
which in principle contains the direct part of the mean field.
We have attached an index on the chemical potential, since in
principle it can depend on the various fermionic components
involved. However, in this work, we always consider fully
symmetric situations, and henceforth we suppose that the
chemical potentials of all fermionic species are equal and
therefore drop the index.

Figure 1 is the graphical representation of the BCS mass
operator. As shown in Eq. (2) and Figure 1, the BCS
mass operator consists of the two-particle–one-hole (2p1h)
GF between two-body vertices factorized into two order
parameters and the free 1h GF.

On the other hand, the in-medium Schrödinger equation for
the order parameter is of the following form:

〈c2c1〉 = −1 − ρ1 − ρ2

ε1 + ε2

∑
1′2′

1

2
v̄12,1′2′ 〈c2′c1′ 〉, (4)

FIG. 1. Graphic representation of the BCS mass operator in Eq. (2).

where ρ1 is the occupation number derived from

ρ1 = −
∫

dω

2π
2ImG1;1(ω + iη)f (ω), (5)

with the Fermi distribution function f (ω) = [eω/T + 1]−1 and
a positive infinitesimal of η, as indicated.

In the standard BCS theory, pairs in time-reversed states are
considered, for example, in Eqs. (3) and (4), by taking 2 = 1̄,
ρ1 = ρ1̄, and ε1 = ε1̄, where 1̄ is the time-reversal conjugate
of quantum numbers 1. For Eq. (1), we obtain the imaginary
part of the one-body Green function as

− ImG1;1(ω + iη) = 1

2

(
1 + ε1

E1

)
πδ(ω − E1)

+ 1

2

(
1 − ε1

E1

)
πδ(ω + E1) (6)

with �11̄ = �1 and E1 = √
ε2

1 + �2
1. This is equivalent to

solving the usual gap equation at finite temperature, as
can easily be deduced from the spectral function obtained
from (1) [25,26]:

�1 = −
∑

1′

1

2
v̄11̄,1′1̄′

�1′

2E1′
tanh

(
E1′

2T

)
. (7)

Note that Eq. (4) resembles a particle-particle RPA
equation [24] with renormalized occupation numbers. One
could therefore also consider Eq. (4) as a single-pole approxi-
mation to the so-called renormalized RPA, well known in the
literature (see, e.g., Ref. [27]).

III. SINGLE-PARTICLE MASS OPERATOR AND
QUARTET CONDENSATION

Formally, it is straightforward to generalize the pairing case
to the quartet case. A typical diagram of the mass operator
needed for quartet condensation is shown in Fig. 2. As seen, to
make the quartet order parameter appear in the single-particle
mass operator, we need to express it by the 4p3h GF. To get to
it, we must successively open phase space from one particle to
2p1h, to 3p2h, to 4p3h. This needs three interaction vertices
on each side, as shown in Fig. 2. Details of the derivation are
given in the Appendix B. For the 1p mass operator with quartet
condensation, we obtain

M
quartet
1;1′ (ω) = 	

(4)
1234;5678(ω)〈c8c7c6c5〉 f̄2f̄3f̄4 + f2f3f4

ω + ε234

×P234;2′3′4′ 〈c†5′c
†
6′c

†
7′c

†
8′ 〉	(4)∗

1′2′3′4′;5′6′7′8′ (ω), (8)

FIG. 2. Diagram for the mass operator.
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where summation convention over repeated indices is under-
stood, and

P123;1′2′3′ =

∣∣∣∣∣∣∣
δ11′ δ12′ δ13′

δ21′ δ22′ δ23′

δ31′ δ32′ δ33′

∣∣∣∣∣∣∣ . (9)

The effective four-body vertex 	(4), evaluated perturbatively
to the third order in the interaction, is

	
(4)
1234;5678(ω) = 	

(3)
12′3′;4′5′6′(ω)

1

ω − ε4′5′6′ + ε2′3′

×
[

1

2
v̄4′4,58δ2′2δ3′3δ5′6δ6′7 + 1

2
v̄5′4,68δ2′2δ3′3

× δ4′5δ6′7 + 1

2
v̄6′4,78δ2′2δ3′3δ4′5δ5′6 − 1

2
v̄2′8,24

× δ3′3δ4′5δ5′6δ6′7 − 1

2
v̄3′8,34δ2′2δ4′5δ5′6δ6′7

]
,

(10)

	
(3)
123;456(ω) = 1

2
v̄12′,3′4′

1

ω − ε3′4′ + ε2′

[
1

2
v̄3′2,45δ2′3δ4′6

+ 1

2
v̄4′3,45δ2′2δ3′6 − 1

2
v̄2′6,23δ3′4δ4′5

]
, (11)

where ε123... = ε1 + ε2 + ε3 + · · · and f̄i = 1 − fi with the
Fermi distribution function fi = f (εi).

One may wonder why in (10) and (11) no Fermi function
factors appear with the propagators. However, this is a general
feature of vertices coupling lower configuration spaces to
higher ones. A famous example in the literature is given by
coupling 1p1h and 2p2h spaces as this appears in the damping
of zero-sound modes (see, e.g., [28]). One may notice that the
absence of Pauli blocking factors opens up phase space and
therefore enhances the coupling.

One can ask the question whether in Eq. (8) the uncorrelated
mean-field 3h GF should be used. One may think to include the
hole GFs into the self-consistent cycle or even include higher
correlations. However, one should notice that in BCS this is not
done and that in Eq. (2) the mean-field 1h GF is used. This has
a good reason, because BCS theory is based on a variational
wave function, which fully respects the Pauli principle. Should
a self-consistent hole GF be used in (2), this property would
be lost. We, therefore, also stick to the mean-field hole GFs in
the quartet case.

We also need the in-medium four-body Schrödinger equa-
tion for the order parameter, in analogy with the pairing case
shown in Eq. (4) in the previous section. It is given by

ε1234〈c4c3c2c1〉 +
∑

1′2′3′4′
V1234;1′2′3′4′ 〈c4′c3′c2′c1′ 〉 = 0, (12)

where

V1234;1′2′3′4′ = (1 − ρ1 − ρ2) 1
2 v̄12;1′2′δ33′δ44′ + (1 − ρ1 − ρ3)

× 1
2 v̄13;1′3′δ22′δ44′ + permutations. (13)

Details are given in [22] and Appendix C.
We consider symmetric (nuclear) matter. In this case, we

can give a fully symmetric order parameter of exchange

FIG. 3. Graphic representation of the mass operator for α con-
densation in Eq. (8).

between two particles with respect to momenta:

〈c4c3c2c1〉 → φ�k1,�k2,�k3,�k4
χ0, (14)

where the spin-isospin singlet wave function is represented by
χ0, and we consider here a spin-isospin independent two-body
interaction:

v̄12,34 → v�k1�k2,�k3 �k4

(
δs1s3δt1t3δs2s4δt2t4 − δs1s4δt1t4δs2s3δt2t3

)
, (15)

with si (ti) of spin (isospin) index. Here, v�k1 �k2,�k3 �k4
is symmetric

with respect to the exchange of the momenta: v�k1�k2,�k3 �k4
=

v�k2 �k1,�k3 �k4
= v�k1�k2,�k4 �k3

.

Then, Eq. (12) is explicitly written as

4∑
i=1

εiφ�k1�k2�k3�k4
+
∫ 4∏

i=1

d3k′
i

(2π )3
× [

(1 − ρ(�k1)

− ρ(�k2))v�k1�k2,�k′
1
�k′

2
(2π )3δ(�k3 − �k′

3)(2π )3δ(�k4 − �k′
4)

+ (1 − ρ(�k1) − ρ(�k3))v�k1�k3,�k′
1
�k′

3
(2π )3δ(�k2 − �k′

2)

× (2π )3δ(�k4 − �k′
4) + permutations

]
φ�k′

1
�k′

2
�k′

3
�k′

4
= 0. (16)

A sketch of the quartet mass operator is shown in Fig. 3.

IV. APPROXIMATE QUARTET MASS OPERATOR

From Eqs. (10) and (11) it becomes evident that the full
evaluation of the 1p ↔ 4p3h vertices are too complicated to
be evaluated exactly. However, with quite reasonable approxi-
mations, one arrives at a numerically manageable expression.
Because this discussion involves lengthy, quite technical
details, we relegate it to Appendix D and only give the final
result here:

M
quartet
1;1 (ω) =

∑
234

�̃1234(f̄2f̄3f̄4 + f2f3f4)�̃∗
1234

ω + ε234
, (17)

where the quartet gap matrix �̃1234 is given by

�̃1234 = λ′ 1
2 v̄12,1′2′δ33′δ44′ 〈c1′c2′c3′c4′ 〉. (18)

The graphical representation of the approximate Mquartet is
shown in Fig. 4.

In Eq. (18), we put a renormalization factor λ′ in front of the
vertex, which effectively accounts for the approximations con-
sidered; see Appendix D. However, it is very fortunate that the
final result is independent of the value of λ′, and therefore one
also may drop it. This somewhat surprising effect is due to self-
consistency and self-readjustment of the solution. It is demon-
strated in Appendix E for the simple case of ordinary pairing.
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TAKAAKI SOGO, GERD RÖPKE, AND PETER SCHUCK PHYSICAL REVIEW C 81, 064310 (2010)

FIG. 4. Graphical representation of the approximate α-BEC mass
operator Mquartet of Eq. (17).

The complexity of the calculation still is further much
reduced for the order parameter (14) with our mean-field
ansatz projected on zero total momentum, as already very
successfully employed in [21]:

φ�k1�k2,�k3 �k4
= ϕ(|�k1|)ϕ(|�k2|)ϕ(|�k3|)ϕ(|�k4|)

× (2π )3δ(�k1 + �k2 + �k3 + �k4). (19)

It should be pointed out that this product ansatz with four
identical 0S single-particle wave functions is typical for a
ground-state configuration of the quartet. Excited configu-
rations with wave functions of higher nodal structures may
eventually be envisaged for other physical situations. We also
mention that the momentum-conserving δ function induces
strong correlations among the four particles and therefore is a
nontrivial variational wave function.

For the two-body interaction of v�k1 �k2,�k3 �k4
in Eq. (15), we

employ the same separable form as done already in our
previous publication on the quartet critical temperature in
Ref. [21]:

v�k1 �k2,�k3 �k4
= λw

( �k1 − �k2

2

)
w

( �k3 − �k4

2

)

× (2π )3δ(�k1 + �k2 − �k3 − �k4), (20)

with the form factor w(�k) = w(|�k|) = e−k2/b2
. An example for

strength and range parameters is given in Sec. VI.
With these simplifications, the mass operator (17) is

independent of spin and isospin, and therefore it can be reduced
to the following four-fold integral:

Mquartet(k1, ω)

= 1

(4π2)4

∫ ∞

0
dKK2

∫ 1

−1
dt1

∫ ∞

0
dkk2

∫ 1

−1
dt

f̄ (| �K − �k1|)f̄
(∣∣ �K

2 + �k∣∣)f̄ (∣∣ �K
2 − �k∣∣)+ f (| �K − �k1|)f

(∣∣ �K
2 + �k∣∣)f (∣∣ �K

2 − �k∣∣)
ω + ε �K−�k1

+ ε �K
2 +�k + ε �K

2 +�k

×
[
w

(∣∣∣∣∣�k1 −
�K
2

∣∣∣∣∣
)]2 [

ϕ

(∣∣∣∣∣
�K
2

+ �kf

∣∣∣∣∣
)]2 [

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2 [∫ ∞

0
dk′k′2

∫ 1

−1
dt ′w(k′)ϕ

(∣∣∣∣∣
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k′
∣∣∣∣∣
)]2

,

(21)

with t1 = ( �K · �k1)/(Kk1), t = ( �K · �k)/(Kk), and t ′ = ( �K · �k′)/
(Kk′). Here, we represented the Fermi distribution function as
f1 → f (k1) = f (ε1). In this expression, any strength factor
of the vertices has been dropped; see our previous argument
and Appendix E. For the imaginary part of this expression,
an energy-conserving δ function comes instead of the full
denominator, and then the four-dimensional (4D) integral can
be reduced to a three-dimensional (3D) one. How this goes
in detail is again explained in Appendix F. The real part

of Mquartet is then obtained from the imaginary part via a
dispersion integral:

ReMquartet(k, ω + iη) = −P
∫ ∞

−∞

dω′

π

ImMquartet(k, ω′ + iη)

ω −ω′ ,

(22)

where P denotes the Cauchy principal value.
The occupation numbers are finally obtained from

ρ(k) = −
∫

dω

2π
2ImG(k, ω + iη)f (ω)

=
∫

dω

2π

−2ImMquartet(k, ω + iη)

[ω − ε(�k) − ReMquartet(k, ω + iη)]2 + [ImMquartet(k, ω + iη)]2
f (ω). (23)

The equation for the order parameter (19) is formally
not changed from Eqs. (4)–(7) of [21], but the occupation
numbers are calculated self-consistently with the equation.
For completeness, we again give the equations for the single-

particle wave function ϕ(k)

A(k)ϕ(k) + 3B(k) + 3C(k)ϕ(k) = 0, (24)
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where

A(k)

=
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

(
k2

2m
+ k2

2

2m
+ k2

3

2m
+ k2

4

2m
− 4µ

)

×ϕ2(k2)ϕ2(k3)ϕ2(k4)(2π )3δ(�k + �k2 + �k3 + �k4)

= 1

(2π )4

∫
dKK2

∫ 1

−1
dt

(
k2

2m
+ 3

2m
P 2 − 4µ

)

×ϕ2(P )
∫

dk′k′2
∫ 1

−1
dt ′ϕ2(k′)ϕ2(P ′), (25)

B(k)

=
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
1

(2π )3

d3k′
2

(2π )3

× [1 − ρ(k) − ρ(k2)]λw

( �k − �k2

2

)

×w

( �k′
1 − �k′

2

2

)
(2π )3δ(�k + �k2 − �k′

1 − �k′
2)ϕ(k′

1)ϕ(k2)

×ϕ(k′
2)ϕ2(k3)ϕ2(k4)(2π )3δ(�k + �k2 + �k3 + �k4)

= λ

(2π )6

∫
dKK2

∫ 1

−1
dt[1 − ρ(k) − ρ(P )]w(Q)ϕ(P )

×
∫

dk′k′2
∫ 1

−1
dt ′w(Q′)ϕ(k′)ϕ(P ′)

×
∫

dk′′k′′2
∫ 1

−1
dt ′′ϕ2(k′′)ϕ2(P ′′), (26)

C(k)

=
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
2

(2π )3

d3k′
3

(2π )3
[1 − ρ(k2) − ρ(k3)]

× λw

(�k2 − �k3

2

)
w

(�k′
2 − �k′

3

2

)
(2π )3δ(�k2 + �k3 − �k′

2 − �k′
3)

×ϕ(k2)ϕ(k′
2)ϕ(k3)ϕ(k′

3)ϕ2(k4)(2π )3δ(�k + �k2 + �k3 + �k4)

= λ

(2π )6

∫
dKK2

∫ 1

−1
dtϕ2(P )

∫
dk′k′2

×
∫ 1

−1
dt ′[1 − ρ(k′) − ρ(P ′)]w(Q′)ϕ(k′)ϕ(P ′)

×
∫

dk′′k′′2
∫ 1

−1
dt ′′w(Q′′)ϕ(k′′)ϕ(P ′′). (27)

with

P =
√

K2 + k2 + 2Kkt,

P ′ =
√

K2 + k′2 + 2Kk′t ′,

P ′′ =
√

K2 + k′′2 + 2Kk′′t ′′,

Q =
√

K2/4 + k2 + Kkt,

Q′ =
√

K2/4 + k′2 + Kk′t ′,

Q′′ =
√

K2/4 + k′′2 + Kk′′t ′′.

As mentioned, in these equations the occupation numbers
ρ(k) are calculated self-consistently from Eq. (23).

Because of its particular importance, before the presenta-
tion of the results, we first discuss in the following section the
3h level density.

V. THREE-HOLE LEVEL DENSITY

In what follows, a crucial role is played by the 3h propagator
entering the mass operator. Because its influence on quartet
condensation is radically different from the corresponding 1h
propagator in the pairing case, we pay special attention to it in
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FIG. 5. The 3h level densities defined in Eq. (29) for various
values of the chemical potential µ at zero temperature.

064310-5
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this section. In mean-field approximation, we write

(f̄1f̄2f̄3 + f1f2f3)

ω + ε123
= G(3h)(k1, k2, k3; ω), (28)

where in the right-hand side we dropped spin and isospin
indices because we consider unpolarized (nuclear) matter. We
immediately see a strong difference with the pairing case.
There, only a single-hole line enters whose numerator is (see
previous section) f̄1 + f1 = 1; see Eq. (2). Therefore, no
single-particle occupation numbers appear in the numerator
of a single-hole propagator. This difference between the 3h
and 1h propagators leads to strong consequences. This is best
demonstrated in Fig. 5 with the 3h level density

g(ω) = −
∫

d3k1

(2π )3

d3k2

(2π )3

d3k3

(2π )3
ImG(3h)(k1, k2, k3; ω + iη)

=
∫

d3k1

(2π )3

d3k2

(2π )3

d3k3

(2π )3
(f̄1f̄2f̄3 + f1f2f3)

×πδ(ω + ε1 + ε2 + ε3)

= m

(2π )5

∫ kmax

0
dkk2

∫ Kmax

0
dKK2p

× [f̄ (k)F̄ (K,p) + f (k)F (K,p)], (29)

where

kmax =
√

2m(3µ − ω), (30)

Kmax =
√

4m(3µ − ω) − 2k2, (31)

p =
√

3mµ − mω − k2

2
− K2

4
, (32)

and

F (K,p) =
∫ 1

−1
dtf

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �p
∣∣∣∣∣
)

, (33)

F̄ (K,p) =
∫ 1

−1
dtf̄

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �p
∣∣∣∣∣
)

, (34)

with t = �K · �p/(Kp).
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FIG. 6. Single-particle wave function ϕ(k) in k space (left), for r space ϕ̃(r) (middle), and occupation numbers (right) at µ = −5.26
(top), −1.63 (middle), and 0.55 (bottom). The r-space wave function ϕ̃(r) is derived from the Fourier transform of ϕ(k) by ϕ̃(r) =∫

d3kei�k·�rϕ(k)/(2π )3. The dashed line in the left panels correspond to the Gaussian with same norm and rms momentum as ϕ(k).
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In Fig. 5, we show the level density at zero temperature
[f (ω) = θ (−ω)], where it is calculated with the proton
mass m = 938.27 MeV (natural unit). Two cases have to be
considered, chemical potential µ positive or negative. In the
latter case, we have binding of the quartet. Let us first discuss
the case µ > 0. We remark that in this case, the 3h level
density goes through zero at ω = 0, that is, just in the region
where the quartet correlations should appear. This is a strong
difference with the pairing case where the 1h level density does
not feel any influence from the medium and, therefore, the
corresponding level density varies (neglecting the mean field
for the sake of the argument) as in free space with the square
root of energy. In particular, this means that the level density
is finite at the Fermi level. This is a dramatic difference with
the quartet case and explains why Cooper pairs can strongly
overlap whereas for quartets this is impossible. We also point
out that the 3h level density is just the mirror to the 3p level
density, which has been discussed in [29].

For the case where µ < 0, there is nothing very special,
besides the fact that it only is nonvanishing for negative
values of ω and that the upper boundary is given by ω = 3µ.
Therefore, the level density of Eq. (29) is zero for ω > 3µ.

VI. RESULTS AND DISCUSSION

At first, let us mention that in this pilot application of
our self-consistent quartet theory, we only consider the zero-
temperature case. As a definite physical example, we treat the
case of nuclear physics with the particularly strongly bound
quartet, the α particle. It should be pointed out, however,
that if scaled appropriately, all energies and lengths can be
transformed to other physical systems. For the nuclear case,
it is convenient to measure energies in in Fermi energies
εF = 35 MeV and lengths in inverse Fermi momentum k−1

F =
1.35−1 fm.

To determine the order parameter, the calculation iterates
in the following cycle:

(i) Fix a chemical potential µ.

(ii) Give an initial trial order parameter ϕ(k).
(iii) Calculate the mass operator Mquartet(k, ω) of Eq. (21)

with ϕ(k).
(iv) Calculate the occupation numbers ρ(k) with

Mquartet(k, ω) from Eq. (23).
(v) By substituting ϕ(k) and ρ(k) into Eqs. (26) and (27),

derive the “new” single-particle wave function ϕ(k)
from

ϕ(k) = −3B(k)

A(k) + 3C(k)
. (35)

(vi) Quit the cycle once ϕ(k) has converged; otherwise, go
to (iii).

The single-particle wave functions and occupation numbers
obtained from this cycle are shown in Fig. 6. We take λ =
−992 MeV fm3 and b = 1.43 fm−1 to get the binding energy
of the free α-particle (−28.3 MeV) and its radius (1.7 fm).
We also insert the Gaussian wave function with same rms
momentum as the single-particle wave function on the left in

Fig. 6. As shown in Fig. 6, the single-particle wave function
is sharper than a Gaussian. There is the term A(k) of Eq. (25)
in the denominator of ϕ(k) in Eq. (35), and A(k) involves the
factor [k2/(2m) − 4µ]. Hence, ϕ(k) is closer to a Lorentzian
than to a Gaussian [1].

We could not obtain a convergent wave function for µ >

0.55 MeV. This difficulty is of the same origin as in the case
of our calculation of the critical temperature for α-particle
condensation. This stems from the fact that for larger positive
values of the chemical potential, the denominator of ϕ(k)
in Eq. (35) at a certain value of k becomes zero, while the
numerator is finite. In the case of pair condensation, as shown
in Eq. (4), both the denominator and numerator become zero
at the same value of k, a further crucial difference between the
quartet and pairing cases. In the right-hand panels of Fig. 6, we
also show the corresponding occupation numbers. We see that
they are very small. However, they increase for increasing
values of the chemical potential. For µ = 0.55 MeV, the
maximum of the occupation still only attains 0.35, which is
far away from the saturation value of 1. What really happens
for larger values of the chemical potential is unclear. Surely,
as discussed in Sec. V, the situation for the quartet case
is completely different from the standard pairing case. This
is because, as already mentioned, the 3h level density goes
through zero at ω = 0, that is, just at the place where the
quartet correlation should build up for positive values of µ.
Because of this fact, the inhibition to go into the positive µ

regime is here even stronger than in the case of the critical
temperature [21].
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FIG. 7. −ImMquartet(k1, ω + iη) in Eq. (22) as a function of ω

for µ = −4.9 MeV (left) and for µ = 0.55 MeV (right) at zero
temperature.
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FIG. 8. −2ImG(k, ω + iη) in Eq. (23) as function of ω for µ =
−4.9 MeV (top) and for µ = 0.55 MeV (bottom) at zero temperature.

The situation in the quartet case is also much different,
as the the 3h GF produces a considerable imaginary part of
the mass operator. Figure 7 shows the imaginary part of the
approximate quartet mass operator of Eq. (21) for µ < 0 and
µ > 0. These large values of the damping rate imply a strong
violation of the quasiparticle picture. In Fig. 8, we show the
spectral function of the single-particle GF. Contrary to the
pairing case with its sharp quasiparticle pole, we here only
find a very broad distribution, implying that the quasiparticle
picture is completely destroyed. How to formulate a theory that
goes continuously from the quartet case into the pairing case is
an open question. One solution could be to start right from the
beginning with an in-medium four-body equation that contains
a superfluid phase. When the quartet phase disappears, the
superfluid phase may remain. Such investigations shall be done
in the future.

VII. CONCLUSION

We formulated the gap equation for quartetting in fermion
systems in analogy to the BCS gap equation. The mass operator
of quartet-BEC with effective four-body vertices and in-
medium four-body Schrödinger equation was derived with the
Dyson equation approach to correlation functions. However,
the full expression of the quartet mass operator is too com-
plicated to be evaluated numerically in a direct manner. The
biggest problem stems from the many-dimensional integrals
over momenta. We, therefore, introduced some reasonable
approximations and reduced the complexity considerably. A
feature of great help is that the final answer is independent

of the strength of the vertex function, probably making our
approximation quite reliable. In our calculation, we also
applied the same mean-field ansatz projected on zero total
momentum, which was successful in our previous calculation
of the critical temperature [21]. This feature, of course, reduces
the numerical effort tremendously, because only a single
0S wave function has to be determined self-consistently by
iteration.

In this pilot work with an application to nuclear physics,
we showed results only at zero temperature; however, the
formalism we presented is at finite temperature.

We think that the results are of general validity and show
qualitatively very distinct features from the pairing case. For
example, no well-defined quasiparticles occur in the case of
quartets. This is because the quartet order parameter in the
single-particle mass operator goes along with the level density
of three uncorrelated holes. Only the total momentum of the
three holes is well defined and equal to the time-reversed
momentum of the incoming particle. The relative momenta
of the three holes have to be integrated over, yielding a
strong imaginary part of the mass operator and smoothing out
any individual single-particle structure. Another remarkable
feature already encountered in our previous work in Ref. [21]
is that the self-consistent solution seems to exist only from
negative chemical potential until around zero (i.e., from the
BEC) or strong coupling region until crossover region. Once
one goes to positive µ’s, the solution breaks down. This effect
is even more pronounced here than it was in our study [21] for
the critical temperature. This can be traced back to the fact that
the 3h level density goes through zero at 3µ for µ > 0, that is,
just at the place where the quartet correlations should occur.
Actually, this feature is present for all multiparticle, multihole
level densities. The only exception is the single-particle level
density, which is finite at the Fermi level. This unique feature
makes that pairing also unique and, for instance, allows for
a weak coupling situation with a coherence length of the pair
orders of magnitude larger than the interparticle distance. How
to formulate a more general theory that continuously goes from
the quartet case to the pairing case is an open problem.
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APPENDIX A: DYSON EQUATIONS FOR
MULTIPARTICLE, MULTIHOLE GREEN FUNCTIONS

We review the basic formulation used in the present work.
We here extend the approach for real-time GFs at zero
temperature in Ref. [30] to real-time GFs at finite temperature
[26,31].

The Hamiltonian in a fermion system with two-body
interaction is

K = H − µN = T + V − µN

=
∑

1

ε1c
†
1c1 + 1

4

∑
1234

v̄12,34c
†
1c

†
2c4c3. (A1)
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The c1, c†1 are fermion annihilation and creation operators with
an arbitrary quantum number 1.

A real-time multiparticle, multihole GF at a finite tempera-
ture is defined by

G
(ipjh)
α;α′ (t − t ′)

=
{

−i〈T (Aα(t)A†
α′(t ′))〉 (chronological)

−iθ (t − t ′)〈[Aα(t), A†
α′(t ′)]±〉 (retarded)

(A2)

where 〈· · ·〉 means the thermal average, T is the time ordering
operator, Aα is an arbitrary operator consisting of individual
fermion operators c1 and c

†
1, and [. . . , . . .]± is the anticommu-

tator or commutator. The time dependence of the operators is
given in the Heisenberg picture Aα(t) = eiKtAαe−iKt .

Note that although we treat chronological GFs here, the
change to retarded, advanced, and Matsubara GFs goes as
usual [26]. When we go from time space to Fourier space,
we always go over to retarded GFs without mentioning it
explicitly.

The superscript (ipjh) in Eq. (A2) means i-particle j -hole
GF, where i (j ) is the number of the annihilation (creation) op-
erators in Aα , for example, G

(1p)
1;1′ (t − t ′) = −i〈T (c1(t)c†1′(t ′))〉

and G
(1p1h)
1,2;1′,2′ (t − t ′) = −i〈T ((c†2c1)t (c

†
1′c2′ )t ′)〉 with (c†2c1)t =

c
†
2(t)c1(t).

The Dyson equation for the ipjh GF is [30](
i

∂

∂t
− εα

)
G

(ipjh)
α;α′ (t − t ′)

= δ(t − t ′)Nα;α′ +
∑

β

M0
α;βG

(ipjh)
β;α′ (t − t ′)

+
∑

β

∫
dt ′′Mα;β(t − t ′′)G(ipjh)

β;α′ (t ′′ − t ′), (A3)

with

M0
α;α′ =

∑
β

〈[[Aα, V ]−, A
†
β]±〉N−1

β;α′ (A4)

Mα;α′ (t − t ′) = −i
∑

β

〈T ([Aα(t), V ]−[V,A
†
β (t ′)]−)〉irr.N−1

β;α′ ,

(A5)

Nα;α′ = 〈[Aα,A
†
α′ ]±〉, (A6)

where εα is defined by [Aα, T − µN ]− = εαAα , and N−1
α;α′ is

the inverse of the matrix Nα;α′ .
According to the time dependence, we call M0

α;α′ static mass
operator and Mα;α′ (t − t ′) dynamical mass operator.

Because [Aα(t), V ]− is the operator Aα augmented
by one annihilation and one creation operator,
〈T ([Aα(t), V ]−[V,A

†
β (t ′′)]−)〉irr. becomes a (i + 1)p(j + 1)h

GF in the dynamical mass of Eq. (A5). The index “irr.” in
Eq. (A5) stands for the mass operator being irreducible with
respect to a cut of ipjh lines [24].

From the Dyson equation of Eq. (A3), we can see that the
Fourier transform of the bare ipjh GF is

G
0(ipjh)
α;α′ (ω) = Nα;α′

ω − εα

. (A7)

APPENDIX B: QUARTET MASS OPERATOR

Here we derive the quartet mass operator of Eq. (8) shown
in Sec. III.

Notice that we use the summation convention for repeated
indices and neglect all terms except the ones that are associated
with the quartet order parameters.

From Eq. (A3), the Dyson equation for the 1p GF is [24](
i

∂

∂t
− ε1

)
G

(1p)
1;2 (t1 − t2)

= δ12δ(t1 − t2) +
∫

dt3M
(1p)
1;3 (t1 − t3)G(1p)

3;2 (t3 − t2). (B1)

The Fourier transform yields

(ω − ε1)G(1p)
1;2 (ω) = δ12 + M

(1p)
1;3 (ω)G(1p)

3;2 (ω) (B2)

with

M
(1p)
1;2 (ω) = 1

2 v̄1z1,a1a
′
1
G

(2p1h)irr.
a1a

′
1,z1;a2a

′
2,z2

(ω) 1
2 v̄2z2,a2a

′
2
. (B3)

Therefore,

G
(1p)
1;2 (ω) = G

0(1p)
1;2 (ω) + G

0(1p)
1;3 (ω)M (1p)

3;4 (ω)G(1p)
4;2 (ω), (B4)

where

G
0(1p)
1;2 (ω) = δ12

ω − ε1
. (B5)

For the Dyson equation of the 2p1h GF, one obtains

[ω − (εa1 + εa′
1
− εz1 )]G(2p1h)

a1a
′
1,z1;a2a

′
2,z2

(ω)

= Na1a
′
1,z1;a2a

′
2,z2 + M

(2p1h)
a1a

′
1,z1;a3a

′
3,z3

(ω)G(2p1h)
a3a

′
3,z3;a2a

′
2,z2

(ω),

(B6)

where

M
(2p1h)
a1a

′
1,z1;a2a

′
2,z2

(ω)

= [
1
2 v̄a1y1,b1b

′
1
δz1y

′
1
δa′

1b
′′
1
+ 1

2 v̄a′
1y

′
1,b1b

′
1
δz1y1δa1b

′′
1

− 1
2 v̄z1b

′′
1 ,y1y

′
1
δa1b1δa′

1b
′
1

]
G

(3p2h)irr.
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω)

× [ 1
2 v̄a3y2,b2b

′
2
δz3y

′
2
δa′

3b
′′
2
+ 1

2 v̄a′
3y

′
2,b2b

′
2
δz3y2δa3b

′′
3

− 1
2 v̄z3b

′′
2 ,y2y

′
2
δa3b2δa′

3b
′
2

]
N−1

a3a
′
3,z3;a2a

′
2,z2

(B7)

and

Na1a
′
1,z1;a2a

′
2,z2 = 〈[

c†z1
ca′

1
ca1 , c

†
a2

c
†
a′

2
cz2

]
+
〉
. (B8)

Therefore,

G
(2p1h)
a1a

′
1,z1;a2a

′
2,z2

(ω)

= G
0(2p1h)
a1a

′
1,z1;a2a

′
2,z2

(ω) + G
0(2p1h)
a1a

′
1,z1;a3a

′
3,z3

(ω)N−1
a3a

′
3,z3;a4a

′
4,z4

×M
(2p1h)
a4a

′
4,z4;a5a

′
5,z5

(ω)G(2p1h)
a5a

′
5,z5;a2a

′
2,z2

(ω), (B9)

with

G
0(2p1h)
a1a

′
1,z1;a2a

′
2,z2

(ω) = Na1a
′
1,z1;a2a

′
2,z2

ω − (
εa1a

′
1
− εz1

) (B10)

and

Na1a
′
1,z1;a3a

′
3,z3N−1

a3a
′
3,z3;a2a

′
2,z2

= δa1a2δa′
1a

′
2
δz1z2 , (B11)

where εij ... = εi + εj + · · · in (B10).
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FIG. 9. Graphical representation of 	(3) in Eq. (B13). The dots is
represent the two-body interaction.

Substituting the 2p1h GF of Eq. (B9) into the mass operator
of Eq. (B3), we obtain

M
(1p)
1;2 (ω) = 	

(3)
1y1y

′
1,b1b

′
1b

′′
1
(ω)G(3p2h)irr.

b1b
′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω)

×	
(3)∗
2y2y

′
2,b2b

′
2b

′′
2
(ω), (B12)

where

	
(3)
1y1y

′
1,b1b

′
1b

′′
1
(ω)= 1

2 v̄1z1,a1a
′
1
G

0(2p1h)
a1a

′
1,z1;a3a

′
3,z3

(ω)N−1
a3a

′
3,z3;a4a

′
4,z4

× [ 1
2 v̄a4y1,b1b

′
1
δz1y

′
1
δa′

4b
′′
1
+ 1

2 v̄a′
4y

′
1,b1b

′
1
δz1y1δa4b

′′
1

− 1
2 v̄z4b

′′
1 ,y1y

′
1
δa4b1δa′

4b
′
1

]
. (B13)

This three body vertex is graphically displayed in Fig. 9. In
Eq. (B12), we omitted the term derived from the first term
of the right-hand side of Eq. (B9) because it is disconnected
with the quartet order parameter. In the effective three-body
vertex 	(3) of Eq. (B13), we give not the exact 2p1h GF but
the free one, as we only consider in this work the lowest order
approximation, though the exact 2p1h GF figures, in principle,
in the right vertex 	(3) of Eq. (B13) by substituting Eq. (B9)
into Eq. (B3). In Eq. (B13), using Eqs. (B10) and (B11), we
obtain

G
0(2p1h)
a1a

′
1,z1;a3a

′
3,z3

(ω)N−1
a3a

′
3,z3;a4a

′
4,z4

= δa1a4δa′
1a

′
4
δz1z4

ω − εa1a
′
1
+ εz1

, (B14)

and thus Eq. (B13) is consistent with Eq. (11).
Furthermore, the Dyson equation for 3p2h GF is[

ω − (
εb1b

′
1b

′′
1
− εy1y

′
1

)]
G

(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω)

= Nb1b
′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
+ M

(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b3b

′
3b

′′
3 ,y3y

′
3
(ω)

×G
(3p2h)
b3b

′
3b

′′
3 ,y3y

′
3;b2b

′
2b

′′
2 ,y2y

′
2
(ω). (B15)

The mass operator is then given by

M
(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω)

= [
1
2 v̄b1x

′′
1 ,c1c

′′′
1
δy1x1δy ′

1x
′
1
δb′

1c
′
1
δb′′

1c′′
1
+ 1

2 v̄b′
1x

′′
1 ,c′

1c
′′′
1
δy1x1δy ′

1x
′
1

× δb1c1δb′′
1c′′

1
+ 1

2 v̄b′′
1x ′′

1 ,c′′
1c′′′

1
δy1x1δy ′

1x
′
1
δb1c1δb′

1c
′
1

− 1
2 v̄y1c

′′′
1 ,x1x

′′
1
δy ′

1x
′
1
δb1c1δb′

1c
′
1
δb′′

1c′′
1
− 1

2 v̄y ′
1c

′′′
1 ,x ′

1x
′′
1

× δy1x1δb1c1δb′
1c

′
1
δb′′

1c′′
1

]
G

(4p3h)irr.
c1c

′
1c

′′
1c′′′

1 ,x1x
′
1x

′′
1 ;c2c

′
2c

′′
2c′′′

2 ,x2x
′
2x

′′
2
(ω)

× [ 1
2 v̄b3x

′′
2 ,c2c

′′′
2
δy3x2δy ′

3x
′
2
δb′

3c
′
2
δb′′

3c′′
2
+ 1

2 v̄b′
3x

′′
2 ,c′

2c
′′′
2
δy3x2

× δy ′
3x

′
2
δb3c2δb′′

3c′′
2
+ 1

2 v̄b′′
3x ′′

2 ,c′′
2c′′′

2
δy3x2δy ′

3x
′
2
δb3c2δb′

3c
′
2

− 1
2 v̄y3c

′′′
2 ,x2x

′′
2
δy ′

3x
′
2
δb3c2δb′

3c
′
2
δb′′

3c′′
2
− 1

2 v̄y ′
3c

′′′
2 ,x ′

2x
′′
2
δy3x2δb3c2

× δb′
3c

′
2
δb′′

3c′′
2

]
N−1

b3b
′
3b

′′
3 ,y3y

′
3;b2b

′
2b

′′
2 ,y2y

′
2
, (B16)

and

Nb1b
′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
= 〈[

c†y1
c
†
y ′

1
cb′′

1
cb′

1
cb1 , c

†
b1

c
†
b′

1
c
†
b′′

1
cy ′

1
cy1

]
+
〉
.

(B17)

Therefore, one obtains for the 3p2h GF

G
(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω)

= G
0(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω) + G

0(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b3b

′
3b

′′
3 ,y3y

′
3
(ω)

×N−1
b3b

′
3b

′′
3 ,y3y

′
3;b4b

′
4b

′′
4 ,y4y

′
4
M

(3p2h)
b4b

′
4b

′′
4 ,y4y

′
4;b5b

′
5b

′′
5 ,y5y

′
5
(ω)

×G
(3p2h)
b5b

′
5b

′′
5 ,y5y

′
5;b2b

′
2b

′′
2 ,y2y

′
2
(ω), (B18)

where

G
0(3p2h)
b1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2
(ω) = Nb1b

′
1b

′′
1 ,y1y

′
1;b2b

′
2b

′′
2 ,y2y

′
2

ω − (
εb1b

′
1b

′′
1
− εy1y

′
1

) . (B19)

By substituting 3p2h GF of (B18) into the mass operator of
Eq. (B12), we get

M
(1p)
1;2 (ω) = 	

(4)
1x1x

′
1x

′′
1 ,c1c

′
1c

′′
1c′′′

1
(ω)G(4p3h)irr.

c1c
′
1c

′′
1c′′′

1 ,x1x
′
1x

′′
1 ;c2c

′
2c

′′
2c′′′

2 ,x2x
′
2x

′′
2
(ω)

×	
(4)∗
2x2x

′
2x

′′
2 ,c2c

′
2c

′′
2c′′′

2
(ω), (B20)

with

	
(4)
1x1x

′
1x

′′
1 ,c1c

′
1c

′′
1c′′′

1
(ω)

= 	
(3)
1y1y

′
1,b1b

′
1b

′′
1
(ω)G0(3p2h)

b1b
′
1b

′′
1 ,y1y

′
1;b3b

′
3b

′′
3 ,y3y

′
3
(ω)

×N−1
b3b

′
3b

′′
3 ,y3y

′
3;b4b

′
4b

′′
4 ,y4y

′
4

[
1
2 v̄b4x

′′
1 ,c1c

′′′
1
δy4x1δy ′

4x
′
1
δb′

4c
′
1
δb′′

4c′′
1

+ 1
2 v̄b′

4x
′′
1 ,c′

1c
′′′
1
δy4x1δy ′

4x
′
1
δb4c1δb′′

4c′′
1
+ 1

2 v̄b′′
4x ′′

1 ,c′′
1c′′′

1
δy4x1

× δy ′
4x

′
1
δb4c1δb′

4c
′
1
− 1

2 v̄y4c
′′′
1 ,x1x

′′
1
δy ′

4x
′
1
δb4c1δb′

4c
′
1
δb′′

4c′′
1

− 1
2 v̄y ′

4c
′′′
1 ,x ′

1x
′′
1
δy4x1δb4c1δb′

4c
′
1
δb′′

4c′′
1

]
. (B21)

Here we also omitted the terms associated with the first term
at the right-hand side of Eq. (B18) because it is disconnected
with the quartet order parameter. Besides, we introduced the
free 3p2h GF in 	(4) of (B21) for the same reason, as this was
done in Eqs. (B12) and (B13). The graphical representation of
	(4) is shown in Fig. 10.

The 4p3h GF can, for our purpose of α-particle condensa-
tion, be approximately decomposed into the order parameter
and the free three-body GF as follows (in analogy to what is
done in the pairing case):

G
(4p3h)
c1c

′
1c

′′
1c′′′

1 ,x1x
′
1x

′′
1 ;c2c

′
2c

′′
2c′′′

2 ,x2x
′
2x

′′
2
(t1 − t2)

= −i
〈
T
(
c†x1

c
†
x ′

1
c
†
x ′′

1
cc′′′

1
cc′′

1
cc′

1
cc1

)
t1

(
c†c2

c
†
c′

2
c
†
c′′

2
c
†
c′′′

2
cx ′′

2
cx ′

2
cx2

)
t2

〉
= −i

〈
T
(
cc′′′

1
cc′′

1
cc′

1
cc1

)
t1

〉〈
T
(
c†c2

c
†
c′

2
c
†
c′′

2
c
†
c′′′

2

)
t2

〉
× 〈T (c†x1

c
†
x ′

1
c
†
x ′′

1

)
t1

(
cx ′′

2
cx ′

2
cx2

)
t2

〉
= 〈

cc′′′
1
cc′′

1
cc′

1
cc1

〉〈
c†c2

c
†
c′

2
c
†
c′′

2
c
†
c′′′

2

〉
G

0(3h)
x1x

′
1x

′′
1 ;x2x

′
2x

′′
2
(t1 − t2) (B22)
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FIG. 10. Graphical representation of 	(4) in Eq. (B21).

The Fourier transform is

G
(4p3h)
c1c

′
1c

′′
1c′′′

1 ,x1x
′
1x

′′
1 ;c2c

′
2c

′′
2c′′′

2 ,x2x
′
2x

′′
2
(ω)

= 〈
cc′′′

1
cc′′

1
cc′

1
cc1

〉〈
c†c2

c
†
c′

2
c
†
c′′

2
c
†
c′′′

2

〉
G

0(3h)
x1x

′
1x

′′
1 ;x2x

′
2x

′′
2
(ω). (B23)

The free 3h GF is explicitly given by

G
0(3h)
x1x

′
1x

′′
1 ;x2x

′
2x

′′
2
(ω) = f̄x1 f̄x ′

1
f̄x ′′

1
+ fx1fx ′

1
fx ′′

1

ω + εx1x
′
1x

′′
1

Px1x
′
1x

′′
1 ;x2x

′
2x

′′
2
,

(B24)

with Px1x
′
1x

′′
1 ;x2x

′
2x

′′
2

as in Eq. (9).
Therefore, Eq. (B23) becomes

G
(4p3h)
c1c

′
1c

′′
1c′′′

1 ,x1x
′
1x

′′
1 ;c2c

′
2c

′′
2c′′′

2 ,x2x
′
2x

′′
2
(ω)

= 〈
cc′′′

1
cc′′

1
cc′

1
cc1

〉〈
c†c2

c
†
c′

2
c
†
c′′

2
c
†
c′′′

2

〉 f̄x1 f̄x ′
1
f̄x ′′

1
+ fx1fx ′

1
fx ′′

1

ω + εx1x
′
1x

′′
1

×Px1x
′
1x

′′
1 ;x2x

′
2x

′′
2
. (B25)

Finally, we obtain for the quartet mass operator

M
quartet
1;2 (ω) = 	

(4)
1x1x

′
1x

′′
1 ;c1c

′
1c

′′
1c′′′

1
(ω)
〈
cc′′′

1
cc′′

1
cc′

1
cc1

〉
× f̄x1 f̄x ′

1
f̄x ′′

1
+ fx1fx ′

1
fx ′′

1

ω + εx1x
′
1x

′′
1

Px1x
′
1x

′′
1 ;x2x

′
2x

′′
2

× 〈c†c2
c
†
c′

2
c
†
c′′

2
c
†
c′′′

2

〉
	

(4)∗
2x2x

′
2x

′′
2 ;c2c

′
2c

′′
2c′′′

2
(ω). (B26)

APPENDIX C: IN-MEDIUM QUARTET ORDER
PARAMETER EQUATION

We here give a short derivation of the in-medium quartet
order parameter equation. It is derived from the Dyson
equation for 4p GF in static approximation of the mass
operator. The Dyson equation for 4p GF derived from Eq. (A3)
without dynamical mass operator is(

i
∂

∂t
− ε1234

)
G

(4p)
1234;1′2′3′4′(t − t ′)

= N1234;1′2′3′4′ + V1234;1′′2′′3′′4′′G
(4p)
1234;1′2′3′4′ (t − t ′), (C1)

with, to lowest order in the interaction,

V1234;1′2′3′4′

= 〈[[c4c3c2c1, V ]−, c
†
1′′c

†
2′′c

†
3′′c

†
4′′ ]−〉N−1

1′′2′′3′′4′′;1′2′3′4′

= 1
2 (1 − ρ1 − ρ2)v̄12,1′2′δ33′δ44′ + 1

2 (1 − ρ1 − ρ3)v̄13,1′3′

× δ22′δ44′ + 1
2 (1 − ρ1 − ρ4)v̄14,1′4′δ22′δ33′

+ permutations, (C2)

where we approximated the correlation functions by factoriz-
ing them into products of single-particle occupation numbers.

The Fourier transform of 4p GF is

G
(4p)
1234;1′2′3′4′(ω)

= G
0(4p)
1234;1′2′3′4′ (ω) + G

0(4p)
1234;1′′2′′3′′4′′ (ω)N−1

1′′2′′3′′4′′;5678

×V5678;5′6′7′8′G
(4p)
5′6′7′8′;1′2′3′4′(ω), (C3)

where

G
0(4p)
1234;1′2′3′4′(ω) = N1234;1′2′3′4′

ω − ε1234
. (C4)

From the spectral representation of the 4p GF, we retain only
the ground state because of its condensate character. Therefore,
at the ground-state pole (i.e., at ω = 0), we obtain

〈c4c3c2c1〉 = − 1

ε1234
V1234;1′2′3′4′ 〈c4′c3′c2′c1′ 〉. (C5)

This equation corresponds to Eq. (4) in the pairing case.

APPENDIX D: APPROXIMATE MASS OPERATOR
IN EQ. (17)

After the derivation of a single-particle mass operator
containing the quartet condensate in Appendix B, we easily
recognize that its expression, for instance, the vertex 	(4) in
Eqs. (10) and (11) [or (B13) and (B21)] is of considerable
complexity, prohibitive for a direct numerical application,
especially because of high-dimensional integrals. Therefore,
we have to proceed to a quite intensive study of vertices,
followed by reasonable approximations, to reduce drastically
the numerical difficulty of the expressions.

A first purely formal simplification, which we introduce,
is to consider only the trion case instead of the quartet case.
Trions are fermions, and one would have to develop a whole
proper philosophy to introduce an order parameter for trions.
However, we ignore this difficulty here, proceed formally as
if a trion order parameter existed in the same way as a quartet
order parameter, and explain our strategy for this much simpler
case. This can be done without loss of generality, and in the
end we simply give our results for the quartet case, which can
be derived in complete analogy to the trion case.

Let us, therefore, begin with the expression of the single-
particle mass operator containing a “trion condensate,” which
analogously to Eq. (B26) is given by

M1;1′ (ω) = 	
(3)
123;456(ω)〈c6c5c4〉 f̄2f̄3 − f2f3

ω + ε23
(δ22′δ33′

− δ23′δ32′ )〈c†4′c
†
5′c

†
6′ 〉	(3)∗

1′2′3′;4′5′6′ (ω), (D1)
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FIG. 11. Graphical expression of the first term on the right-hand
side of Eq. (11).

with 	(3) as the three-body vertex already given in Eq. (11)
and derived in Eq. (B13). The first and rather obvious
approximation we perform is to make 	(3) instantaneous, that
is, ω independent. A standard procedure for this is to put the
vertex on the energy shell. This procedure is not always defined
unambiguously. In the present case, one possibility certainly
is to put in 	(3), ω = −ε23, that is, the energy, where the mass
operator (D1) is resonant.

Let us for the moment only investigate the first term on the
right-hand side of Eq. (11) with this prescription. We obtain

	
(3,1)
123;456(ω = −ε23) = 1

4
v̄13,3′6

1

−ε2 − ε3′ − ε6
v̄3′2,45.

(D2)

A graphical interpretation of this term is given in Fig. 11.
This graph also can be interpreted as a particular second-

order term of a three-body scattering process (123) → (456),
graphically represented in Fig. 12.

The intermediate propagator between the two vertices is
given by 1/(−ε2 − ε3′ − ε6) (the energies are given by the
propagators, which are cut by the vertical line in Fig. 12).
Therefore, we see that the static, on-shell part 	(3)(ω = −ε23)
of Eq. (D1) can be interpreted as a second-order three-body
scattering taken at ω = 0, that is, in reality at three times the
Fermi energy. This certainly is a reasonable reduction of the
second-order process to a static vertex 	(3,1).

Proceeding in the same way with the second term on the
right-hand side of Eq. (11), we arrive at a second-order process
analogous to the one of Fig. 12, as shown in Fig. 13. We see that
Fig. 13 corresponds to Fig. 12 with particles 2 and 3 permuted.

Let us now consider the third term in Eq. (11). In analogy
to processes of Figs. 12 and 13, this corresponds to the graph
of Fig. 14.

If we interpret this third term also as a static second-
order three-body process with an intermediate propagator 1/

(−ε1 − ε2′ − ε6) at ω = 0, contrary to the first and second

FIG. 12. Topologically same diagram as in Fig. 11.

FIG. 13. Graphical expression of the second term on the right-
hand side of Eq. (11).

terms of Eq. (11), we have to use as on-shell prescription in
Eq. (11): ω = ε1 + ε4 + ε5 + ε6. We thus suppose from now
on that all vertices in 	(3) are obtained from a second-order
three-body scattering process at ω = 0.

After these preliminary considerations, let us now introduce
in a phenomenological intuitive way a single-particle mass
operator containing a trion order parameter in a way analogous
to the pairing case

M1;1′ (ω) =
∫

dω′

2π
ImT123;1′2′3′ (ω − ω′)G0

23,2′3′ (−ω′), (D3)

with

ImT123;1′2′3′(ω) = −2πδ(ω)V̄123;456ψ
t
456ψ

t∗
4′5′6′ V̄4′5′6′;1′2′3′

(D4)

and

V̄123;1′2′3′ = 1
2 (v̄12,1′2′δ33′ + v̄13,1′3′δ22′ + v̄23,2′3′δ11′ ), (D5)

where we abbreviated the order parameter as

〈c3c2c1〉 = ψt
123. (D6)

The three-body T -matrix (D4) in Eq. (D3) is contracted
with the antisymmetrized 2h propagator

G0
23,2′3′(−ω) = − f̄2f̄3 − f2f3

ω + ε23
(δ22′δ33′ − δ23′δ32′ ). (D7)

With these definitions, Eqs. (D3)–(D7), we indeed see that
the trion mass operator is constructed in full analogy to the one
of the pairing case in Eq. (2). It is evident that in the quartet
case we would define a four-body T matrix as

ImT1234;1′2′3′4′ (ω) = −2πδ(ω)�1234�
∗
1′2′3′4′ (D8)

FIG. 14. Graphical expression of the third term on the right-hand
side of Eq. (11).
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with

�1234;5678 = V̄1234;5678〈c8c7c6c5〉 (D9)

and

V̄1234;1′2′3′4′ = 1
2 v̄12;1′2′δ33′δ44′ + 1

2 v̄13;1′3′δ22′δ44′

+ permutations (D10)

and contract it with a 3h GF.
Let us now investigate whether we can make contact of the

mass operator in Eq. (D3) with the one of Eq. (D1). To this
purpose, let us use in Eq. (D4) the equation for the trion order
parameter, which in analogy to (C3) is given by

ψt
123 = − 1

ε123

[
(1 − ρ1 − ρ2)

1

2
v̄12,1′2′δ33′ + (1 − ρ1 − ρ3)

× 1

2
v̄13,1′3′δ22′ + (1 − ρ2 − ρ3)

1

2
v̄23,2′3′δ11′

]
ψt

1′2′3′

(D11)

and investigate for the moment only the expression corre-
sponding to the second term on the right-hand side of Eq. (D5).
We obtain

1

2
v̄13,46δ25ψ

t
456 = 1

2
v̄13,46δ25

1

−ε123

[
(1 − ρ4 − ρ5)

1

2
v̄45,4′5′δ66′

+ (1 − ρ4 − ρ6)
1

2
v̄46,4′6′δ55′ + (1 − ρ5

− ρ6)
1

2
v̄56,5′6′δ44′

]
ψt

4′5′6′ . (D12)

We notice some similarity with the second-order vertex (D1).
The difference stems from the presence of the occupation
numbers ρi in Eq. (D12) and from the fact that there is more
than one term. In principle, the occupation numbers are the
correlated ones. In the main part of this article, we have seen
that our theory is practically only valid for µ < 0, implying
that the occupation numbers remain small; see Fig. 6. We
therefore can neglect the occupation numbers in Eq. (D12) to
good approximation (for the µ < 0 regime). Then, we can read
off a vertex from Eq. (D12) of the following form:

	̃
(3,2)
123;456 = 1

4
v̄13,3′6

1

−ε23′6
v̄3′2,45 + 1

4
v̄13,3′6′δ25

1

−ε23′6′
v̄3′6′,46

+ 1

4
v̄13,46′

1

−ε246′
v̄26′,56. (D13)

The first term is equal to expression (D1). The second term is
disconnected and, thus, is an inproper term for a vertex. The
third term can be graphically represented as shown in Fig. 15.
We see that the term of Fig. 15 is obtained from Fig. 12 in
permuting indices 4 and 6. It is thus equivalent to the first
term in Eq. (D13). This game can be repeated in the same
way for the first and third terms in Eq. (D5). The conclusion is
always the same: There are twice as many terms as equivalent
terms from the on-shell version of Eq. (11), and in addition,
each time there appears a disconnected term that should not
be present in a vertex. However, this latter problem is not
a real one. The order parameter is fully correlated, and no
disconnected pieces can appear. The term that is disconnected
in Eq. (D12) will certainly become connected in higher orders.

FIG. 15. Graphical expression of the third term on the right-hand
side of Eq. (D13).

Therefore, such disconnected terms only serve to renormalize
the vertices of the connected terms. In the end, all bare vertices
in the connected diagrams should be replaced by two-body T

matrices, and no disconnected terms would appear anymore.
We will not dwell further on this point and simply discard the
disconnected terms.

The conclusion, therefore, is that from Eq. (D3) we get
twice as many terms for the vertex 	(3) as is given in Eq. (11).
Otherwise, the terms are equivalent under the condition that in
Eq. (11), we take for these terms the on-shell prescription. The
correct procedure, therefore, is to divide the vertices V123;1′2′3′

in Eq. (D4) by a factor of 2. In the quartet case, we have to
divide the vertex in Eq. (D10) by a factor of 8.

In our numerical application (quartet case), instead of
calculating all 36 terms, where several ones give equal
contributions resulting from squaring the vertex (D10) and
where some are more difficult to calculate than others, we take
a very pragmatic point of view and keep only the first term on
the right-hand side of Eq. (D10) and simulate all the others
by a factor of λ′ as in Eq. (18). In doing so, we suppose that
all terms have more or less the same analytic structure. This
is certainly the case, because all the terms are dominated by
the behavior of the 3h level density, whose typical structure
is displayed in Sec. V. It also is fortunate that the final result
does not depend on λ′, as we now demonstrate on the example
of pairing.

APPENDIX E: INDEPENDENCE OF THE
PARAMETER λ′ IN EQ. (18)

All arguments and derivations for the three-body vertices
can directly be generalized to the four-body case. In view of the
fact that our favorite expression (8) is too complex for a direct
numerical realization, we take a very pragmatic point of view
for a pilot application. We have seen that some terms appear in
all the three forms we discussed for the vertices. We take one
of those terms for numerical calculations with a parameter λ′
in front of the vertex, which should demonstrate the influences
of factors and of topologically different graphs. However, we
stress again that we do not think that topologically different
vertices will finally give rise to a different analytic structure
of the mass operator. Essentially, these additional terms will
again only renormalize the vertices. The form that we then
retain is just the first one on the right-hade side of Eq. (D10),
because it is the one where the single-particle motion directly
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couples via an interaction to the quartet amplitude, that is,

�̃1234 = λ′ 1
2 v̄12,1′2′δ33′δ44′ 〈c1′c2′c3′c4′ 〉. (E1)

With the separable form of the two body interaction [22],
we then obtain expression (21). As mentioned already, we
approximately absorb factors and all the other terms in
renormalizing the vertex by a constant factor λ′. This is a
quite valid procedure, because the analytic structures of all the
other terms are very similar. Fortunately, our results do not
depend on the strength of the renormalization factor λ′ of the
vertex. This statement may be surprising but can be explained
by the standard BCS example as follows.

Schematically, we write the expression for a single-particle
GF in the BCS approximation of Eqs. (1) and (2) as follows
(with self-evident notation):

GBCS = 1

ω − ε − [(v〈cc〉〈c†c†〉v)/(ω + ε)]
. (E2)

Now in this equation, let us change the vertex v to v′ = λ′v.
Let us apply to all quantities containing this new vertex a
“prime.” Then the BCS single-particle GF is given by

G′BCS = 1 − ρ ′

ω − E′ + ρ ′

ω + E′ , (E3)

with E′2 = ε2 + D′2, D′ = v′〈cc〉, and ρ ′ = (1 − ε/E′)/2.
The equation for the order parameter then reads

〈cc〉 = −1 − 2ρ ′

2ε
v〈cc〉, (E4)

where we should notice that the v in that equation is still the
original one, as in our four-body order parameter equation of
Eqs. (C2) and (C5).

From this, we obtain the gap equation for �′:

�′ = −
∑

v
�′

2E′ . (E5)

By multiplying this equation with λ′, we see that E′ = E,
and therefore nothing is changed in the BCS single-particle
mass operator when multiplying the vertex by an arbitrary
factor. When translated to our quartet problem, this implies
that the question of multiplicity of diagrams discussed here
is of no consequence for our numerical results. Of course,
the addition of topologically different contributions to the
vertex 	(4) can change things slightly, but again one can
imagine that, to a good approximation, it only renormalizes
the vertex corresponding to the process, which we treat
explicitly. Therefore, our approximate treatment of the single-
particle mass operator with quartet condensate should be
quite safe. With our separable ansatz for the two-body
interaction, we then arrive to expression (21) of the mass
operator.

APPENDIX F: PREPARATION OF MASS OPERATOR
FOR NUMERICAL APPLICATION

In this section, we describe the final expression for
numerical calculation of the mass operator of Eq. (21).

We again give the approximated mass operator

Mquartet(k1, ω) =
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k1′

(2π )3

d3k2′

(2π )3

d3k1′′

(2π )3

d3k2′′

(2π )3
e−2(�k1−�k2)2/(4b2)e−(�k1′−�k2′ )2/(4b2)e−(�k1′′ −�k2′′′ )2/(4b2)(2π )3

× δ(�k1 + �k2 − �k1′ − �k2′)ϕ(|�k1′ |)ϕ(|�k2′ |)ϕ(|�k3|)ϕ(|�k4|)(2π )3δ(�k1′ + �k2′ + �k3 + �k4)ϕ(|�k1′′ |)ϕ(|�k2′′ |)ϕ(|�k3|)
×ϕ(|�k4|)(2π )3δ(�k1′′ + �k2′′ + �k3 + �k4)

f̄ (k2)f̄ (k3)f̄ (k4) + f (k2)f (k3)f (k4)

ω + ε�k2
+ ε�k3

+ ε�k4

=
∫

d3k2

(2π )3

d3K

(2π )3

d3k

(2π )3

d3K ′

(2π )3

d3k′

(2π )3

d3K ′′

(2π )3

d3k′′

(2π )3
e−2(�k1−�k2)2/(4b2)e−k′2/b2

e−k′′2/b2
(2π )3δ(�k1 + �k2 − �K ′)

×ϕ

(∣∣∣∣∣
�K ′

2
+ �k′

∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K ′

2
− �k′

∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

(2π )3δ( �K ′ + �K)

×ϕ

(∣∣∣∣∣
�K ′′

2
+ �k′′

∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K ′′

2
− �k′′

∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

(2π )3δ( �K ′′ + �K)

× f̄ (k2)f̄ [|( �K/2) + �k|]f̄ [|( �K/2) − �k|] + f (k2)f [|( �K/2) + �k|]f [|( �K/2) − �k|]
ω + ε�k2

+ ε( �K/2)+�k + ε( �K/2)−�k

=
∫

d3K

(2π )3

d3k

(2π )3
e−2[�k1+( �K/2)]2/b2

[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

× f̄ (|�k1 + �K|)f̄ [|( �K/2) + �k|]f̄ [|( �K/2) − �k|] + f (|�k1 + �K|)f [|( �K/2) + �k|]f [|( �K/2) − �k|]
ω + (k2

1

/
2m) + [(�k1 · �K)/m] + (3K2/4m) + (k2/m) − 3µ

×
[∫

d3k′

(2π )3
e−k′2/b2

ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

. (F1)
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The imaginary part of the mass operator
−ImMquartet(k1, ω + iη) is

−ImMquartet(k1, ω + iη)

= π

∫
d3K

(2π )3

d3k

(2π )3
e−2[�k1+( �K/2)]2/b2

×
[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄ (|�k1 + �K|)f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+ f (|�k1 + �K|)f
(∣∣∣∣∣

�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

× δ

(
ω + k2

1

2m
+

�k1 · �K
m

+ 3K2

4m
+ k2

m
− 3µ

)

×
[∫

d3k′

(2π )3
e−k′2/b2

ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

× ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

(F2)

1. The �k1 = 0 case

The imaginary part of the mass operator for �k1 = 0 is given
by

−ImMquartet(k1 = 0, ω + iη)

= π

∫
d3K

(2π )3

d3k

(2π )3
e−K2/(4b2)

×
[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄ (K)f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+ f (K)f

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

× δ

(
ω + 3K2

4m
+ k2

m
− 3µ

)[∫
d3k′

(2π )3
e−k′2/b2

× ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

= π
2

(2π )4

∫ ∞

0
dKK2

∫ ∞

0
dkk2

∫ 1

−1
dte−K2/(4b2)

×
[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄ (K)f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+ f (K)f

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

× m

2k
δ(k −

√
3mµ − mω − 3K2/4)

×
[

1

(2π )2

∫ ∞

0
dk′k′2

∫ 1

−1
dt ′e−k′2/b2

× ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

= 2πm

2(2π )4

∫ Pmax0

0
dKK2p

∫ 1

−1
dte−K2/(4b2)

×
[
ϕ

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

ϕ

(
|

�K
2

− �p|
)]2

×
[
f̄ (K)f̄

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f̄

(
|

�K
2

− �p|
)

+ f (K)f

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f

(
|

�K
2

− �p|
)]

×
[

1

(2π )2

∫ ∞

0
dk′k′2

∫ 1

−1
dt ′e−k′2/b2

× ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

, (F3)

Here, in the last equation,

p =
√

3mµ − mω − 3K2

4
, (F4)

Pmax0 =
√

4

3
(3mµ − mω), (F5)

t = ( �p · �K)/(pK), (F6)

t ′ = (�k′ · �K)/(k′K). (F7)

2. The �k1 �= 0 case

On the other hand, −ImMquartet for �k1 	= 0 is represented
by

−ImMquartet(k1, ω + iη)

= π

(2π )4

∫ ∞

0
dKK2

∫ 1

−1
dt1

∫ ∞

0
dkk2

∫ 1

−1
dt

× e−2(k2
1+K2/4+k1Kt1)/b2

[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄ (|�k1 + �K|)f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+f (|�k1 + �K|)f
(∣∣∣∣∣

�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

× δ

(
ω + k2

1

2m
+ k1Kt1

m
+ 3K2

4m
+ k2

m
− 3µ

)
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×
[

1

(2π )2

∫
dk′k′2

∫ 1

−1
dt ′e−k′2/b2

×ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

= π

(2π )4

∫ ∞

0
dKK2

∫ 1

−1
dt1

∫ ∞

0
dkk2

∫ 1

−1
dt

× e−2(k2
1+K2/4+k1Kt1)/b2

[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄ (|�k1 + �K|)f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+f (|�k1 + �K|)f
(∣∣∣∣∣

�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

× m

k1K
δ

(
t1 − 3mµ − mω − (

k2
1

/
2
)− (3K2/4) − k2

k1K

)

×
[

1

(2π )2

∫
dk′k′2

∫ 1

−1
dt ′e−k′2/b2

×ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

. (F8)

Here, the following condition has to be satisfied:

− 1 <
3mµ − mω − (

k2
1

/
2
)− (3K2/4) − k2

k1K
< 1. (F9)

Therefore,

k2 > 3mµ − mω − k2
1

2
− 3K2

4
− k1K > 0 (F10)

and

0 < k2 < 3mµ − mω − k2
1

2
− 3K2

4
+ k1K. (F11)

From this equation, we obtain the limits of integration with
respect to k:

pmin(K) =
√

max(3mµ − mω − k2
1

2
− 3K2

4
− k1K, 0)

< k <

√
3mµ − mω − k2

1

2
− 3K2

4
+ k1K = pmax(K).

(F12)

Besides, from Eq. (F11),

3mµ − mω − k2
1

2
− 3K2

4
+ k1K > 0 (F13)

has to be satisfied. Therefore,

Pmin = max

⎡
⎣2

3

⎛
⎝k1 −

√
9mµ − 3mω − k2

1

2

⎞
⎠ , 0

⎤
⎦

< K <
2

3

⎛
⎝k1 +

√
9mµ− 3mω − k2

1

2

⎞
⎠ = Pmax. (F14)

3. Summary of integrals in ImMquartet

With the Appendices F1 and F2, we can express
−ImMquartet(k1, ω + iη) as follows:

If 9mµ − 3mω − k2
1
2 < 0,

− ImMquartet(k1, ω + iη) = 0. (F15)

Else:
If k1 = 0,

−ImMquartet(k1, ω + iη)

= 2πm

2(2π )4

∫ Pmax0

0
dKK2pe−K2/(4b2)

×
∫ 1

−1
dt

[
ϕ

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �p
∣∣∣∣∣
)]2

×
[
f̄ (K)f̄

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f̄

(∣∣∣∣∣
�K
2

− �p
∣∣∣∣∣
)

+ f (K)f

(∣∣∣∣∣
�K
2

+ �p
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �p
∣∣∣∣∣
)]

×
[

1

(2π )2

∫ ∞

0
dk′k′2e−k′2/b2

∫ 1

−1
dt ′

× ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

,

p =
√

3mµ − mω − 3K2

4
,

Pmax0 =
√

4

3
(3mµ − mω),

t = (�k · �K)/(kK), t ′ = (�k′ · �K)/(k′K), (F16)

while if k1 	= 0,

−ImMquartet(k1, ω + iη)

= πm

(2π )4k1

∫ Pmax

Pmin

dKK

∫ pmax

pmin

dkk2

× e−2(3mµ−mω+k2
1/2−K2/2−k2)/b2

×
∫ 1

−1
dt

[
ϕ

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]2

×
[
f̄

(√
6mµ − 2mω − K2

2
− 2k2

)
f̄

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

× f̄

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)

+ f

(√
6mµ − 2mω − K2

2
− 2k2

)

× f

(∣∣∣∣∣
�K
2

+ �k
∣∣∣∣∣
)

f

(∣∣∣∣∣
�K
2

− �k
∣∣∣∣∣
)]

×
[

1

(2π )2

∫ ∞

0
dk′k′2e−k′2/b2

∫ 1

−1
dt ′
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× ϕ

(∣∣∣∣∣−
�K
2

+ �k′
∣∣∣∣∣
)

ϕ

(∣∣∣∣∣−
�K
2

− �k′
∣∣∣∣∣
)]2

,

pmin(K) =
√

max

[
3mµ − mω − k2

1

2
− 3K2

4
− k1K, 0

]
,

pmax(K) =
√

3mµ − mω − k2
1

2
− 3K2

4
+ k1K,

Pmin = max

⎡
⎣2

3

⎛
⎝k1 −

√
9mµ − 3mω − k2

1

2

⎞
⎠ , 0

⎤
⎦ ,

Pmax = 2

3

⎛
⎝k1 +

√
9mµ − 3mω − k2

1

2

⎞
⎠ ,

t = (�k · �K)/(kK), t ′ = (�k′ · �K)/(k′K). (F17)

ReMquartet is calculated by Eq. (22).
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[30] J. Dukelsky, G. Röpke, and P. Schuck, Nucl. Phys. A 628, 17

(1998).
[31] G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).

064310-17

http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1103/PhysRevA.80.040702
http://dx.doi.org/10.1103/PhysRevLett.103.130404
http://dx.doi.org/10.1103/PhysRevLett.103.130404
http://dx.doi.org/10.1103/PhysRevLett.98.160405
http://dx.doi.org/10.1103/PhysRevLett.98.160405
http://dx.doi.org/10.1103/PhysRevLett.100.200401
http://dx.doi.org/10.1103/PhysRevLett.100.200401
http://dx.doi.org/10.1103/PhysRevLett.103.240401
http://dx.doi.org/10.1103/PhysRevA.79.053633
http://dx.doi.org/10.1103/PhysRevA.79.053633
http://dx.doi.org/10.1103/PhysRevA.79.051603
http://dx.doi.org/10.1103/PhysRevA.79.051603
http://dx.doi.org/10.1103/PhysRevA.80.013620
http://dx.doi.org/10.1103/PhysRevA.80.013616
http://dx.doi.org/10.1103/PhysRevA.80.013616
http://dx.doi.org/10.1103/PhysRevA.80.041604
http://dx.doi.org/10.1103/PhysRevA.80.041604
http://dx.doi.org/10.1103/PhysRevA.81.021603
http://dx.doi.org/10.1103/PhysRevA.81.021603
http://dx.doi.org/10.1143/JPSJ.74.1911
http://dx.doi.org/10.1143/JPSJ.74.1911
http://arXiv.org/abs/arXiv:cond-mat/9901317
http://dx.doi.org/10.1088/0953-8984/6/7/008
http://dx.doi.org/10.1103/PhysRevLett.95.266404
http://dx.doi.org/10.1140/epjb/e2008-00374-7
http://dx.doi.org/10.1140/epjb/e2008-00374-7
http://dx.doi.org/10.1103/PhysRevC.79.051301
http://dx.doi.org/10.1103/PhysRevC.79.051301
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1103/PhysRevLett.80.3177
http://dx.doi.org/10.1016/0003-4916(60)90122-6
http://dx.doi.org/10.1006/aphy.2002.6230
http://dx.doi.org/10.1006/aphy.2002.6230
http://dx.doi.org/10.1016/0375-9474(89)90073-0
http://dx.doi.org/10.1016/0375-9474(86)90369-6
http://dx.doi.org/10.1016/S0375-9474(97)00606-4
http://dx.doi.org/10.1016/S0375-9474(97)00606-4

