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Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter
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The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within the relativistic mean-field
model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin
thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas
phase transition: the boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry,
and the critical values of pressure and isospin asymmetry, all of which systematically increase with increasing
softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas
mixed phase exists is found higher for a softer symmetry energy.
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I. INTRODUCTION

The possible occurrence of liquid-gas phase (LGP) transi-
tion in intermediate energy heavy-ion collisions using neutron-
rich stable and future radioactive beams provides a rather
unique tool to probe hot and dense phases of highly asymmetric
nuclear matter. Collision experiments [1,2] with stable heavy
nuclei at intermediate energy indicate theoretically predicted
[3] features of liquid-gas phase transition where the hot and
compressed nucleus produced expands and fragments into sev-
eral intermediate mass fragments (high-density liquid phase)
and light particles and nucleons (low-density gas phase).

The early theoretical studies of the thermodynamic prop-
erties of liquid-gas phase transition [4–7] are mostly confined
to symmetric nuclear matter that employed the quite well
predicted [8–10] behavior of the symmetric nuclear matter
equation of state (EOS). One of the major ingredients in
studies of asymmetric nuclear matter require knowledge of
the density dependence of symmetry energy Esym(ρ) [11–13].
Unfortunately, the model predictions of Esym(ρ) even for
nuclear matter at zero temperature are extremely diverse [14].
Only at the nuclear saturation density ρ0 ≈ 0.16 fm−3 the value
of E(ρ0, T = 0) = 32 ± 4 MeV has been well constrained.

Recently some progress has been achieved by consistently
constraining the symmetry energy of cold neutron-rich matter
near normal matter density from analysis of isospin diffusion
[11–13] and isoscaling [15] data in intermediate energy heavy-
ion collisions and from the study of neutron skin thickness of
several nuclei [16,17]. While knowledge of symmetry energy
Esym(ρ, T ) at finite temperature in particular has received little
attention [18–20] that is crucial for a proper understanding
of the features of LGP transition in hot asymmetric nuclear
matter. In fact, new qualitative features are expected when
an asymmetric nuclear system with two conserved charges,
baryon number and third component of isospin, undergoes
a LGP change which has been suggested to be of second
order [21]. Most previous studies of LGP transition [21–23]
relied on model predictions of symmetry energy Esym(ρ, T )
with no or minimal contact with the available experimental
data. Thus to understand better the features of LGP transition
in hot asymmetric nuclear matter, it is imperative to employ
the asymmetric nuclear EOS that has been constrained from

analysis of skin thickness data of several nuclei [17] or from
isospin diffusion/scaling data [12,20]. Such an investigation is
particularly useful as future experiments with radioactive ion
beams with large neutron-proton asymmetries can be used to
explore [24,25] symmetry energy effects on liquid-gas phase
transition.

In this article, we study the effects of constrained symmetry
energy [17] on the thermodynamic properties of LGP in
hot neutron-rich nuclear matter within relativistic mean-field
(RMF) models [26].

The paper is organized as follows. In Sec. II we introduce
the extended RMF model and describe the treatment of the
liquid-gas coexistence phase. In Sec. III the numerical results
for matter at finite temperature and density are presented.
Section IV summarizes the results.

II. FORMALISM

We use two accurately calibrated models: NL3 [27] and
FSUGold [28], that were obtained by fitting the model
parameters to certain ground-state properties of finite nuclei.
The interaction Lagrangian density in the nonlinear RMF
model is given by [17,25]

L = ψ
[
gsφ −

(
gvVµ + gρ

2
τ · bµ + e

2
(1 + τ3) Aµ

)
γ µ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!
g4

v(VµV µ)2

+	v

(
g2

ρbµ · bµ
) (

g2
vVµV µ

)
, (1)

which includes a isospin doublet nucleon field (ψ) interacting
via exchange of isoscalar-scalar σ (φ), isoscalar-vector ω (V µ),
isovector-vector ρ (bµ) meson fields, and the photon (Aµ) field.
The nonlinear σ meson couplings (κ, λ) soften the symmetric
nuclear matter EOS at around ρ0, while its high density part is
softened by the self-interactions (ζ ) for the ω meson field.

For the original NL3 set with ζ = 	v = 0, the saturation
of symmetric nuclear matter occurs at a Fermi momentum
of kF = 1.30 fm−1 with a binding energy B/A ≈ 16.3 MeV
and an incompressibility of K0 = 271 MeV. The original
FSUGold [28], with two additional couplings ζ = 0.06 and
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	v = 0.03, with K0 = 230 MeV produces a soft symmetric
and asymmetric nuclear matter EOS. To study the effect
of symmetric nuclear EOS (e.g., incompressibility K0) on
the symmetry energy, the original NL3 Lagrangian has been
extended [17,25] to include the isovector coupling 	v which
is then varied along with gρ in both NL3 and FSUGold to
generate various Esym(ρ). All combinations of 	v and gρ are
adjusted to a constant Esym(ρ, T = 0) = 25.67 (26.00) for
the NL3 (FSUGold) at an average density ρ corresponding
to kF = 1.15 fm−1 where the total binding energy of 208Pb
is reproduced within 4 MeV. Thus the additional coupling
provides an efficient way to change in a controlled manner
the density dependence of nuclear symmetry energy without
compromising the success of the model. However, note that
NL3 overbind superheavy nuclei by ∼7 MeV [29] while for
FSUGold the overbound for 208Pb is by ∼4 MeV [28].

The model parameter set (	v , gρ) is then varied to explore
Esym(ρ) effects on the liquid-gas phase transition in hot
asymmetric nuclear matter. For the present study we use
	v = 0.0–0.03 since the resulting symmetry energies and their
slopes and curvatures are in reasonable agreement with that
extracted from neutron skin thickness of several nuclei as well
as the isoscaling and isospin diffusion data [17]. In particular,
all these data can be simultaneously reproduced [17] with
	v = 0.02–0.03. It may be also noted that with increasing
	v the density dependence of symmetry energy becomes
softer in both the NL3 and FSUGold models [17]. While at a
finite 	v the symmetry energy Esym(ρ, T = 0) is found to be
particularly stiff in FSUGold than in the NL3 parameter set at
densities ρ � ρ0.

At finite temperature and density the energy density E
can be readily obtained from the thermodynamical potential
� [21] as

E = 2

(2π )3

∑
q=n,p

∫
d3k E∗(k)([nq(k)]+ + [nq(k)]−)

+ m2
s φ

2

2
+ κ

3!
(gsφ)3 + λ

4!
(gsφ)4 + m2

vV
2

0

2

+ ζ

8
(gvV0)4 + m2

ρb
2
0

2
+ 3	v (gvV0)2 (gρb0)2, (2)

where E∗(k) = √
k2 + m∗2 is the effective energy. The distri-

bution function for nucleon and antinucleon (referred to as ±
sign) is as usual [21–23]

[nq(k)]± = 1

exp[(E∗(k) ∓ νq)/T ] + 1
(q = n, p), (3)

where the effective chemical potential for neutron and proton
is expressed as νq = µq − gvV0 ± gρb0/2. The chemical
potentials can be determined from the conserved baryon and
isospin densities:

ρ = 2

(2π )3

∫
d3k ((Gp(k) + Gn(k))), (4)

ρ3 = 2

(2π )3

∫
d3k ((Gp(k) − Gn(k))), (5)

where Gq(k) = [nq(k)]+ − [nq(k)]−.
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FIG. 1. (Color online) Density dependence of nuclear symmetry
energy at temperatures T = 0, 5, 10, 15 MeV in NL3 and FSUGold
sets with couplings 	v = 0.0 and 0.03.

As in the zero temperature case, several model studies
[12,19,30,31] have indicated that the EOS for hot neutron-rich
nuclear matter can be expressed in the parabolic form:

E(ρ, T , α) = E(ρ, T , α = 0) + Esym(ρ, T )α2 + O(α4), (6)

where the neutron-proton asymmetry is α = (ρn − ρp)/ρ.
The (ρ, T ) dependence of symmetry energy can be esti-
mated from Esym(ρ, T ) ≈ E(ρ, T , α = 1) − E(ρ, T , α = 0).
Figure 1 shows the density dependence of nuclear symmetry
energy at T = 0, 5, 10, 15 MeV in the NL3 and FSUGold sets.
For all choices of 	v the symmetry energy decreases with
increasing temperature especially at small densities ρ � ρ0

that is entirely due to the decrease in the kinetic energy
contribution. For 	v = 0.0 (0.03) the density dependence of
Esym(ρ, T ) at all temperatures exhibits a systematic trend of
small (large) value at subsaturation densities and a large (small)
value at supranormal densities resulting in an overall stiffer
(softer) asymmetric nuclear matter EOS. Moreover, at a finite
	v , a stiff (soft) symmetric nuclear EOS for NL3 (FSUGold)
with large (small) incompressibility K0 systematically gives a
soft (stiff) Esym(ρ, T ) at ρ � ρ0 [17].

III. RESULTS

The above-described models can now be used to study
LGP in hot asymmetric nuclear matter. The system is
stable against LGP separation if its free energy F is
lower than the coexisting liquid (L) and gas (G) phases,
i.e., F (T , ρ) < (1 − λ)FL(T , ρL) + λFG(T , ρG) with ρ =
(1 − λ)ρL + λρG, where 0 < λ < 1 and λ = V G/V being the
fraction of the total volume occupied by the gas phase. The
stability condition implies the inequalities [21]:

ρ

(
∂P

∂ρ

)
T ,α

> 0, (7)

(
∂µp

∂α

)
T ,P

< 0 or

(
∂µn

∂α

)
T ,P

> 0. (8)
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The first inequality indicates mechanical stability which
means a system at positive isothermal compressibility remains
stable at all densities. The second inequality stems from
chemical instability which shows that energy is required to
change the concentration in a stable system while maintaining
temperature and pressure fixed. If one of these conditions get
violated, a system with two phases is energetically favorable.
The two phase coexistence is governed by the Gibbs’s criteria
for equal pressures and chemical potentials in the two phases
with different densities but at the same temperature:

P (T , ρL) = P (T , ρG), (9)

µq(T , ρL) = µq(T , ρG)(q = n, p). (10)

Figure 2 shows the pressure as a function of nucleon density
at a fixed temperature T = 10 MeV with different values of
asymmetry α in the original NL3 and FSUGold sets. Below
a critical value of asymmetry α, the pressure is seen (dotted
curves) to decrease with increasing density resulting in neg-
ative incompressibility and thereby a mechanically unstable
system. The stable two-phase (liquid-gas) configuration at
each density is obtained from Maxwell construction (solid
lines). Analogs to intermediate energy heavy-ion collisions
[1,2] when the hot matter in the high density (liquid) phase
expands it enters the coexistence LGP where the pressure
decreases at a fixed α �= 0 for the two-component asymmetric
matter. Whereas, for symmetric nuclear matter at α = 0 the
pressure remains constant at all densities. Finally, the system
leaves the coexistence region and vaporizes into the low
density (gas) phase. Of particular interest here is the symmetry
energy effects on the isotherms. It is clearly seen that in contrast
to the original NL3 with 	v = 0, the softer Esym(ρ) in the
original FSUGold with 	v = 0.03 [17] (see Fig. 1) enforces
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FIG. 2. (Color online) Pressure as a function of density at
temperature T = 10 MeV for various isospin asymmetry α in the
original NL3 set [27] with 	v = 0.0 and in the original FSUGold
set [28] with 	v = 0.03. The dotted curves refer to unstable single
phase while the solid curves refer to stable matter; see text for details.
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FIG. 3. (Color online) Chemical potential isobars as a function
of isospin asymmetry α at temperature T = 10 MeV in NL3
and FSUGold sets with different 	v couplings. The geometrical
construction used to obtain the isospin asymmetries and chemical
potentials in the two coexisting phases is also shown.

the onset of pure liquid phase to a higher density resulting in a
wider coexistence region for each asymmetry α. Moreover, the
critical pressure Pc above which the mixed liquid-gas phase
vanishes is seen larger for this soft FSUGold set; a detailed
discussion of which is presented below.

The details of chemical evolution for the LGP transition
is depicted in Fig. 3 where the neutron and proton chemical
potentials are shown as a function of isospin asymmetry α

at a fixed T = 10 MeV and pressure P = 0.11 MeV/fm3

for the NL3 and FSUGold at various 	v values. As usual,
the bare nucleon mass has been subtracted from the chemical
potentials. At fixed pressure and 	v , the solutions of the Gibbs
conditions (9) and (10) for phase equilibrium form the edges
of a rectangle and can be found by geometrical construction
as shown in Fig. 3. At each 	v , the two different values of
α defines the high-density liquid-phase boundary [with small
α = α1(T , P )] and the low-density gas-phase boundary [with
large α = α2(T , P )]. From the figure it is evident that the
symmetry energy dependence of 	v in NL3 and FSUGold
[17,25] leads to different phase boundaries α1(T , P ) and
α2(T , P ) and hence should predict different thermodynamic
properties for the LGP transition.

As the pressure increases the system encounters a critical
pressure Pc beyond which the matter is stable but below which
the second inequality (8) gets violated and the system becomes
chemically unstable. The critical pressure Pc is determined by
the inflection point (∂µ/∂α)T ,Pc

= (∂2µ/∂α2)T ,Pc
= 0. The

disappearance of chemical instability at Pc results in the
neutron (proton) chemical potential to decrease (increase) with
decreasing asymmetry α. Figure 3 also shows the chemical
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potential isobars at the critical pressure (dashed lines). The
rectangle from Gibbs condition then collapses into a vertical
line at α ≡ αc. Correspondingly, (Pc, αc) defines the critical
point at a given temperature that refers to the upper boundary
of instability with respect to pressure variation. Note at T =
10 MeV, the critical values (Pc, αc) at 	v = 0.0, 0.02, 0.03 are
respectively at (0.210, 0.652), (0.276, 0.741), (0.331, 0.797)
for the NL3 set and at (0.209, 0.638), (0.266, 0.725), (0.303,
0.789) for the FSUGold set. Interestingly, we also find at
a finite temperature the stiffness of symmetry energy has a
significant influence on the phase-separation boundaries of
LGP transition [20]. In general, an overall softer symmetry
energy (larger 	v) that corresponds to a stiffer Esym at
subsaturation densities gives systematically larger critical
pressure and an enhanced asymmetry in the system. Moreover
at a finite α, the overall softer symmetry energy Esym(ρ, T )
in the NL3 compared to FSUGold [17] translates to a larger
critical pressures and asymmetry for the LGP transition.

All the pairs of solutions of Gibbs conditions, α1(T , P )
and α2(T , P ), form the phase-separation boundary or the
binodal surface. In Fig. 4 we show the section of the binodal
surface under isothermal compression of asymmetric nuclear
matter at T = 10 MeV in the NL3 and FSUGold sets. As
expected the point of equal concentration (EC) corresponding
to symmetric nuclear matter is independent of 	v . The
critical point (CP) and EC divide the binodal section into two
branches. One branch is the high-density (liquid) phase that
is less asymmetric while the other branch corresponds to the
more asymmetric low-density (gas) phase. Thus the matter
on the left (right) of the binodal surface represents stable
liquid (gas) phase. It is clearly seen here that the critical point
(Pc, αc) depends on the density dependence of the symmetry
energy associated with different 	v values.

We also indicate on the binodal surface the maximal
isospin asymmetry (MA), αMA, of the system. Thus more
neutron-rich matter on the right side of the surface when
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FIG. 4. (Color online) The section of binodal surface at tem-
perature T = 10 MeV in NL3 and FSUGold sets with different 	v
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(EC), and the maximal asymmetry (MA) are indicated.

compressed/expanded at fixed α will never encounter a
coexistence phase. Note here the maximal asymmetry is also
quite sensitive to 	v , i.e., on Esym(ρ, T ). Such effects found
in the present study should have strong influence on the
experimentally observed isospin distillation phenomena [32]
where the gas phase is more neutron rich (large n/p ratio)
compared to the more symmetric liquid phase. For pressure
P � 0.10 MeV/fm3 the magnitude of isospin distillation is
more sensitive to the symmetry energy used. However, this
may be difficult to access experimentally.

IV. SUMMARY AND CONCLUSIONS

A new feature for LGP transition in asymmetric system,
referred to as retrograde condensation [21], arises when a
nucleon gas prepared at an asymmetry αc < α < αMA is
compressed at fixed total α. The matter remains mechanically
stable but chemically unstable. Thus a coexisting liquid phase
emerges which finally vanishes when the system leaves the
binodal surface as a pure gas. As the extent �α = αMA − αc is
found to decrease for softer symmetry energy with higher 	v ,
the possibility of such unique-phase condensation phenomena
also becomes minimal.

The present study clearly suggests that for liquid-gas phase
transition in hot asymmetric nuclear matter, the critical values
of pressure and isospin asymmetry, the maximal asymmetry
and the area and shape of the binodal surface are quite sensitive
to the density dependence of symmetry energy. Consistently
larger values of these thermodynamic variables stem from
overall softer symmetry energies which give higher values
of Esym at low densities that are relevant for the construction
of the binodal curve.

The existence of critical isospin asymmetry parameter αc at
a given temperature indicates that for α > αc the system will
not change completely into the liquid phase. Conversely, this
suggests that at a fixed α there exists a critical temperature
Tc beyond which the system can only be in the gas phase
at all pressures. In Fig. 5(a) we present Tc as a function
of α in the FSUGold set for different couplings 	v . For
symmetric nuclear matter (α = 0), the critical temperature

0 0.2 0.4 0.6 0.8 1
α

0

4

8

12

16

T
c (

M
eV

)

T
li

m
 (

M
eV

)

Λ
v
 = 0.00

Λ
v
 = 0.02

Λ
v
 = 0.03

0 50 100 150 200
A

4

5

6

7

8

9

10

Λ
v
 = 0.00

Λ
v
 = 0.03

FSUGold FSUGold

(a) (b)

FIG. 5. (Color online) (a) Critical temperature Tc versus isospin
asymmetry α and (b) limiting temperature Tlim versus mass number
A of finite nuclei for different 	v in the FSUGold set.
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for LGP transition in this model is Tc = 14.7 MeV. With
increasing asymmetry α � 0.6, Tc decreases rapidly. A softer
density dependence in symmetry energy (larger 	v) shows
the coexisting liquid-gas phase can prevail for larger values
of Tc. We find that for the soft symmetry energy (	v = 0.03)
even pure neutron matter (α = 1) can exhibit LGP transition
at T � Tc = 2 MeV. While the stiffest symmetry energy
(	v = 0) at α > 0.9 predicts that the matter can only be in
the pure gas phase at all temperatures.

The limiting temperature, Tlim, attained by a finite nucleus
due to Coulomb instability toward liquid-gas phase transition
can be obtained by considering the hot nucleus in equilibrium
with the surrounding nucleon gas [33,34]. The two-phase
Gibbs conditions, Eqs. (9)–(10), then become [23,33]

P (T , ρL, αL) + PCou(ρL) + Psur(T , ρL) = P (T , ρG, αG),

µn(T , ρL, αL) = µn(T , ρG, αG),

µp(T , ρL, αL) + µC(ρL) = µp(T , ρG, αG).

(11)

For a uniformly charged spherical nucleus of mass and charge
(A,Z) and radius R, the Coulomb contribution to the proton
chemical potential and pressure are µCou = 6Ze2/(5R) and
PCou(ρ) = Z2e2ρ/(5AR). The surface pressure on the nucleus
is Psur = −2γ (T )/R, where the surface tension is taken
as [35] γ (T ) = (1.14 MeV fm−2)(1 + 3T/2Tc)(1 − T/Tc)3/2.
Here Tc is the critical temperature for infinite symmetric
nuclear matter. In Fig. 5(b) the limiting temperature for
β-stable finite nuclei is found to decrease monotonically with

A. As in Tc, a softer Esym(ρ) leads to somewhat larger values of
Tlim. This may suggest that for a hot finite nucleus undergoing
liquid-gas phase transition to lighter nuclei and nucleons, the
symmetry energy effects on the binodal surface could survive.
This can only be estimated in models that include fluctuations
and correlations in the fragmenting nucleus which is beyond
the scope of the present study.

In summary the effects of isospin symmetry interaction
on the liquid-gas phase transition in hot neutron-rich nuclear
matter is investigated. For this we have used the two accurately
calibrated relativistic mean-field models, the NL3 [27] and the
FSUGold [28], wherein the density dependence of nuclear
symmetry energy at zero temperature has been constrained
within a limited range by neutron skin thickness data of
several atomic nuclei. We find considerable sensitivity of
the symmetry energy on the features of phase transition
even for the limited symmetry energy range corresponding
to 	v � 0.02–0.03 that reproduces the skin and/or the isospin
diffusion/scaling data [17]. Thus the present study suggests
that precise information on the density dependence of sym-
metry energy may be obtained from analysis of observables
related to liquid-gas phase transition in future experiments with
exotic beams. In particular, we find overall softer symmetry
energies give progressively larger phase-separation boundaries
with higher critical values for pressure and isospin asymmetry
as well as maximal asymmetries. At a given asymmetry we
find the critical temperature for the existence of the mixed
liquid-gas phase increases with softer symmetry energy and
predicts the possible occurrence of even an unstable pure
neutron matter at finite temperatures.
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