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Shell-model calculations for neutron-rich carbon isotopes
with a chiral nucleon-nucleon potential
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We have studied neutron-rich carbon isotopes in terms of the shell model employing a realistic effective
Hamiltonian derived from the chiral N3LOW nucleon-nucleon potential. The single-particle energies and effective
two-body interaction have both been determined within the framework of the time-dependent degenerate linked-
diagram perturbation theory. The calculated results are in very good agreement with the available experimental
data, providing a sound description of this isotopic chain toward the neutron drip line. The correct location of the
drip line is reproduced.
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I. INTRODUCTION

The advances in the production of exotic beams are making
possible the exploration of isotopes at and close to the
neutron drip line. This is a major goal of nuclear physics,
because these studies may reveal exotic features, such as shell
modifications, that go beyond our present understanding of
the structure of nuclei. In a recent Letter [1] Tanaka et al.
have reported on the observation of a large reaction cross
section in the drip line nucleus 22C. The structure of 22C is
quite interesting, because it can be considered the heaviest
Borromean nucleus ever observed [2]. This nucleus is weakly
bound, with a two-neutron separation energy S2n evaluated
to be 420 ± 940 keV [1], and may be seen as composed of
three parts: two neutrons plus 20C. These three pieces must
all be present to obtain a bound 22C because of the particle
instability of 21C. This is the structure of a Borromean nucleus,
which has only one bound state but, considered as three-body
system, admits no bound states in the binary subsystems
[3].

The scope of the present work is to perform a theoretical
study of the properties of heavy carbon isotopes approaching
the neutron drip line. Our framework is the nuclear shell
model, with both single-particle energies and residual two-
body interaction derived directly from a realistic free nucleon-
nucleon (NN ) potential. This fully microscopic approach to
shell-model calculations, where no adjustable parameter is
introduced, has already been proved successful in reproducing
the neutron drip line for the oxygen isotopes [4], as well as the
spectroscopic properties of the p-shell nuclei [5] and N = 82
isotones [6].

This is the first time that a realistic shell-model calculation
is performed in this region. In fact, most of shell-model
calculations to date have been performed employing empir-
ical single-particle energies and two-body matrix elements
adjusted to reproduce selected experimental data using the full
psd model space (see, for example, Refs. [7,8] and references
therein).

II. OUTLINE OF CALCULATIONS

We now give a short description of our calculations.
We have carried out shell-model calculations, using the
Oslo shell-model code [9], for the heavy carbon isotopes
in terms of valence neutrons occupying the three single-
particle levels 0d5/2, 0d3/2, and 1s1/2, with 14C considered
as an inert core. This choice is mainly motivated by the
observed large energy gap (∼6 MeV) between the ground
and first excited state. It is worth mentioning that in Ref.
[10] it is suggested that the anomalous suppression of the
observed B(E2; 2+

1 → 0+
1 ) transition rates in 14–18C indicates

a possible proton-shell closure in the neutron-rich carbon
nuclei.

The shell-model effective Hamiltonian Heff has been de-
rived within the framework of the time-dependent degenerate
linked-diagram perturbation theory [11], starting from the
N3LOW nucleon-nucleon potential [4]. The latter is a low-
momentum potential derived from chiral perturbation theory at
next-to-next-to-next-to-leading order with a sharp momentum
cutoff at 2.1 fm−1. More explicitly, we have derived Heff using
the well-known Q̂-box plus folded-diagram method [11],
where the Q̂ box is a collection of irreducible valence-linked
Goldstone diagrams, which we have calculated through third
order in the N3LOW potential.

The Hamiltonian Heff contains one-body contributions,
whose collection is the so-called Ŝ box [12]. In realistic
shell-model calculations it is customary to use a subtraction
procedure, so that only the two-body terms of Heff , which make
up the effective interaction Veff , are retained while the single-
particle energies are taken from experiment. In this work,
however, we have adopted a different approach employing
single-particle energies obtained from the Ŝ-box calculation.
In this connection, it is worth noting that the observed
lowest Jπ = 1

2
+
, 5

2

+
, 3

2
+

states in 15C are not pure single-
particle states [13]. In Table I our calculated single-particle
energies are reported. It should be noted that the experimental
one-neutron separation energy of 15C (Sn = 1.22 MeV [14])
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TABLE I. Theoretical shell-model single-
particle energies (in MeV) employed in present
work (see text for details).

nlj Single-particle energies

0d5/2 0.601
0d3/2 5.121
1s1/2 −0.793

is slightly underestimated. For the sake of completeness,
in Table II we also report the two-body matrix elements
of Veff .

TABLE II. Proton-proton, neutron-neutron, and proton-neutron
matrix elements (in MeV). They are antisymmetrized and normalized
by a factor 1/

√
(1 + δjajb

)(1 + δjcjd
).

nalaja nblbjb nclcjc nd ldjd J Tz TBME

0p1/2 0p1/2 0p1/2 0p1/2 0 1 −0.657
0d5/2 0d5/2 0d5/2 0d5/2 0 −1 −2.913
0d5/2 0d5/2 0d3/2 0d3/2 0 −1 −3.009
0d5/2 0d5/2 1s1/2 1s1/2 0 −1 −1.641
0d3/2 0d3/2 0d3/2 0d3/2 0 −1 −1.405
0d3/2 0d3/2 1s1/2 1s1/2 0 −1 −1.192
1s1/2 1s1/2 1s1/2 1s1/2 0 −1 −1.244
0d5/2 0d3/2 0d5/2 0d3/2 1 −1 −0.433
0d5/2 0d3/2 0d3/2 1s1/2 1 −1 −0.097
0d3/2 1s1/2 0d3/2 1s1/2 1 −1 0.178
0d5/2 0d5/2 0d5/2 0d5/2 2 −1 −1.102
0d5/2 0d5/2 0d5/2 0d3/2 2 −1 −0.073
0d5/2 0d5/2 0d5/2 1s1/2 2 −1 −0.990
0d5/2 0d5/2 0d3/2 0d3/2 2 −1 −0.804
0d5/2 0d5/2 0d3/2 1s1/2 2 −1 1.184
0d5/2 0d3/2 0d5/2 0d3/2 2 −1 −0.252
0d5/2 0d3/2 0d5/2 1s1/2 2 −1 −0.378
0d5/2 0d3/2 0d3/2 0d3/2 2 −1 −0.810
0d5/2 0d3/2 0d3/2 1s1/2 2 −1 0.893
0d5/2 1s1/2 0d5/2 1s1/2 2 −1 −1.317
0d5/2 1s1/2 0d3/2 0d3/2 2 −1 −0.847
0d5/2 1s1/2 0d3/2 1s1/2 2 −1 1.347
0d3/2 0d3/2 0d3/2 0d3/2 2 −1 0.121
0d3/2 0d3/2 0d3/2 1s1/2 2 −1 0.338
0d3/2 1s1/2 0d3/2 1s1/2 2 −1 −0.425
0d5/2 0d3/2 0d5/2 0d3/2 3 −1 0.594
0d5/2 0d3/2 0d5/2 1s1/2 3 −1 −0.099
0d5/2 1s1/2 0d5/2 1s1/2 3 −1 0.600
0d5/2 0d5/2 0d5/2 0d5/2 4 −1 −0.012
0d5/2 0d5/2 0d5/2 0d3/2 4 −1 −1.558
0d5/2 0d3/2 0d5/2 0d3/2 4 −1 −1.353
0p1/2 1s1/2 0p1/2 1s1/2 0 0 −1.752
0p1/2 0d3/2 0p1/2 0d3/2 1 0 −0.454
0p1/2 0d3/2 0p1/2 1s1/2 1 0 −0.024
0p1/2 1s1/2 0p1/2 1s1/2 1 0 −1.148
0p1/2 0d5/2 0p1/2 0d5/2 2 0 −2.358
0p1/2 0d5/2 0p1/2 0d3/2 2 0 −0.594
0p1/2 0d3/2 0p1/2 0d3/2 2 0 −1.560
0p1/2 0d5/2 0p1/2 0d5/2 3 0 −2.346

III. RESULTS AND COMPARISON WITH EXPERIMENT

We have performed calculations for carbon isotopes with
A ranging from 16 to 24, that is, for systems with valence
neutrons from Nval = 2 to 10. In Fig. 1 the calculated
ground-state energies of even-mass isotopes (continuous black
line) relative to 14C are compared with the experimental
ones (continuous red line) [14]. The experimental behavior
is well reproduced; in particular our results confirm that 22C
is the last bound isotope. Its calculated S2n is 601 keV to be
compared with the evaluation of 420 keV [14]. Moreover, our
calculations predict that 21C is unstable against one-neutron
decay, the theoretical Sn being −1.6 MeV. Therefore, our
results fit the picture of 22C as a Borromean nucleus.

From the inspection of Fig. 1, it can be seen that our calcu-
lations underestimate the experimental data. It is worth noting
that this discrepancy may be “healed” by downshifting the
single-particle spectrum so as to reproduce the experimental
ground-state energy of 15C relative to 14C. The results obtained
with this downshift (−427 keV) are represented in Fig. 1 by
the black dashed line.

In Fig. 2, we report the experimental and calculated low-
energy levels of the odd-mass nuclei 17C and 19C. It should
be pointed out that the experimental levels shown in Fig. 2
are the only observed bound states. We see that the theory
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FIG. 1. (Color online) Experimental [1,14] and calculated
ground-state energies for carbon isotopes from A = 16 to 24. N

is the number of neutrons. See text for details.
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FIG. 2. Experimental [26] and calculated low-energy spectra for
17C and 19C.

provides a satisfactory description of these states, apart from
the inversion between the Jπ = 5

2

+
and 1

2
+

states in 17C.
We have calculated the magnetic dipole moments of the

Jπ = ( 1
2

+
)1, ( 5

2

+
)1 states in 15C and the Jπ = ( 3

2
+

)1 state
in 17C using an effective operator obtained at third order in
perturbation theory, consistent with the derivation of Heff . We
have obtained µ( 1

2
+
1 ) = −1.920 nm, µ( 5

2

+
1 ) = −1.803 nm, and

µ( 3
2

+
1 ) = −0.807 nm, to be compared with the experimental

values ±1.720 ± 0.009 nm [15], ±1.758 ± 0.030 nm [16], and
±0.758 ± 0.004 nm [17], respectively.

Two magnetic dipole transition rates have been mea-
sured in 17C: B(M1; 1

2
+ → 3

2
+

) and B(M1; 5
2

+ → 3
2

+
). Our

calculated values are, respectively, 0.0941 µ2
N and 0.095 µ2

N ,
to be compared with the experimental values of (0.0010 ±
0.0001)µ2

N and (0.082+0.032
−0.018)µ2

N [18]. It is worth mentioning
that the anomalous quenching of the strength observed in the
1
2

+ → 3
2

+
transition has been recently reproduced in Ref. [7]

in the framework of a shell-model calculation modifying
the tensor components and the T = 1 monopole terms of
the empirical effective Hamiltonian SFO [19] defined in the
the full psd model space.

In Table III we report the effective reduced single-neutron
matrix elements of the M1 operator.

In Fig. 3 we report the experimental excitation energies of
the yrast 2+ states as a function of A and compare them with
our calculated values. It can be seen that the observed energies

TABLE III. Effective reduced single-neutron
matrix elements of the magnetic dipole operator
M1 (in nm).

nalaja nblbjb 〈a||M1||b〉
0d5/2 0d5/2 −2.553
0d5/2 0d3/2 2.743
0d3/2 0d5/2 −2.743
0d3/2 0d3/2 1.414
0d3/2 1s1/2 0.179
1s1/2 0d3/2 −0.179
1s1/2 1s1/2 −2.298

10 12 14 16
N

1.6

2.4

3.2

4.0

4.8

5.6

E
xc

ita
tio

n 
en

er
gy

 [M
eV

]  Expt.
 Calc.

FIG. 3. (Color online) Experimental [22,24] and calculated exci-
tation energies of the yrast J π = 2+ states for carbon isotopes from
A = 16 to 22. N is the number of neutrons.

are reproduced nicely. We also report our predicted excitation
energy, 4.661 MeV, for the unbound Jπ = 2+

1 state in 22C.
The behavior of the theoretical 2+ excitation energies

confirms that there is no N = 14 subshell closure. We obtain
a ground-state wave function in 20C with only 14% of the
(νd5/2)6 configuration (calculated using the OXBASH shell-
model code [20]). This is a direct consequence of the fact
that the effective single-particle energy [21] of the 1s1/2 state
is the lowest one all along the carbon isotopic chain, as can be
seen in Fig. 4. One can infer that the large energy gap between
the 0d3/2 level and the 0d5/2 and 1s1/2 levels is responsible for
the N = 16 subshell closure.

It is worth mentioning that the behavior of the yrast 2+ state
in C isotopes is quite different from that shown by O isotopes
where a N = 14 subshell closure has been evidenced. This is
clearly related to the removal of the two protons from the 0p1/2

level, which, in the case of oxygen isotopes, interact with the
sd neutrons, giving rise to a downshift of the 0d5/2 neutron
level relative to the 1s1/2 one [8]. In this connection, we have
verified that, using our effective Hamiltonian, the effective
single-particle energy of the 0d5/2 state in 17O is lowered by
2.1 MeV relative to that of the 1s1/2 one.
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FIG. 4. (Color online) Effective single-particle energies of the
neutron 1s1/2, 0d5/2, and 0d3/2 orbits from A = 16 to 22. N is the
number of neutrons.
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TABLE IV. Effective reduced single-neutron
matrix elements of the electric quadrupole operator
E2 (in efm2).

nalaja nblbjb 〈a||E2||b〉
0d5/2 0d5/2 −3.357
0d5/2 0d3/2 −1.866
0d5/2 1s1/2 −1.826
0d3/2 0d5/2 1.866
0d3/2 0d3/2 −2.803
0d3/2 1s1/2 1.434
1s1/2 0d5/2 −1.826
1s1/2 0d3/2 −1.434

We have calculated the B(E2; 2+
1 → 0+

1 ) transition rates
up to 20C employing the effective operator of Table IV. Our
results are compared with the experimental data in Table V. We
see that the agreement is quite good, providing evidence for the
reliability of our calculated effective operator which takes into
account microscopically core-polarization effects up to third
order in the NN potential. It is well known [10,22–24] that
these observed transition strengths are strongly hindered when
compared with the values obtained by an empirical formula
based on the liquid-drop model [25]. In this connection, we
point out that our effective reduced single-neutron matrix
elements (see Table IV) correspond to a neutron effective
charge of about 0.4e with a harmonic-oscillator parameter
b = 1.72 fm.

TABLE V. Experimental and calculated reduced transition prob-
abilities B(E2; 2+

1 → 0+
1 ) (in e2fm4). Superscripts a, b, and c refer

to Refs. [10], [23], and [24], respectively. The experimental errors
reported are the statistical and systematic ones, respectively.

Nucleus Calculated Experimental

16C 1.8 2.6 ± 0.2 ± 0.7a

4.15 ± 0.73b

18C 3.0 4.3 ± 0.2 ± 1.0a

20C 3.7 <3.7c

IV. SUMMARY

In summary, we have given here a shell-model description
of heavy carbon isotopes, using a fully microscopic approach.
This has been done by deriving from the realistic chiral NN

potential N3LOW both the single-particle energies and the
residual two-body interaction of the effective shell-model
Hamiltonian. Our calculations have led to a sound description
of these isotopes when approaching the neutron drip line. As a
matter of fact, they confirm the disappearance of the N = 14
subshell closure that is present in the oxygen chain and predict
the N = 16 one. In particular, we reproduce successfully the
fact that 22C is the last bound isotope. It is worth mentioning
that this nucleus, which has only recently been observed [1],
is one of the most exotic of the 3000 known isotopes, its N/Z

ratio being 2.67. The quality of the results obtained makes us
confident that our approach may be a valuable tool for studying
nuclei far from the valley of stability.
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