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We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even
nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The
same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and
the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the
case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent
agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in
QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of
spurious modes. Isoscalar and isovector responses in the deformed 24–26Mg, 34Mg isotopes are presented and
compared to experimental findings.
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I. INTRODUCTION

The response of many-body systems to an external, weakly
coupled field provides much insight regarding the correlations
existing among the particles composing the system, and the
forces acting among them.

While the most familiar application of mean field theory is
to describe stationary states, its extension to time-dependent
states provides the basis for a theory of small amplitude
oscillations known as random phase approximation (RPA) for
normal systems and QRPA for superfluid (superconducting)
systems displaying quasiparticle excitations.

Especially, small amplitude oscillations describe the dy-
namics of the nuclear surface. Couplings to the surface will
influence the quasiparticle motion, renormalizing the effective
mass (ω mass mω), in turn leading to couplings among the
different vibrational modes.

A textbook example of such couplings is provided by the
breaking of the giant dipole resonance in deformed nuclei
(inhomogeneous damping [1–3]), in keeping with the fact
that a permanent deformation can be viewed as a quadrupole
vibration of finite inertia and of vanishing restoring force.
Within this context we refer to Fig. 10 of Ref. [4], in particular
to the two-peak photoabsorption cross section [σ (E; E1)] of
the 150Nd nucleus, marking the onset of static deformation in
the neodynium isotopes as a function of mass number.

As the smooth increase of the FWHM of σ (E; E1) as a
function of A indicates, this cannot be a yes-or-no effect. In
fact, the FWHM of σ (E; E1) associated with the transitional
nucleus 148Nd is not very different from that of 150Nd. Within
this scenario, quadrupole deformations, static or dynamic, will
also modify not only the properties (centroid and width) of the
GDR but also those of the GQR and, in deformed nuclei, that
of the GMR. The same line of reasoning also applies to other
multipolarities of the static and dynamic deformations of the
mean field, which should not necessarily be only quadrupolar.

Because exotic nuclei, in particular neutron halo nuclei
are, as a rule, more polarizable than nuclei lying along the
stability valley, one expects this to affect the modes and the
associated renormalization to be especially important for such
nuclei. Here, one may mention the pygmy resonance [5] and
the inversion of the usual sequence of single particle energies
[6]. A consistent treatment of the vibrational modes is the first
step on the way to address such properties.

The low-frequency collective excitations are quite sensitive
to the shell structure near the Fermi level as well as to
the nuclear surface shape, and one expects that new kinds
of collective excitation will emerge under new situations
of nuclear structure. To investigate such possibilities, many
calculations have been made using the self-consistent RPA
based on the Skyrme-Hartree-Fock (SHF) method [7,8] and
the quasiparticle-RPA (QRPA) including pairing correlations
[9–14]. A number of similar approaches using different mean
fields have also been carried out [15–22].

Recently new iterative methods have been developed to
calculate RPA strength functions for both spherical [23]
and deformed [24,25] nuclear systems. Low-frequency RPA
modes in deformed nuclei close to the neutron drip line
have been studied [26,27], taking also into account pairing
correlations [28,29]. These latter calculations are based on
a BCS approximation which does not take into account
continuum coupling effects, typical of drip-line nuclei. A
proper theoretical description of such weakly bound systems
requires a careful treatment of the asymptotic part of the
nucleonic density. An appropriate framework for these
calculations is provided by the Hartree-Fock-Bogoliubov
(HFB) formalism, solved in coordinate representation [30,31]
especially for spherical nuclei [32], or more conveniently in
the configuration-space approach for deformed nuclei [33].

A quantitative description of excitations in exotic nuclei
is given by fully consistent QRPA calculations on top of an
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HFB ground state, such that the same effective interaction
is used for both calculations. A fully consistent HFB+QRPA
approach with the Gogny effective interaction for spherical and
deformed nuclei has been developed in a harmonic oscillator
basis [34]. Standard QRPA equations have also been solved
in a cylindrical box with the Skyrme effective interaction, not
including neither spin-orbit effects nor the Coulomb residual
interactions [35,36].

Within this context we discuss in the present paper a
consistent approach to describe linear response in deformed
nuclei within the framework of HFB+QRPA. Section II dis-
cusses the elements used to work out a software to implement
such a program. In Sec. III, we provide detailed information
regarding Hartree-Fock-Bogoliubov ground states. Section III
also illustrates some basic results of the QRPA software
developed by us to treat deformed nuclei when applied, for
a consistency check, to the case of a spherical system. In this
section we also carry out a discussion concerning the spurious
modes. In Sec. IV the response functions of 20O, 24–26Mg, and
34Mg are shown and discussed in comparison to available data
and to other calculations. Conclusions are drawn in Sec. V.

II. METHOD

As the first step in the self-consistent calculation of
excitations in axially deformed and reflection symmetric
nuclei, HFB equations are solved in a finite harmonic oscillator
(HO) as well as in a transformed harmonic oscillator (THO)
basis. In both cases, a discretization of the positive energy
continuum is carried out. We use the new version [known as
(101)] of the program HFBTHO [33], choosing for 20O, 24–26Mg,
and 34Mg, a quasiparticle energy cutoff Ecut = 50 MeV, and
set Nsh = 15 HO (THO) shells. This code allows to perform
HFB calculations with arbitrary Skyrme functionals together
with a density-dependent pairing δ interaction [37]

Vpair(r, r′) = 1 − Pσ

2

[
V0 + V1

6
ρ

γ

00(r)

]
δ(r − r′), (1)

ρ00(r) being the associated isoscalar density and Pσ the spin
exchange operator. In the following, we use the Skyrme
functional SkM∗ [38] and a pairing interaction with the same
parametrization as that adopted in Ref. [35], i.e., for 20O
and 24–26Mg we adopt the parameters V0 = −280 MeV fm3,
V1 = −18.75V0, γ = 1 while for 34Mg V0 = −295 MeV fm3,
V1 = −18.75V0, γ = 1 are employed. It corresponds to a
mixed surface-volume type of pairing potential.

We diagonalize the HFB Hamiltonian in configuration
space. We then diagonalize the density matrix ρ obtaining
the canonical basis. We have checked the numerical accuracy
of the procedure comparing the quasiparticle energies obtained
in the original diagonalization with those obtained diagonaliz-
ing the HFB Hamiltonian in the canonical basis. We have found
that the values agree within 10−4 MeV. Finally, we switch
to coordinate space, tabulating the canonical wave-functions
together with their first and second derivatives in a grid of 30
× 30 (Gauss-Hermite) × (Gauss-Laguerre) points for Gauss
quadrature integration in cylindrical coordinates (r⊥, z).

The QRPA basis is obtained using pairs of these
canonical wave functions such that the dimension of the
QRPA-Hamiltonian matrix does not exceed the size 20000 ×
20000. For this purpose, one first omits the canonical states
i that have single-particle energies εi greater than some εcrit.
A second cut is made excluding those QRPA quasiparticle
pairs displaying occupation probabilities less than some small
v2

crit or larger than 1 − v2
crit. In the following calculations

these parameters are given the values εcrit = 200 MeV and
vcrit = 10−2. The QRPA excited states |λ〉 are described in
terms of the quasiboson operators

Q
†
λ =

∑
K<K ′

(
Xλ

KK ′α
†
Kα

†
K ′ − Yλ

KK ′αK ′αK

)
, (2)

acting on the QRPA correlated vacuum |0̃〉 (Qλ|0̃〉 = 0).
The operators α

†
K , αK are the canonical quasiparticle

creation and annihilation operators, respectively, and Xλ
KK ′ ,

Yλ
KK ′ are the amplitudes of the two quasiparticles excitations

{K,K ′}. The matrix elements between different QRPA basis
states {K,K ′} and {L,L′} are expanded respecting the selec-
tion rules of the vibration’s quantum numbers 	 and π . That
is 	 = 	K + 	K ′ = 	L + 	L′ and π = πK · πK ′ = πL · πL′ .
Here, 	 is the projection of the angular momentum on the
symmetry axis z and π is the parity. Details concerning the
calculation of matrix elements are given in the Appendix.

III. BASIC RESULTS

A. HFB ground states

First, potential energy curves are calculated as a function
of the deformation parameter β, defined as

β =
√

π

5

〈Q̂〉n + 〈Q̂〉p
〈r2〉n + 〈r2〉p . (3)

The quantity 〈Q̂〉q is the average value of the quadrupole-
moment operator Q̂ = 2z2 − r2

⊥ for protons (q = p) and
neutrons (q = n). The QRPA calculation will be performed
based on the HFB solution corresponding to the absolute
minimum of the potential energy.

Figure 1 (left panel) shows the potential energy curves
for the nucleus 24Mg, comparing the results obtained in
the HO and THO basis. One finds a pronounced minimum
corresponding to the prolate deformation β = 0.39. Similar
HFB calculations have been carried out for the other isotopes
discussed in the following. The nucleus 20O is found to be
spherical, while 26Mg is oblate (β = −0.18) and 34Mg is
prolate (β = 0.36). The ground state properties of the four
mentioned nuclei in the HO and THO basis are summarized in
Table I. We notice that the curves of Fig. 1 have a very similar
behavior to that of Figs. 1 and 2 of Ref. [34]. Also for 26Mg,
the HFB potential as function of deformation exhibits the two
minima given by S. Péru [34]. For 24Mg, the energy curves
displayed in Fig. 1 show a clear preference for the prolate
shape, whereas for 26Mg, the oblate minimum preferred by
our calculations is only situated 0.3 MeV below a minimum
at a prolate deformation. Actually, data as well as shell model
calculations prefer the prolate shape [39,40].
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FIG. 1. HFB potential energy curves EHFB (left hand panel);
neutron (thick lines) and proton (thin lines) pairing energies
Epair (right hand panel). The quantities are calculated in HO
(dashed curves) and THO (solid curves) basis as functions of axial
deformation parameter β in the nucleus 24Mg.

The right hand panel of Fig. 1 shows for 24Mg the pairing
energy Epair = 1

2 Tr(�κ) calculated separately for protons and
neutrons, where κ is the expectation value (〈HFB|P +|HFB〉 =
〈HFB|P |HFB〉) in the superfluid ground state (|HFB〉) of the
pair addition/removal (P + = ∑

ν c+
ν c+

ν̄ / P = ∑
ν cν̄cν , c+

ν :
single-particle creation operator) operator, that is of the pair
field (abnormal density). � stands for the functional derivative
of the energy E[ρ, κ] with respect to the abnormal density
(pairing gap) [33,41].

Returning now to Fig. 1 one may notice the difference
between the curves for protons and neutrons. The Coulomb
field influences the density of the nucleus and so the pairing
interaction. At β = 0.39 the total pairing energy is zero, so
QRPA calculations reduce to RPA ones where the excitations
are only in the particle-hole (ph) channel. Full QRPA calcu-
lations are performed in the other three nuclear systems 20O,
34Mg, and 26Mg for which the HFB ground state displays
neutron and proton pairing correlations, respectively.

B. Response for the spherical nucleus 48Ca

To test our deformed QRPA code developed on the basis of
the deformed HFBTHO program by Stoitsov [33], we compare
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FIG. 2. Isoscalar (IS) and isovector (IV) 2+ strength functions in
48Ca in the spherical basis of J. Terasaki (JT, dashed-dotted curve),
in the HO (dashed curve) and THO (solid curve) basis.

our results to those obtained with the spherical QRPA code
developed by Terasaki et al. (JT) [14], making use of the same
Skyrme interaction. Figure 2 shows, for the spherical nuclear
system 48Ca, such a comparison with calculations based on
either (i) spherical basis states with a hard-wall boundary
condition at 20 fm, and (ii) the two types of deformed basis,
HO and THO. The response functions of Fig. 2 have been
calculated with the help of Eqs. (1), (2) of Ref. [42]. In the
following, we use strength functions defined as

Sτ
J (E) =

∑
λ

∑
	

�/2

π

∣∣〈λ|F̂ τ
J	|0〉∣∣2

(E − Eλ)2 + �2/4
, (4)

for the multipole operator F̂ τ
J	. If not specified in the text, the

value � = 1 MeV is used as in Ref. [35] in the calculation of
the IS monopole and quadrupole transition operators

F̂ IS
2	 = eZ

A

A∑
i=1

r2
i Y2	(r̂i), (5)

TABLE I. Ground state properties of 20O, 24,26,34Mg obtained by the deformed HFB calculation in the HO and THO basis. Chemical
potentials λq , deformations βq , average pairing gaps �q , root-mean-square radii

√〈r2〉q for neutrons (q = n) and protons (q = p), and the
total binding energies EHFB are listed.

20O HO 20O THO 24Mg HO 24Mg THO 26Mg HO 26Mg THO 34Mg HO 34Mg THO

λn (MeV) −7.18 −7.18 −14.13 −14.13 −13.12 −13.11 −4.17 −4.17
λp (MeV) −17.27 −17.25 −9.51 −9.51 −11.05 −11.03 −20.19 −20.17
βn 0.0 0.0 0.38 0.38 −0.16 −0.16 0.37 0.37
βp 0.0 0.0 0.39 0.39 −0.16 −0.16 0.35 0.35
〈�〉n (MeV) 2.03 2.05 0.0 0.0 0.0 0.0 1.72 1.60
〈�〉p (MeV) 0.0 0.0 0.0 0.0 1.42 1.47 0.0 0.0√

〈r2〉n (fm) 2.91 2.91 2.99 3.00 3.01 3.01 3.50 3.51√〈r2〉p (fm) 2.69 2.69 3.03 3.03 2.96 2.96 3.15 3.15
EHFB (MeV) −157.1 −157.2 −197.0 −197.0 −218.2 −218.3 −263.9 −263.9
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F̂ IS
00 = eZ

A

A∑
i=1

r2
i , (6)

and for the IV dipole operator

F̂ IV
1	 = eN

A

Z∑
i=1

riY1	(r̂i) − eZ

A

N∑
i=1

riY1	(r̂i). (7)

The agreement between the strength functions labeled
JT [42] with those labeled HO and THO shown on Fig. 2
is actually quite rewarding, in keeping with the completely
different routes taken in the calculations. In all the three
cases the strength function exhausts about 98% of the energy
weighted sum rule (EWSR).

For the 2+ mode in 48Ca, the degeneracy between the
components 	π = 0+,±1+,±2+ is reached up to the order
of 10−3 in both the HO and THO basis.

C. Self-consistency and spurious states

Let us now turn to the spurious solutions of the QRPA
equations in the dipole modes with 	π = 0−,±1− and in
the quadrupole modes with 	π = ±1+. Spurious modes are,
in the present case, due to the translational and rotational
symmetry breaking, respectively, of the HFB ground state [41].
The quadrupole modes with 	π = 0+ also contains spuri-
ous states associated with particle-number nonconservation.
Former works on QRPA both for spherical nuclei [14] and
for deformed ones [34] show that the spurious states which
should be at zero energy [43] have instead values from a
few keV to 1–1.8 MeV, well separated from, in any case,
(physical) states. These nonzero energies may be taken as
a measure of numerical accuracy with which linear response
is calculated, and are strongly related to the choice of basis
states and truncation of basis size.

The spurious states obtained in our fully consistent cal-
culations lie either on the real on the imaginary axis, and
their absolute value never exceeds 700 keV. In Figs. 3 and 4
we show results for 24Mg, comparing the self-consistent
results with those obtained (i) neglecting both Coulomb and
spin-orbit residual interaction and (ii) neglecting only the
Coulomb residual interaction. It is seen that the absolute values
of the energies are progressively reduced going from case
(i) (about 3 MeV) to case (ii) (2–2.2 MeV) and finally to the
self-consistent solution (less than 0.5 MeV). One also notes
that in case (i) the energies of the spurious states lie on the real
axis, while in case (ii) they are found on the imaginary axis. The
fully consistent QRPA calculations give imaginary energies for
the dipole spurious modes and real energies for the quadrupole
spurious modes, all below 500 keV. It is satisfactory that
the energies of the spurious modes get closer to zero as more
terms of the residual interaction are included. We ascribe
the remaining distance to zero to the truncation of the basis
and to numerical inaccuracies. Within this scenario one may
posit that a spurious mode obtained by fully consistent QRPA
calculations at “imaginary energy” 100–500 keV is as good a
solution as that corresponding to a spurious real energy mode
at 100–500 keV.
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FIG. 3. Energies on the complex plane of the spurious state for the
1− mode with 	π = 0− (circles) and 	π = 1− (crosses) projections
in 24Mg in HO basis. The figure illustrates the change in energy of
spurious modes when specific terms of the interaction are omitted.

A similar study has been performed on the energies of
the dipole spurious modes of 20O. Also for this nucleus
if both Coulomb and spin-orbit parts are neglected, the
spurious energies are at 2.5–3 MeV. The values jump to about
1.5–2 MeV on the imaginary axis if one adds the spin-orbit
contribution to the residual interaction. Finally, the energy
of a spurious state obtained with a fully consistent QRPA
calculation can be real or imaginary not exceeding 600 keV.
For the deformed nuclei 26Mg and 34Mg we obtain from
the fully consistent QRPA calculations with 	π = 0−,±1−
and 	π = ±1+ spurious states with either real or imaginary
energy, in any case the modulus not exceeding 700 keV. For
20O and 26,34Mg the quadrupole spurious modes with 	π = 0+
are all real at around 1.8–2 MeV. We ascribe this problem
concerning the 	π = 0+ modes mainly to the rather crude cut
in the occupation probability given by vcrit = 10−2. We have
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FIG. 4. The same as Fig. 3 but for the 2+ mode with 	π = 1+

projection.
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checked in the case of 26Mg that reducing the value of vcrit to
10−3 brings the energy of the 0+ spurious state from 1.8 MeV
(on the real axis) down to 1.1 MeV (on the imaginary axis).
The transition strength is only affected for energies below
about 3 MeV.

Similar investigations of the spurious modes for calcula-
tions with the Gogny force have been reported by Peru et al.
in Refs. [44] and [34] for spherical and deformed shapes,
respectively. For spherical nuclei, it is found that the spurious
modes lie at very low energy, about 3–5 keV, when all terms
of the interaction are included, whereas they may move up to
about 2 MeV when leaving out parts of the interaction. For
deformed nuclei [34], the result is qualitatively the same as in
the present work. However, the Gogny results are better for the
	π = 0+ mode, which comes at a very low energy, but worse
for the translational invariance modes 	π = 0−,±1−, where
the spurious mode energies can come as high as 1.8 MeV.

IV. STRENGTH FUNCTIONS

A. 20O

The IS quadrupole 2+ mode is shown in Fig. 5, calculated
with the HO as well as with the THO basis states. A large
fraction of the strength function is concentrated in three energy
regions: a low-lying mode around 3 MeV, a small peak around
10 MeV, and a giant resonance around 20 MeV. The two
calculations display a remarkable agreement with respect to
the strength function below 15 MeV. Whereas the calculations
agree on the centroid and the strength of the giant resonance,
they display differences with respect to the splitting of the
two components of the resonance, and on the distribution
of strength between the two peaks. When we omit both
the spin-orbit and Coulomb residual interaction, in the giant
resonance region the strength functions are shifted down in
energy about 0.3 MeV for both the basis used, and the peak
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FIG. 5. IS 2+ strength functions in 20O, in HO (upper panel)
and THO (lower panel) basis without the residual spin-orbit (SO)
and Coulomb (C) interaction (dashed curve) and with all the terms
included (solid curve).
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FIG. 6. The same as Fig. 5 but for IV 1− strength functions.

heights increase by 15% for HO and 25% for THO. Concerning
the two peak energies below 10 MeV, they are both shifted up
by about 0.2 MeV while the peak heights are lowered by 20%
for both the two basis.

Figure 6 shows the IV giant dipole resonance in the energy
range (15-25) MeV. In the THO basis the peak is at 20.2 MeV,
while that in the HO basis is shifted down about 1 MeV.

The strength functions calculated without the spin-orbit and
Coulomb interactions can be compared to those obtained by
Yoshida et al. [35], who did not include these terms. We find a
very good overall agreement. On closer inspection, the energy
of the giant resonance peaks in our calculation in the THO
basis is about 0.3 MeV higher than in Ref. [35].

B. 24,26Mg

1. IS 2+ modes

In Figs. 7 and 8 we display the response functions of the IS
quadrupole mode of the deformed prolate and oblate 24,26Mg
isotopes.

For both these nuclei, the first low-lying state is found to
have projection 	 = 2+, corresponding to a γ vibration, while
the β vibration with 	 = 0+ is situated at a considerably higher
energy. Comparing the nuclei, one sees that 24Mg, which may
be described as a deformed closed shell nucleus for the prolate
shape, is more stiff toward vibrations than the oblate 26Mg.
This is all in qualitative accordance with data [45]. However, a
more careful comparison of calculations and data reveal some
discrepancies, especially for 26Mg.

In 24Mg, the calculated energy of the lowest 	π = 2+
is 4.14 MeV, to be compared to the experimental value
4.23 MeV of the γ -band head, the state 2+

2 [45]. Likewise, the
calculated energy of the lowest 	π = 0+ is 7.08 MeV, should
be compared to the experimental value 6.43 MeV. Both these
states are not very collective, composed equally of proton
and neutron particle-hole excitations: [N, nz,�,±	π ] ≡
[2, 1, 1,± 3

2
+

] → [2, 1, 1,± 1
2

+
] for the 	 = 2+ state and

[2, 2, 0,± 1
2

+
] → [2, 1, 1,± 1

2
+

] for the 	 = 0+ state,
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FIG. 7. IS 2+ strength functions in 24Mg, in HO (upper panel), and
THO (lower panel) basis for the 	π = 0+ (solid curve), 1+ (dashed
curve), and 2+ (dashed-dotted curve) excitations.

respectively. Still, the RPA root is shifted down in energy
by about 1.5 MeV relative to the single ph excitations. These
assignments are in reasonable accordance with experimental
information from γ decay [45], particle transfer [46], (e,e′)
inelastic scattering [47], (α,α′) scattering [48], and (π ,π ′)
scattering [49].

In 26Mg, the lowest 	π = 2+ excitation is calculated to be
at 1.31 MeV, considerably below the experimental state 2+

2 at
3.0 MeV, while the lowest 	π = 0+ excitation is at 2.75 MeV,
to be compared to the state 0+

2 at 3.59 MeV. Compared to 24Mg,
the 	π = 2+ excitation is predicted to be more collective.
This is not in accordance with the experimental B(E2) values
from the ground state, which are of about equal magnitude
for the two nuclei. Also, the considerable matrix element for
exciting the 	π = 0+ state predicted by the calculations is in
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FIG. 8. IS 2+ strength functions in 26Mg, in HO (upper panel), and
THO (lower panel) basis for the 	π = 0+ (solid curve), 1+ (dashed
curve), and 2+ (dashed-dotted curve) excitations.

disagreement with the long lifetime seen experimentally of
the 0+

2 state. For 26Mg, this comparison between data and our
calculations of the low lying states may be rather uncertain
due to the close competition between prolate and oblate states.

The rather low collectivity of the β- and γ -vibrations
follows a general trend. With a permanent deformation, most
of the quadrupole collectivity is tied up in the deformation of
the mean field. This will in turn influence the renormalization
effects these modes will have on the single particle motion.
In this context, one can quote the rather different pattern
observed in the distribution of matrix elements contributing
to the induced pairing interaction in spherical and deformed
nuclei, respectively [50,51].

Next, we turn our attention to the giant vibrations sit-
uated in the energy region 15–25 MeV for all cases, with
a characteristic splitting between the different projections
	. For the prolate nucleus 24Mg, the 	π = 0+ vibration is
along the longest axis and acquires the lowest energy. For the
oblate nucleus 26Mg, the opposite behavior is observed, and
here the splitting is less pronounced due to the smaller value
of the deformation parameter [3].

In Tables II and III the mean energies

E(GR) = m1[Emin, Emax]

m0[Emin, Emax]
, (8)

with moments

mλ[Emin, Emax] =
∑

k

∑
	

Eλ
k |〈k|F̂J	|0〉|2, (9)

calculated for the 2+ modes of 24,26Mg in the energy range
[Emin, Emax] = [9, 41] MeV, are given in HO and THO basis.
First, one sees that the mean value in the giant resonance region
is practically not affected by the choice of basis. Secondly, one
may address the 1 MeV difference between the results obtained
with the SkM∗ Skyrme force and those with the Gogny force,
by Péru et al. [34]. Part of this difference may be caused by
the lower effective mass m∗/m = 0.7 for the Gogny force, as

TABLE II. Theoretical mean energy values (in MeV) obtained
with the Gogny force by Péru et al., with the SkM∗ and SLy4 Skyrme
force in HO and THO basis (present work), and experimental mean
energy values by Youngblood et al. and Irgashev et al. of the IS
giant monopole, quadrupole resonances (calculated in the energy
interval [Emin, Emax] = [9, 41] MeV) and IV giant dipole resonances
(calculated in the energy interval [Emin, Emax] = [10, 29] MeV)
in 24Mg.

24Mg IS IS IV
E(GR) J π = 0+ J π = 2+ J π = 1−

Interval [9,41] [9,41] [10,29]

Theor. D1S (Péru et al.) 21.0 20.5 23.0
Theor. SkM∗ (HO) 20.7 19.4 19.6
Theor. SkM∗ (THO) 20.3 19.3 19.8
Theor. SLy4 (HO) 20.0 19.8
Theor. SLy4 (THO) 19.9 19.8
Exp. (Youngblood et al.) 21.0 ± 0.6 16.9 ± 0.6
Exp. (Irgashev et al.) 22.1
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TABLE III. Theoretical mean energy values (in MeV) obtained
with the Gogny force by Péru et al., with the SkM∗ Skyrme
force in HO and THO basis (present work) of the IS giant
monopole, quadrupole resonances (calculated in the energy interval
[Emin, Emax] = [9, 41] MeV), and of the IV giant dipole resonance
(calculated in the energy interval [Emin, Emax] = [10, 29] MeV) in
26Mg. For this last resonance the experimental mean energy value by
Fultz et al. is also given.

26Mg IS IS IV
E(GR) J π = 0+ J π = 2+ J π = 1−

Interval [9,41] [9,41] [10,29]

Theor. D1S (Péru et al.) 22.0 21.0 22.9
Theor. SkM∗ (HO) 22.1 20.3 20.3
Theor. SkM∗ (THO) 21.9 20.3 20.2
Exp. (Fultz et al.) 20.6

compared to m∗/m = 0.8 for the SkM∗ force. For this reason
we performed for 24Mg a calculation also with a SLy4 force
where m∗/m = 0.7. The centroid energy then increases by
roughly 0.6 MeV, indicating that about half of the difference
between the two calculations can be ascribed to the effective
mass. Finally, the results may be compared to the experimental
mean energy of 16.9 ± 0.6 obtained by Youngblood et al. [52],
and one sees that all the theoretical calculations overshoot this
value by at least 2 MeV.

The theoretical results obtained in the present work with
the SkM∗ and SLy4 forces exhaust 83–84 % of the EWSR
exceeding the experimental result by about 20%. This differ-
ence in the EWSR as well as in the mean energy between
the present work and the experimental data of Youngblood
et al., is apparent from Fig. 9, which shows the comparison
between calculated and experimental strength functions. The
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FIG. 9. Fractions of IS quadrupole EWSR in 24Mg, in HO
(upper panel) and THO (lower panel) basis. Dashed and dot-dashed
curves are obtained from folding of QRPA spectra with a Lorentian
distribution having � = 1 MeV and � = 3 MeV, respectively. These
are compared with the experimental data by Youngblood et al. (solid
curve).
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FIG. 10. IS 2+ strength functions in 24Mg, in HO (upper panel)
and THO (lower panel) basis without the residual spin-orbit (SO)
and Coulomb (C) interaction (dashed curve) and with all the terms
included (solid curve).

shape of the experimental curve is reproduced in its overall
features, in particular for � = 3 MeV. However, according
to the calculations, the central peak around 20 MeV is too
pronounced, and there is too little strength toward lower
energies. It is of notice the sharp peak experimentally observed
at 15 MeV. To which extent it may be connected with the
	π = 0+ mode which in our calculations appear blue shifted
by 2.5 MeV (i.e., at 17.5 MeV) is an open question.

Figure 10 shows for 24Mg the effect of leaving out the
spin-orbit and Coulomb parts of the residual interaction.
One sees that this would lead to a downward shift of the
giant resonance by about 0.9 MeV. Comparing to the work of
Yoshida et al. [35] one finds that their peaks are shifted further
down by about 0.9 MeV with respect to those obtained in the
present work without the spin-orbit and Coulomb terms. This
remaining shift should be compared to the equivalent shift of
0.3 MeV discussed above for 20O. It should be ascribed to the
differences between the two calculations, the renormalization
of the interaction in Ref. [35], and the different basis used.

2. IV 1− modes

Figures 11 and 12 show the response functions of the IV
dipole modes, of the deformed prolate and oblate 24,26Mg
isotopes. The IV giant dipole resonances show a two-peaked
structure. For both nuclear systems the low-lying part of the
resonances is given by a defined peak at around 16 MeV and
18 MeV for 24Mg and 26Mg, respectively. The higher energy
part of the strength is fragmented, especially for the THO basis,
in fair agreement with the responses given by Péru et al. [34].
In the HO approach one may see a two-peaked structure up
to around 26 MeV for 24Mg and a defined peak at 21–22 MeV
for 26Mg.

The fraction of the EWSR in 24Mg for the IV 1− mode
calculated in the present work for two values of � is compared
to the experimental ones [53] in Fig. 13. The theoretical and
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FIG. 11. IV 1− strength functions in 24Mg, in HO (upper panel),
and in THO (lower panel) basis for the 	π = 0− (solid curve),
1− (dashed curve) excitations.

experimental curves show the same two-peak structure, but the
calculated peaks appear at energies which are about 3 MeV too
low. This difference with the experimental dipole response is
also found in the calculations by. Inakura et al. [25]. In fact,
the experimental mean energy that we extract from the data in
the range [Emin, Emax] = [15, 30] MeV is equal to 22.1 MeV,
to be compared with our value of 19.8 MeV. The Gogny-force
calculation by Péru et al. [34] instead displays the peaks at
about the observed energies, with a mean energy of 23.0 MeV
(cf. Table II).

One may comment that the excitation energies of the
lowest peak predicted by our calculation (17 MeV) is just
above the threshold for particle emission. At these ener-
gies, a considerable part of photon absorption events will
lead to a γ -ray cascade rather than particle emission. In
fact, the 24Mg(e,e′) inelastic scattering experiment by Titze
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FIG. 12. IV 1− strength functions in 26Mg, in HO (upper panel),
and in THO (lower panel) basis for the 	π = 0− (solid curve), 1−

(dashed curve) excitations.
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FIG. 13. Fractions of IV dipole EWSR in 24Mg, in HO (upper
panel), and in THO (lower panel) basis. Dashed and dot-dashed
curves are obtained from folding of QRPA spectra with a Lorentian
distribution having � = 1 MeV and � = 3 MeV, respectively. These
are compared with the experimental data by Irgashev et al. (solid
curve).

et al. [54] displays a peak around 17 MeV (split into two
rather narrow components), whereas the (γ,n) and (γ,p)
data only display a tiny and statistically insignificant peak
at this energy. On the other hand, (e, e′) reactions are more
complicated to analyze theoretically in a precise way than
hadronic inelastic processes and photon absorption, since a
consistent calculation of the cross section should go beyond
the long wavelength approximation, and also take into account
magnetic interactions.

For 26Mg, the fractions of the EWSR may be compared to
three experiments [55–57]. Figure 14 displays the comparison

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Exp.
Γ = 1MeV
Γ = 3MeV

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

E ( MeV )

E
W

S
R

 / 
M

eV

HO 

THO IV  1− 

26Mg 

FIG. 14. Fractions of IV dipole EWSR in 26Mg, in HO (upper
panel), and in THO (lower panel) basis. Dashed and dot-dashed
curves are obtained from folding of QRPA spectra with a Lorentian
distribution having � = 1 MeV and � = 3 MeV, respectively. These
are compared with the experimental data by Fultz et al. (solid curve).
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FIG. 15. The same as Fig. 10 but for IV 1− strength functions.

between our curves and that of Fultz et al. [56] who, with
respect to the more recent work of Ishkhanov et al. [57], also
measure the 26Mg(γ, pn) cross section. The three experiments
agree with each other with respect to the overall width of the
E1 response, and they all display two maxima at 18 MeV
and 22 MeV separated by a shallow minimum around 20 MeV.
This is in qualitative agreement with our calculated curves,
especially when the THO basis is used and the QRPA spectra
is folded with a Lorentian distribution with � = 3 MeV.

Combining the information from Tables II and III, one
notices that calculations based on a given interaction predict
a rather small shift of the mean energy of the giant dipole
resonance, when comparing the two nuclei, 24Mg and 26Mg.
This is at variance with experiment, according to which the
mean energy shifts down by 1.7 MeV. In this way, a calculation
which is in accordance with the data for 24Mg, will disagree
with data for 26Mg, and viceversa.

For completeness Fig. 15 shows the effect of leaving out
the spin-orbit and Coulomb part of the interaction and one sees
that this has only a minor effect contrary to the considerable
effect obtained for the quadrupole mode.

3. IS 0+ modes

In Fig. 16 we display the experimental fraction of EWSR
of Youngblood et al. [52] and those obtained in the present
work for the IS monopole mode of 24Mg. The theoretical
response shows a two-peak structure, with a low energy peak
well defined around 18 MeV and a fragmented high energy
component which appears to be more sensitive to details and
to the choice of the basis. Indeed, in the HO basis there is
a significant contribution around 22 MeV, while in the THO
basis this is in the energy range 25–30 MeV. Such peaks are
not observed in the experimental curve, which is quite flat
and covers a broad energy interval. Except for the peaks, this
spread-out behavior of the strength function is also found in
the calculations. Also for the monopole mode, the calculated
EWSR of 90% is larger than the experimental value, 72 ±
10%. From the similarity of the shape of the curves one can
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FIG. 16. The same as Fig. 9 but for fractions of IS monopole
EWSR.

expect that the calculated centroids and the experimental ones
are in good agreement, as given by the numbers of Table II.

Figure 17 shows the calculated fraction of EWSR for the
IS monopole mode of 26Mg. As for 24Mg, the behavior of
the response is quite sensitive to the choice of the basis. The
curve displayed in the HO basis has a behavior similar to
that obtained by Péru et al. [34], i.e., the resonance has a
prominent peak around 20 MeV and a broad component at
higher energy. In the THO basis the low-energy peak of the
resonance is shifted down by 1.5 MeV and there is a significant
contribution around 26 MeV.

C. 34Mg

Figure 18 shows the calculated IS quadrupole strength
functions for the neutron-rich nucleus 34Mg in the HO and
THO basis. One can see a low-lying peak at 2–3 MeV

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

E ( MeV )

E
W

S
R

 / 
M

eV

HO
THO

IS  0+ 

26Mg 

FIG. 17. Fractions of IS monopole EWSR in 26Mg, in HO basis
(dashed curve) and THO (solid curve) basis.
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FIG. 18. IS 2+ strength functions in 34Mg, in the HO (upper panel)
and in the THO (lower panel) basis for the 	π = 0+ (solid curve), 1+

(dashed curve), and 2+ (dashed-dotted curve) excitations.

and a giant resonance at 15–22 MeV. The first low-lying
state belongs to the 	π = 0+ component and it is mainly
constructed by the neutron pp excitations [N, nz,�,±	π ] ≡
[2, 0, 2,± 3

2
+

]2, [3, 2, 1,± 3
2

+
]2, [3, 3, 0,± 1

2
−

]2, the first of
them coming from (1d3/2)2 the latter two from (1f7/2)2. The
features of these transitions are shown in Tables IV and V for
the HO and THO basis, respectively. These results are in fair
agreement with those of Table I of Ref. [36]. One may notice
that the two approaches give basically the same results and
that the difference of about 200 keV between the two energy
peaks (2.64 MeV in the HO basis and at 2.48 MeV in the THO
basis) is due to the unperturbed 2qp transitions with energy
EqpK + EqpK . The quasiparticle energies EqpK are obtained
diagonalizing the HFB Hamiltonian in the canonical basis (we
refer to Eqs. (4.14b), (4.20) of Ref. [58]). From the values
of these 2qp energy transitions one may conclude that the
main contribution of the residual interaction is to shift down
in energy the IS quadrupole response, rather independently on
the choice of basis.

TABLE IV. QRPA amplitudes [N, nz,�, ±	π ]2
K with isospin q

(q = n for neutrons, q = p for protons) of the IS quadrupole 	π =
0+ mode at 2.64 MeV for the HO basis in 34Mg. The quasiparticle
occupations v2

K , the single particle energies εK , and the 2qp excitation
energies EqpK + EqpK , are given. Only components with X2

KK −
Y 2

KK > 0.01 are listed.

KK [2, 0, 2, ± 3
2

+
]2 [3, 2, 1, ± 3

2

−
]2 [3, 3, 0, ± 1

2

−
]2

qK n n n

v2
K 0.25 0.68 0.92

εK −3.18 −4.91 −6.84
XKK −0.64 0.65 0.29
YKK −0.08 0.03 0.04
EqpK + EqpK 3.79 3.72 5.96

TABLE V. The same as Table IV but for the THO basis at
2.48 MeV.

KK [2, 0, 2, ± 3
2

+
]2 [3, 2, 1, ± 3

2

−
]2 [3, 3, 0, ± 1

2

−
]2

qK n n n

v2
K 0.24 0.70 0.92

εK −3.20 −4.91 −6.84
XKK −0.64 0.67 0.27
YKK −0.09 0.03 0.04
EqpK + EqpK 3.58 3.49 5.72

In Fig. 19 we show the total isoscalar 2+ response functions
in the HO and THO basis. When the spin-orbit and Coulomb
residual interaction are omitted, the low-lying peak belonging
to the 	π = 0+, 2+ components is shifted up in energy by about
0.2 MeV. The giant resonance is instead shifted down in energy
by about 0.6 MeV with respect to the value obtained in the fully
consistent calculation. The behavior of the strength functions
calculated without spin-orbit and Coulomb interactions is quite
close to the corresponding calculations by Yoshida et al. [35].
The giant resonance of our calculations is instead shifted
up in energy by about 1.3 MeV respect to that in Ref. [35].
This is coherent with the former comparisons between our
ISGQR and those of Yoshida et al. in 20O where a difference
of about 0.6 MeV is found, and in 24Mg where there is a
difference of 1.8 MeV. It seems that the blue shift displayed
by the peaks in Fig. 19 as compared to those obtained in
the calculations of Yoshida et al. without taking into account
spin-orbit and Coulomb contributions in the residual interac-
tion, increases with the intrinsic deformation of the nuclear
system.

V. CONCLUSION

We described the development and testing of a fully
consistent QRPA method to calculate linear response of
axially-symmetric-deformed nuclei employing the canonical
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FIG. 19. The same as Fig. 10 but for 34Mg.
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HO or THO HFB basis. The same Skyrme force is used
in both HFB and QRPA approaches in all ph, pp and hh
channels. The method is applied to study the responses of
20O, 24–26Mg, and 34Mg.

For 20O we showed the effective role of self-consistency
in the IS 2+ and IV 1− responses. Within this context, we
performed calculations with and without the spin-orbit and
Coulomb terms of the residual interaction. One can conclude
that for this spherical nucleus these terms mainly act on the
giant resonances, shifting their centroid up in energy by several
hundred keV.

We carried out detailed studies of the IS quadrupole,
monopole, and IV dipole responses of deformed prolate and
oblate 24–26Mg. A microscopic analysis of the low-lying
IS 2+ vibrations showed, for the open shell nucleus 26Mg
major contributions to the response function arising from pp
transitions, while in the case of the nucleus 24Mg only ph
(RPA) states are found to be important. In the energy region
of giant resonances, the role of deformation manifests itself in
the splitting between the different projections which is more
pronounced for the strongly deformed 24Mg (inhomogeneous
damping). On top of this splitting comes a fragmentation,
especially of the highest energy projections of the giant modes.
These effects lead to broad strength distributions. In this
respect, our calculations confirm earlier theoretical results,
and our consistent inclusion of the spin-orbit and Coulomb
parts of the residual interaction only introduces minor changes
concerning the giant modes, shifting the centroid by typically
1 MeV and leaving the widths rather unaffected. The calculated
strength functions in regions of giant vibrations are compared
to the available data, yielding generally an overall account of
the experimental findings.

For 34Mg, we give a description of the total IS 2+ response
concentrating on the microscopic structure of the low-lying
states which are in overall accord with the theoretical results
of Yoshida et al. [35,36].

We plan to optimize the present code, to be able to perform
systematic calculations for both spherical and deformed
systems in particular on the isotopes of Mg and of O. The aim
is to extend our analysis to light drip line nuclei, so as to be
able to study also pygmy resonances as well as other collective
states typical of these exotic species. From a technical point of
view, we also plan to assess for these exotic nuclear systems
the significance of applying the THO basis, which should more
properly take into account the extended tails of wave functions
than the HO basis.

In a general perspective, the present work represents the
first, unavoidable step for a consistent and more systematic
study of collective modes in nuclei, in particular light exotic
nuclei, taking properly into account also medium polarization
effects. A study of the core polarization effects in Al isotopes
has been performed by Yoshida [59] by employing the
quasiparticle-vibration-coupling model on top of the deformed
HFB plus QRPA using a Skyrme interaction.

The plan is to use the resulting states to calculate the
role of the exchange of phonons between nucleons moving
in time reversal states close to the Fermi energy has in
Cooper pair binding in exotic, deformed (as well as spherical)
nuclei.
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APPENDIX: EVALUATION OF INTERACTION
MATRIX ELEMENTS

A. Canonical wave functions

In this appendix we discuss the procedures used to evaluate
some of the characteristic ph effective Skyrme matrix elements
for the canonical wave functions having the general form:

�K (r, σ )

= 1√
2π

[ϕK↑(r⊥, z)ei�−
Kφ|↑〉 + ϕK↓(r⊥, z)ei�+

Kφ|↓〉],
(A1)

with spin-up and spin-down components ϕK↑(r⊥, z),
ϕK↓(r⊥, z) obtained in the present work in the harmonic
oscillator basis, i.e., by the associated Laguerre and Hermite
polynomials [60]. The general form of these matrix elements
and their effective Skyrme parametrization is given by Terasaki
et al. [14] in Eqs. (B12) to (B19). Also, for the QRPA
formalism we refer to Terasaki et al., Eqs. (A1)–(A6) in
Ref. [14].

Concerning the most simple interactions, namely those
proportional to the contact function δ(r − r′), one has to
evaluate the overlaps,

〈KK ′|δ(r − r′)|LL′〉
=

∫
dr[�∗

K (r, σ )�L(r, σ )][�∗
K ′(r, σ )�L′(r, σ )],

(A2)

overlaps which in terms of the canonical wave functions (A1)
read

〈KK ′|δ(r − r′)|LL′〉
= 1

2π
δ	K+	K′ ,	L+	L′

∫
r⊥dr⊥dz[ϕK↑(r⊥, z)ϕL↑(r⊥, z)

+ϕK↓(r⊥, z)ϕL↓(r⊥, z)][ϕK ′↑(r⊥, z)ϕL′↑(r⊥, z)

+ϕK ′↓(r⊥, z)ϕL′↓(r⊥, z)]. (A3)

Next, we turn to the interaction σ · σ ′δ(r − r′). Here, the
spin product is written in terms of lowering and raising spin
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operators σ+ and σ−:

σ · σ ′ = 1
2 [σ+σ ′

− + σ−σ ′
+] + σzσ

′
z. (A4)

The algebra containing the δ(r − r′) function is the same as
above, leading to the result

〈KK ′|σ · σ ′δ(r − r′)|LL′〉
= 1

2π
δ	K+	K′ ,	L+	L′

×
∫

r⊥dr⊥dz{[ϕK↑(r⊥, z)ϕL↑(r⊥, z)

−ϕK↓(r⊥, z)ϕL↓(r⊥, z)]

×[ϕK ′↑(r⊥, z)ϕL′↑(r⊥, z) − ϕK ′↓(r⊥, z)ϕL′↓(r⊥, z)]

+ 2[ϕK↑(r⊥, z)ϕK ′↓(r⊥, z)ϕL↓(r⊥, z)ϕL′↑(r⊥, z)

+ϕK↓(r⊥, z)ϕK ′↑(r⊥, z)ϕL↑(r⊥, z)ϕL′↓(r⊥, z)]},
(A5)

where one can recognize the action of σzσ
′
z in the first term,

and likewise 1
2σ+σ ′

− and 1
2σ−σ ′

+ in the two subsequent terms.
It turns out that the momentum dependent parts of the

residual interaction, involving differentiation in terms of the
k and k† operators, give rise to quite many terms. Expressing
one of these in full length

k2 = − 1
4∇2 − 1

4∇′2 + 1
2∇ · ∇′, (A6)

one obtains

〈KK ′|δ(r − r′)k2|LL′〉

= − 1

8π
δ	K+	K′ ,	L+	L′

∫
r⊥dr⊥dz

[
ϕK↑(r⊥, z)

(
1

r⊥

∂

∂r⊥
+ ∂2

∂r2
⊥

−
(
	L − 1

2

)2

r2
⊥

+ ∂2

∂z2

)
ϕL↑(r⊥, z)

+ ϕK↓(r⊥, z)

(
1

r⊥

∂

∂r⊥
+ ∂2

∂r2
⊥

−
(
	L + 1

2

)2

r2
⊥

+ ∂2

∂z2

)
ϕL↓(r⊥, z)

]

× [ϕK ′↑(r⊥, z)ϕL′↑(r⊥, z) + ϕK ′↓(r⊥, z)ϕL′↓(r⊥, z)]

− 1

8π
δ	K+	K′ ,	L+	L′

∫
r⊥dr⊥dz[ϕK↑(r⊥, z)ϕL↑(r⊥, z) + ϕK↓(r⊥, z)ϕL↓(r⊥, z)]

×
[
ϕK ′↑(r⊥, z)

(
1

r⊥

∂

∂r⊥
+ ∂2

∂r2
⊥

−
(
	L′ − 1

2

)2

r2
⊥

+ ∂2

∂z2

)
ϕL′↑(r⊥, z)

+ ϕK ′↓(r⊥, z)

(
1

r⊥

∂

∂r⊥
+ ∂2

∂r2
⊥

−
(
	L′ + 1

2

)2

r2
⊥

+ ∂2

∂z2

)
ϕL′↓(r⊥, z)

]

+ 1

4π
δ	K+	K′ ,	L+	L′

∫
r⊥dr⊥dz

{
ϕK↑(r⊥, z)ϕK ′↑(r⊥, z)

[
∂ϕL↑(r⊥, z)

∂r⊥

∂ϕL′↑(r⊥, z)

∂r⊥

−
(
	L − 1

2

) (
	L′ − 1

2

)
r2
⊥

ϕL↑(r⊥, z)ϕL′↑(r⊥, z) + ∂ϕL↑(r⊥, z)

∂z

∂ϕL′↑(r⊥, z)

∂z

]

+ϕK↑(r⊥, z)ϕK ′↓(r⊥, z)

[
∂ϕL↑(r⊥, z)

∂r⊥

∂ϕL′↓(r⊥, z)

∂r⊥
−

(
	L − 1

2

) (
	L′ + 1

2

)
r2
⊥

ϕL↑(r⊥, z)ϕL′↓(r⊥, z)

+ ∂ϕL↑(r⊥, z)

∂z

∂ϕL′↓(r⊥, z)

∂z

]
+ ϕK↓(r⊥, z)ϕK ′↑(r⊥, z)

[
∂ϕL↓(r⊥, z)

∂r⊥

∂ϕL′↑(r⊥, z)

∂r⊥

−
(
	L + 1

2

) (
	L′ − 1

2

)
r2
⊥

ϕL↓(r⊥, z)ϕL′↑(r⊥, z) + ∂ϕL↓(r⊥, z)

∂z

∂ϕL′↑(r⊥, z)

∂z

]

+ϕK↓(r⊥, z)ϕK ′↓(r⊥, z)

[
∂ϕL↓(r⊥, z)

∂r⊥

∂ϕL′↓(r⊥, z)

∂r⊥
−

(
	L + 1

2

) (
	L′ + 1

2

)
r2
⊥

ϕL↓(r⊥, z)ϕL′↓(r⊥, z)

+ ∂ϕL↓(r⊥, z)

∂z

∂ϕL′↓(r⊥, z)

∂z

]}
. (A7)
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B. Spin-orbit interaction

The spin-orbit term i(σ + σ ′) · k† × δ(r − r′)k of the resid-
ual interaction is likely the most involved to evaluate. However,
it becomes conceptually simple when it is interpreted as
a volume product of three vectors A · (B × C). Next, the
cartesian components of the vectors are replaced by the
components of the spherical tensors of rank 1 [61]. This bears
some resemblance to the treatment in the spherical case [14].
In the deformed case, the spin spherical tensors raising and
lowering operators, and the spherical tensors of the differential
operators also acquire a more simple form than their Cartesian
counterparts, as they can be expressed in terms of raising and
lowering operators as

∇+ = eiφ

(
∂

∂r⊥
+ i

r⊥

∂

∂φ

)
, (A8)

and

∇− = e−iφ

(
∂

∂r⊥
− i

r⊥

∂

∂φ

)
. (A9)

Still, the volume product contains six terms, namely,

〈KK ′|i(σ + σ ′) · k† × δ(r − r′)k|LL′〉
= 1

8 [〈KK ′|(σ+ + σ ′
+)(∇z − ∇′

z)δ(r − r′)(∇− − ∇′
−)|LL′〉.

−〈KK ′|(σ+ + σ ′
+)(∇− − ∇′

−)δ(r − r′)(∇z − ∇′
z)|LL′〉

+ 〈KK ′|(σz + σ ′
z)(∇− − ∇′

−)δ(r − r′)(∇+ − ∇′
+)|LL′〉

− 〈KK ′|(σz + σ ′
z)(∇+ − ∇′

+)δ(r − r′)(∇− − ∇′
−)|LL′〉

+ 〈KK ′|(σ− + σ ′
−)(∇+ − ∇′

+)δ(r − r′)(∇z − ∇′
z)|LL′〉

−〈KK ′|(σ− + σ ′
−)(∇z − ∇′

z)δ(r − r′)(∇+ − ∇′
+)|LL′〉]

(A10)

In the above relation, the operators to the left of δ(r −
r′) act on K , K ′, while the operators to the right of δ(r −
r′) act on L, L′. The sum over the six terms of Eq. (A10)
corresponds to a sum over the six permutations of the set
{+, z,−}.

C. Coulomb interaction

Due to the short-range character of the nuclear residual
interaction, which is expressed through the δ(r − r′) func-
tions, the four-dimensional integrals

∫
r⊥dr⊥dzr ′

⊥dr ′
⊥dz′ are

directly replaced by two-dimensional integrals. However, for
the direct term of the Coulomb interaction V

eff

direct = e2

|r−r′| one
needs to carry out the full integration. In order to exploit the
cylindrical symmetry, we make use of an expansion method

applied to astrophysical problems by Cohl and Tohline [62,63]

1

|r − r′| = 1

π
√

r⊥r ′
⊥

∞∑
m=−∞

Qm− 1
2
(χ−)eim(φ−φ′), (A11)

where

χ− ≡ r2
⊥ + r ′2

⊥ + (z − z′)2

2r⊥r ′
⊥

, (A12)

Here Qm− 1
2

is a Legendre function of the second kind of half-
integer degree [60]. We have checked the convergence of this
expansion, which is quite rapid when the parameter χ is not
too close to 1. Inserting the canonical wave functions, the
integrals over the azimuthal angle select the order m of the
projection of the angular momentum on the z axis, such that
m = 	K − 	L = 	L′ − 	K ′ . The functions Qm− 1

2
can readily

be evaluated by simple integrals and tabulated over a suitable
range. In the calculation of the matrix element

〈KK ′|V eff
direct|LL′〉 =

∫ ∫
drdr′ × �∗

K (r, σ )�∗
K ′(r′, σ )

× e2

|r − r′|�L(r, σ )�L′(r′, σ ), (A13)

it is important to take into account the symmetry of the wave
functions

�K (−r, σ ) = πK�K (r, σ ), (A14)

πK = ±1 being the parity of the state K depending on the sign
of z. By exploiting these symmetries one needs only to carry
out integration over z, z′ > 0, aside from integration over the
two angles φ and φ′

〈KK ′|V eff
direct|LL′〉

= 2e2(2π )2δm,	K−	L
· δm,	L′−	K′

×
∫ ∞

0
r⊥dr⊥

∫ ∞

0
r ′
⊥dr ′

⊥

∫ ∞

0
dz

∫ ∞

0
dz′

× [ϕK↑(r⊥, z)ϕL↑(r⊥, z) + ϕK↓(r⊥, z)ϕL↓(r⊥, z)]

×
Qm− 1

2
(χ−) + πK ′ · πL′ · (−1)mQm− 1

2
(χ+)

π
√

r⊥r ′
⊥

× [ϕK ′↑(r ′
⊥, z′)ϕL′↑(r ′

⊥, z′) + ϕK ′↓(r ′
⊥, z′)ϕL′↓(r ′

⊥, z′)],
(A15)

with

χ+ = r2
⊥ + r ′2

⊥ + (z + z′)2

2r⊥r ′
⊥

. (A16)

Since πK ′ · πL′ · (−1)m does not depend on the projections
	K − 	L, 	L′ − 	K ′ , this factor is the same for spin-up and
spin-down wave functions.

[1] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II
(Benjamin, Reading, MA, 1969, 1975).

[2] S. Dattagupta, Relaxation Phenomena in Condensed Matter
Physics (Academic Press, Orlando, 1987).

[3] P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant Resonances,
Nuclear Structure at Finite Temperature (Harwood Academic
Press, Amsterdam, 1998).

[4] P. Carlos et al., Nucl. Phys. A 172, 437 (1971).

064307-13

http://dx.doi.org/10.1016/0375-9474(71)90725-1


LOSA, PASTORE, DØSSING, VIGEZZI, AND BROGLIA PHYSICAL REVIEW C 81, 064307 (2010)

[5] D. Sackett et al., Phys. Rev. C 48, 118 (1993).
[6] F. Barranco et al., Eur. Phys. J. A 11, 385 (2001).
[7] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 53,

765 (1996).
[8] S. Shlomo and B. K. Agrawal, Nucl. Phys. A 722, 98c (2003).
[9] M. Matsuo, Nucl. Phys. A 696, 371 (2001).

[10] K. Hagino and H. Sagawa, Nucl. Phys. A 695, 82 (2001).
[11] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys.

Rev. C 65, 054322 (2002).
[12] E. Khan, N. Sandulescu, M. Grasso, and N. V. Giai, Phys. Rev.

C 66, 024309 (2002).
[13] M. Yamagami and N. Van Giai, Phys. Rev. C 69, 034301 (2004).
[14] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski,

W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310
(2005).

[15] D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, Nucl. Phys.
A 692, 496 (2001).
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