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Semiclassical shell structure in rotating Fermi systems
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The collective moment of inertia is derived analytically within the cranking model for any rotational frequency
of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components
of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found
semiclassically their relation to the free-energy shell corrections through the shell-structure components of the
rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The
shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of
the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-
structure components of the free energy and the moment of inertia for several critical bifurcation deformations
and several temperatures.
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I. INTRODUCTION

Many significant phenomena deduced from experimental
data on nuclear rotations have been explained within several
theoretical approaches based mainly on the cranking model
[1–9]. The rotational problem is formulated through the
diagonalization of the Hamiltonian in the body-fixed rotating
coordinate system. The rotation frequency of this system is
determined for a given nuclear angular momentum through a
constraint, as for any other integral of motion, in particular,
the particle number conservation. To simplify this rather
complicated problem, the Strutinsky shell correction method
(SCM) [10,11] was adjusted to the collective nuclear rotations
in Refs. [6] and [7]. The collective moment of inertia (MI)
is expressed as function of the particle number in terms of a
smooth part and an oscillating shell correction. The smooth
component can be described by a suitable macroscopic model,
like the extended Thomas-Fermi (ETF) approach [12–20],
which has proven to be both simple and precise. For the
definition of the MI shell correction, one can apply the
Strutinsky averaging procedure to the single-particle (s.p.)
MI, in the same way as for the well-known free-energy shell
correction.

For a deeper understanding of the quantum results and
the correspondence between classical and quantum physics
of the MI shell components, it is worthwhile analyzing these
shell components in terms of periodic orbits (POs), what is
now well established as the semiclassical periodic-orbit theory
(POT) [17,21–24], as well as its extension to a given angular
momentum projection along with the energy of the particle
[25]. Gutzwiller suggested the POT for completely chaotic
Hamiltonians with only one integral of motion (the particle
energy) [21]. The Gutzwiller approach of the POT extended
to potentials with continuous symmetries for the description

*magner@kinr.kiev.ua

of the nuclear shell structure is given in Refs. [17,22], and
[26]. The semiclassical shell-structure correction to the level
density has been tested well enough versus quantum shell
correction calculations for a lot of s.p. Hamiltonians in two
and three dimensions (see, e.g, Refs. [17] and [27–30]).
For the Fermi gas the entropy shell corrections of the POT
as a sum of periodic orbits were derived in Ref. [22],
and with its help, the simple analytical expression for the
shell-structure energies in cold nuclei were obtained there
following a general semiclassical theory [17]. These energy
shell corrections are in good agreement with the quantum
SCM results, for instance, for elliptic and spheroidal cavities,
including the superdeformed bifurcation region [28,29]. In
particular, in three dimensions, the superdeformed bifurcation
nanostructure leads as a function of deformation to the
double-humped shell-structure energy with the first and second
potential wells in heavy enough nuclei [17,26,29], which is
well known as the double-humped fission barrier in the region
of actinide nuclei. At large deformations the second well
can be understood semiclassically, for spheroidal-type shapes,
through the bifurcation of equatorial orbits into equatorial and
the shortest three-dimensional (3D) periodic orbits, because
of the enhancement of the POT amplitudes of the shell
correction to a level density near the Fermi surface at these
bifurcation deformations.

For finite heated fermionic systems, it was also shown
[4,17,31,32] within the POT that the shell structure of the
thermodynamical potential and the free-energy shell cor-
rections can be obtained by multiplying the terms of the
POT expansion by a temperature-dependent factor, which
decreases exponentially with temperature [31,32]. For the
case of so-called classical rotations around the symmetry
z axis of the nucleus, the MI shell correction is obtained,
for any rotational frequency and at finite temperature, within
the extended Gutzwiller POT through the averaging of the
individual angular momenta aligned along this symmetry
axis [31]. A similar POT problem, dealing with the magnetic
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susceptibility of fermionic systems like metallic clusters and
quantum dots, was worked out in Refs. [32] and [33].

It was suggested in Ref. [35] to use the spheroidal cavity
and the classical perturbation approach to the POT by Creagh
[17,34] to describe the collective rotation of deformed nuclei
around an axis (x axis) perpendicular to the symmetry z axis.
The small parameter of the POT perturbation approximation
turns out to be proportional to the rotational frequency, but
also to the classical action (in units of h̄), which causes an
additional restriction to Fermi systems (or particle numbers)
of small enough size, in contrast to the usual semiclassical
POT approach.

In the present work the nonperturbative extended
Gutzwiller POT is used for the calculation of MI shell
corrections within the mean-field cranking model for both
the collective and the alignment rotations. For the case
of the harmonic-oscillator (HO) potential we extended the
Zelevinsky nonadiabatic theory for any rotational frequency
to finite temperature. In this case the explicit analytical MI
shell correction is derived and compared with the exact
quantum SCM result. In Sec. II we present the general
ideas of the cranking model for calculation of the MI. In
Secs. III A and III B the POT method is presented within the
nonperturbative Gutzwiller approach extended to continuous
symmetries for any Hamiltonian but also, in Sec. III C, for
the particular case of the HO potential. The connection
between the collective MI and the free-energy shell corrections
through the shell-structure rigid-body MI is demonstrated
in Secs. III D and III E. In Sec. IV a comparison is made
between the analytical semiclassical and numerical quantum
calculations for the shell-structure free energies as well as
for the collective MI, and a nice agreement is found at
the different critical deformations and different temperatures.
Our discussion focuses mainly on the symmetry-breaking
phenomena, in particular, the bifurcation, in the superdefor-
mation region, of a given PO into the same plus a newborn
PO, as well as the pecularities of the spherical limit of
moments of inertia. Conclusion and perspectives are presented
in Sec. V. Some details of our analytical and numerical
calculations are given in Appendixes A–E. The MI for the
alignment rotation and its shell corrections are derived in
Appendix A. The exact quantum solutions to the MI for the
HO potential are obtained for any rotation frequency at a finite
temperature in Appendix B. The quantum and semiclassical
shell corrections to the free energy through those of the
thermodynamical potential of the grand canonical ensemble
are presented in Appendix C. The smooth Thomas-Fermi
component is obtained within the local approximation to the
POT in Appendix D. The POT contributions to the MI shell
corrections are discussed in more detail in Appendix E.

II. CRANKING MODEL FOR NUCLEAR ROTATIONS

A. General points

Within the cranking model, the nuclear rotation around
the κ axis (κ = x, y, z) with the symmetry z axis of the
axially symmetric mean-field potential V (r) can be described
by solving the eigenvalue problem for the s.p. Hamiltonian

in the body-fixed rotating coordinate system, which is usually
called the Routhian [4,6,7]:

Hω = H − ω�κ, κ = x, y, z. (1)

The Lagrangian multiplier ω (rotation frequency of the body-
fixed coordinate system) is defined through the constraint on
the nuclear angular momentum Iκ evaluated as the quantum
average of the operator of the angular momentum projection
�κ onto the κ axis,

〈�κ〉ω ≡ ds

∑
i

nω
i

∫
drψω

i (r)�κψ
ω

i (r) = Iκ, (2)

with occupation numbers nω
i for the Fermi system of indepen-

dent nucleons,

nω
i ≡ n

(
εω
i

) = {1 + exp
[(

εω
i − λω

)
/T
]}−1

. (3)

Here, ψω
i (r) are the eigenfunctions and εω

i the eigenvalues of
the Routhian Hω, Eq. (1), λω ≈ εF is the chemical potential
for relatively low frequencies ω and temperatures T , εF is the
Fermi energy, εF = h̄2k2

F /2m, kF is the Fermi momentum in
units of h̄, m is the nucleon mass, and ds is the spin (spin-
isospin) degeneracy (an over bar above the quantities means
complex conjugation). From Eq. (2) the rotation frequency
ω can be expressed in terms of a given projection Iκ of
the angular momentum of nucleus to the κ axes, ω = ω(Iκ ).
As we introduce the continuous parameter ω and ignore the
uncertainty relation between the angular momentum and the
angles of the axis position, the cranking model is semiclassical
in principle. Thus, we may consider the MI �κ as a response of
the quantum average δ〈�κ〉ω, defined in Eq. (2), to the external
cranking field −ω�κ , in Eq. (1), similarly to the magnetic or
isolated susceptibilities [32,33,36,37],

δ〈�κ〉ω = �κ (ω)δω, (4)

where

�κ (ω) = ∂〈�κ〉ω
∂ω

= ∂2E(ω)

∂ω2
, E(ω) = 〈H 〉ω

≡ ds

∑
i

nω
i

∫
dr ψω

i (r) H ψ
ω

i (r). (5)

Traditionally [35], we consider two different cases for
the position of the rotational axis. One of them is the
most important collective rotation around the x axis (κ = x)
perpendicular to the symmetry z axis (κ = z) in the next
subsection. Another parallel (alignment) rotation with respect
to the symmetry z axis is considered in Appendix A on the
basis of Refs. [15,31], and [35], and only the final results are
presented in the text.

B. Collective perpendicular rotation within the
perturbation approach

As shown in Refs. [1–4,6], and [7], by using the second
term −ω�x in the Hamiltonian Hω, Eq. (1), for the rotation
around the x axis perpendicular to the symmetry z axis as a
small perturbation at second order, for the constraint (2) and
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MI (5), one has the standard Inglis formulas,

ω�x = Ix, �x = ds

∑
ij

′ (nj − ni)|〈j |�x |i〉|2
εi − εj

, (6)

where the double sum over i and j is taken over all s.p. states
with the occupation numbers ni and nj [ni = n0

i ; see Eq. (3)
at ω = 0], except for diagonal terms with εi = εj , as denoted
by the prime on the summation symbol, εi = ε0

i . For particle
number conservation at the same second order, one has

A = ds

∑
i

nω
i

∫
dr ψω

i (r) ψ
ω

i (r)

= ds

∑
i

ni

∫
dr ψi(r) ψi(r) = ds

∑
i

ni, (7)

because of cancellations of all corrections of the first and sec-
ond order, ψi(r) = ψ0

i (r). Therefore, there is no ω dependence
of the chemical potential λ for the perpendicular rotation at the
perturbation approach of second order.

For the energy E(ω) of Eq. (5), the yrast line E(Ix) (at
zero temperature, T = 0) can be obtained by exclusion of the
frequency ω from the constraint of Eq. (6), ω = Ix/�x :

E(Ix) = E(0) + I 2
x

/
2�x. (8)

As usual, the rotation term in Eq. (8) is quantized through
I 2
x → Ix(Ix + 1) to study the rotation bands.

For the derivations of shell effects within the POT
[17,21–24], it turns out to be helpful to use the coordinate
representation of the MI through the Green’s functions G

[36–39],

�x = 2ds

π

∫ ∞

0
dε n(ε)

∫
dr1

∫
dr2 �x(r1) �x(r2)

× Re[G(r1, r2; ε)]Im[G(r1, r2; ε)], (9)

where n(ε) are the Fermi occupation numbers n(εi) at εi =
ε, and �x(r1) and �x(r2) are the s.p. angular-momentum
projections onto the perpendicular rotation x axis at the spatial
points r1 and r2, respectively. With the usual energy-spectral
representation for the one-body Green’s function G in the
mean-field approximation,

G(r1, r2; ε) =
∑

i

ψi(r1) ψi(r2)

ε − εi + iε
, (10)

where the sum is taken over quantum s.p. states, εi is
eigenvalues, ψi eigenfunctions of the Hamiltonian H in
Eq. (1), and ε → +0, one obtains from Eq. (9) the well-known
second-order perturbation result of the cranking model [4,6,7],
however, including the diagonal terms. In particular, one also
has the constraint ω�x = Ix of Eq. (6) with the expression of
the MI �x , Eq. (9), through the Green’s function for the relation
of ω to a given angular momentum Ix and the corresponding
yrast energy, Eq. (8). In this sense, Eq. (9) looks more general
beyond the perturbation approximation, Eq. (6); see the more
detailed discussion below.

C. Quantum harmonic oscillator

In the case of the deformed HO potential, the direct
diagonalization of the Routhian (1) (without using a pertur-
bation expansion) for the rotation around the perpendicular
x axis yields the s.p. energies εi(ω) and MI �x(ω) obtained
analytically for any frequencies ω [3,5]. We extended this
theory to finite temperatures T through the oscillator Bose
occupation numbers [39]; see Appendix B for the derivations
based on Refs. [40] and [41]. For the adiabatic case of a
small rotation frequency limit, ω → 0, one needs the spectrum
independent of ω,

εi = h̄ω⊥(N⊥i + 1) + h̄ωz

(
Nzi + 1

2

)
, N⊥i = Nxi + Nyi,

(11)

where Nκi and ωκ are the HO quantum numbers and the
partial frequencies, ωx = ωy = ω⊥ at the axial symmetry.
From Eq. (B14), for the MI �x(ω) [5,39] in the adiabatic
limit ω → 0, one finds [2,4]

�x =
(

∂Ix

∂ω

)
ω=0

= dsh̄

2ω⊥ωz

[
(ωz − ω⊥)2

ω⊥ + ωz

(ℵy + ℵz)

+ (ωz + ω⊥)2

ω⊥ − ωz

(ℵz − ℵy)

]
, (12)

where

ℵκ =
∑

i

ni

(
Nκi + 1

2

)
. (13)

The energy of this system E(ω) [see Eq. (5)] is then given by

E(ω) = dsh̄(2ω⊥ℵy + ωzℵz) + 1
2ω2�x. (14)

We also used in Eq. (14) the axial symmetry property ℵx = ℵy .
Note that starting from Eq. (6) of the perturbation approach for
the HO potential, one may explicitly calculate analytically the
matrix elements of the angular momentum projection operator
�x (see Ref. [42]). As shown in Ref. [42], using these elements
and the s.p. energies (11) in Eq. (6), one arrives at the same
Eq. (12) for the nonperturbative derivations. These derivations
are helpful for understanding the diagonal terms in Eq. (12),
in contrast to Eq. (6) of the perturbation approach. The first
term in Eq. (12) is related to the coupling of the s.p. levels
through a shell, �N = 2, and the second term corresponds to
the transitions between levels inside the major shell, �N = 0
(see Ref. [4]). The shell defined by the major quantum number
Ni is split into the s.p. levels {N⊥i , Nzi} of a gross shell, which
are degenerated with the quantum degeneracy N⊥i + 1 for the
axially symmetric HO potential. The second part (�N = 0)
of Eq. (12) can be nondiagonal and diagonal in energies of
{ℵ⊥,ℵz} within a major shell. Taking the spherical limit of the
deformation ω⊥ → ωz in Eq. (12), one may realize that the
first term turns to 0 (ℵy → ℵz). In the second term of Eq. (12)
one has the indetermination 0 by 0 for (ℵz − ℵy)/(ωz − ωy)
in the spherical limit. To resolve this indetermination one may
reduce it to the calculation of the derivative dℵy/dωy for the
spherical limit of this ratio with the help of Eq. (11). Finally,
accounting also for the definition of the angular momentum in
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this limit, the second (�N = 0) term in Eq. (12) is reduced
identically to the MI owing to the alignment of the individual
angular momenta of particles along the symmetry z axis [see
Eqs. (A6)],

�x → �z → −ds

∑
i

dni

dεi

|〈i|�x |i〉|2, (15)

as shown independently without using the perturbation theory
in Appendix A. Note that Eq. (6) is a nondiagonal sum over
energies of the s.p. states with εi 
= εj , according to a quantum
criterion of the perturbation approach. But the expression
(9) for the MI in terms of the one-body Green’s function,
which interpolates analytically the perturbation approximation
(6) to the correct spherical limit (15), seems to be more
general as it includes the diagonal (εi = εj ) terms beyond
this approximation. Similar derivations of the rigid-body MI
beyond the perturbation theory were performed within the TF
model; see Appendix D.

D. Statistical equilibrium rotation

The statistical equilibrium rotation occurs under the fol-
lowing condition of an isotropic distribution of quanta of the
energy of the HO system in the directions of all three Cartesian
axes [4,5,42–44]:

ωxℵx = ωyℵy = ωzℵz (16)

(in fact, the last two, y and z, owe to the axial symmetry,
ℵx = ℵy). As expected from Ref. [43] and shown explicitly in
Refs. [2–5] and [42], one obtains from the general expression
(12) for the MI �x the rigid-body limit, Eq. (17), by using the
additional statistical assumption (16):

�rig
x = ds m

∑
i

ni 〈i|y2 + z2|i〉 = dsh̄

( ℵy

ω⊥
+ ℵz

ωz

)
. (17)

Condition (16), often called a consistency between the particle
density and the HO potential in Refs. [4,5], and [42], is in fact
that of a statistically equilibrium rotation of the Fermi system
as a whole [43], for which it is rotated as a rigid body.

For calculations of the shell corrections, it is convenient to
rewrite the MI �x , Eq. (12), in terms of the rigid-body MI �

rig
x ,

Eq. (17), and the free energy of the HO system, F (ω = 0), at
finite temperature T ,

�x = 1

ω2
⊥(2η2 − 1)(η2 − 1)

[
ω2

⊥(2η4 + 9η2 + 1)�rig
x

− 4η2(1 + η2)F
]
, η = ω⊥

ωz

, (18)

where η is the deformation parameter, under the usual volume
conservation condition, ω2

⊥ωz = ω3
0. In these derivations, the

oscillator quantum numbers ℵy and ℵz were eliminated from
Eq. (12) by using Eq. (17) and the explicit expression of the
free energy, F = E(0) − T S, where E(0) is given by Eq. (14)
at ω = 0, and S is the entropy of the ideal Fermi gas. Owing to
the linear expression of �x through the �

rig
x and F , one has the

following relation for the MI shell components δ�x in terms
of the δ�

rig
x and δF (see Appendix C 1 for the shell correction

derivations):

δ�x = 1

ω2
⊥(2η2 − 1)(η2 − 1)

[
ω2

⊥(2η4 + 9η2 + 1)δ�rig
x

− 4η2(1 + η2)δF
]
. (19)

As �x = �
rig
x for statistically equilibrium rotation Eq. (16)

from Eq. (18), under condition (16), one obtains

�x = �rig
x = 1 + η2

3ω2
⊥

F. (20)

The shell component δ�
rig
x of the rigid-body MI �

rig
x is

determined by the oscillating part of the particle density δρ

as usual in the SCM [6,7,10,11]. For the HO potential, one
can find a simple relation of δ�

rig
x to the free-energy shell

correction δF . Subtracting the average quantities using the
Strutinsky smoothing procedure, as shown in Appendix C 1,
from this relation one obtains the shell correction to the MI
δ�x in terms of the free-energy shell correction δF :

δ�x = δ�rig
x = 1 + η2

3ω2
⊥

δF. (21)

As shown in Appendix A, for the MI shell corrections δ�z

for a parallel (alignment) rotation around the symmetry z axis,
one similarly has

δ�rig
z = 2

3ω2
⊥

δF. (22)

From a comparison of Eqs. (21) and (22) in the spherical
limit η → 1, one obtains δ�x → δ�z, as for the rigid-body
rotation, δ�rig

x → δ�
rig
z → 2δF/3ω2

⊥. Note that Eqs. (18) and
(19) are helpful to find the relation of the MI �x and its shell
correction δ�x to the free energy F and the corresponding
shell component δF as well as to show a rigid-body behavior
of the cranking model rotation for the HO mean field within
the semiclassical approach in the next section.

III. SEMICLASSICAL SHELL-STRUCTURE APPROACH

We first review the basic points of the POT for the
semiclassical level-density and free-energy shell corrections.
We then apply the POT to the rigid-body MI shell corrections
for the statistical equilibrium rotation and use this theory for a
general semiclassical study of the MI, taking the HO potential
as the simplest analytically solved example.

A. Green’s function trajectory expansion

For the Green’s function (10) in Eq. (9) for the MI, one
may use the semiclassical Gutzwiller trajectory expansion
[21] extended to continuous symmetry [17,22,25–27] and
symmetry-breaking [17,29,30] problems:

G(r1, r2; ε) =
∑

α

Gα(r1, r2; ε)

=
∑

α

Aα(r1, r2; ε)exp

[
i

h̄
Sα(r1, r2; ε) − iπ

2
µα

]
.

(23)
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The summation index α runs over all isolated classical
trajectories, or families of trajectories, that, for a given energy
ε connect two spatial points r1 and r2 inside the potential well
V (r). Here Sα is the classical action along such a trajectory
α, and µα denotes the phase associated with the Maslov index
by the number of caustic and turning points along path α

[17,22,30]. The amplitudes Aα of the Green’s function depend
on the classical stability factors and trajectory degeneracy,
owing to the symmetries of that potential [17,22,26,29,30].
For the case of the isolated trajectories α [17,21], one has the
explicit semiclassical expression for the amplitudes through
the stability characteristics of classical dynamics:

Aα(r1, r2; ε) = − 1

2πh̄2

√|Jα(p1, tα; r2, ε)|, tα = ∂Sα

∂ε
.

(24)

Here Jα(p1, tα; r2, ε) is the Jacobian for the transformation
between the two sets of variables p1, tα and r2, ε; p1 and tα
are the initial momentum and time of motion of the particle
along a trajectory α, and r2 and ε are its final coordinate and
energy. In a more general case, if the mean-field Hamiltonian
H obeys a higher symmetry, like that of spherical or HO
potentials with rational ratios of frequencies, one has to use
other expressions for the amplitude Aα(r1, r2; ε) for close
trajectories α 
= α0, taking into account such symmetries. They
account for an enhancement of the order of h̄ owing to their
classical degeneracy (see Refs. [17,22,27], and [30] and the
discussion in section C, below). In the case of the bifurcation
of POs, generated by a symmetry breaking, one may use the
improved stationary-phase method (SPM) [29,30], especially
for superdeformed shapes of the potential. Some examples of
the specific amplitudes for degenerate families of closed POs
in the HO potential are given in Appendix E; see Eqs. (E6) and
(E7). We keep a general form of the amplitudes Aα as long as
possible and finally use their specific expressions (E6) and (E7)
after applying the SPM for the given potential in calculations
of the MI shell corrections [22,26,27,30,36]. Note that Eq. (24)
can be applied to any potential wells for the contributions of
nonclosed trajectories that can be considered isolated ones.

Among all classical trajectories α in Eq. (23), we may single
out α0, which directly connects r1 and r2 without intermediate
turning points; see Fig. 1. It is associated with the component
Gα0

of the sum (23) for the semiclassical Green’s function.
Therefore, for the Green’s function G, Eqs. (23), one has then
a separation:

G = Gα0
+ G1 ≈ G0 + G1. (25)

In the nearly local approximation [38,45] for close spatial
points r1 → r2 → r, the first term Gα0

of the splitting (25) is
given by

Gα0
≈ G0 = − m

2πh̄2s
exp

{
i

h̄
sp(r)

}
, s = |r2 − r1|,

p(r) =
√

2m[ε − V (r)]. (26)

The second term G1 in Eq. (25) is the fluctuating part of
the Green’s function (23) determined by all other trajectories
α 
= α0 in the sum (23) with reflection points at the potential

r
r

z

1
2

pz 1

′

α
0

α1

O

O

FIG. 1. Trajectories connecting points r1 and r2 without (α0; solid
line) and with (α1; dashed line) reflection.

surface:

G1(r1, r2; ε) =
∑
α 
=α0

Gα(r1, r2; ε); (27)

see one such trajectory, α1, in Fig. 1.

B. Level-density and energy shell corrections

The semiclassical level density g(ε), according to Eq. (25),
can be presented as the sum of the smooth and oscillating
components,

g(ε) = − 1

π
Im
∫

dr [G(r1, r2; ε)]r1=r2=r

≈ gscl(ε) = gETF(ε) + δgscl(ε), (28)

where gETF(ε) is given by the ETF approach [17,18]. The POT
relates the oscillating component δgscl(ε) of the level density
(28) near the Fermi surface with characteristics of the classical
POs [17,21–23]:

δgscl(ε) = Re
∑

po

δgpo(ε),

δgpo(ε) = Bpoexp

[
i

h̄
Spo(ε) − i

π

2
µpo

]
. (29)

This sum runs over the isolated POs and, in the case of
degeneracies owing to the symmetries of a given potential
well, over all families of POs. Bpo is the oscillation amplitude
depending on the stability factors, Spo(ε) the action integral
along a given PO, and µpo the Maslov phase associated with
the turning and caustic points along the PO; see Refs. [17]
and [30] for detailed explanations (we use the same notation
for the subscripts as in Ref. [17]).

The semiclassical energy shell corrections at zero tem-
perature, δE ≈ δUscl, is expressed through the PO density
component δgpo(ε) of Eq. (28) [17,22],

δUscl = Re
∑

po

δUpo, with δUpo = ds

h̄2

t2
po

δgpo(λ), (30)
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where tpo is the period of the particle motion along the
considered periodic orbit and δgpo(λ) the PO component
δgpo(ε) in the PO sum (29) at the energy ε equal to the chemical
potential, ε = λ. Note that the thermodynamic derivation of
Eq. (30) in Ref. [22] was presented through the POT entropy
shell corrections δSscl,

δSscl = 1

T
Re
∑

po

[πZpo coth(πZpo) − 1]δ�po(T , λ), (31)

where δ�po is the PO component of the shell correction δ�scl
to the thermodynamic potential [31,32],

δ�scl(T , λ) = Re
∑

po

δ�po(T , λ),

with δ�po = Q(Zpo) δUpo. (32)

The temperature-dependent factor,

Q(Z) = πZ
sinh(πZ)

, for Z = Zpo = tpoT

h̄
, (33)

is responsible for convergence of δ�scl → δUscl in the zero
temperature limit T → 0 [see Eq. (30)] and exponential
decrease, ∼exp(−πT tpo/h̄), at higher temperatures T . The
semiclassical free-energy shell correction δFscl for a fixed
temperature T and particle number A (protons and neutrons
in the nucleus) can be calculated through the shell correction
to the thermodynamical potential δ� for a fixed temperature
T and chemical potential λ at a given constant volume of the
system [17,31,32,37,43]:

δFscl(T ,N ) = δ�scl(T , λ) = Re
∑

po

δFpo,

δFpo = Q(Zpo)δUpo. (34)

With these definitions from Eqs. (31), (34), and (C6), for the
shell-structure internal energy δE, one obtains

δEscl = δFscl + T δSscl =
∑

po

cosh(πZpo)Q2(Zpo)δUpo.

(35)

As shown in Appendix C, the semiclassical expression (35) for
δE can be obtained by using the same techniques of expansion
of the amplitude Apo(ε) at zero order and the action Spo(ε)
at first order in powers of ε − λ at the energy ε = λ of the
semiclassical expression of δgpo(ε) in Eq. (29) and integration
by parts in Eq. (C7) [31]. These shell corrections are expressed
through the s.p. energies near the Fermi surface, ε = λ, through
δg(ε) and δn(ε) in the integrand of Eq. (C7).

C. Harmonic oscillator

To clarify the comparison of the quantum and semiclassical
results for Fermi systems at a finite temperature, for simplicity,
let us consider analytically solving example of the deformed
HO potential, Eq. (E1). In this respect, one has to consider the
two cases of the different [rational or irrational deformation
parameter η of Eq. (18)] ratios for the frequencies ωκ of
the simplest axially symmetrical HO. As usual (with the
volume conservation condition), one finds the expressions of

the frequencies through ω0 and the deformation parameter η

[see Eq. (18)]:

ω⊥ = ω0η
1/3, ωz = ω0η

−2/3. (36)

Following basically Ref. [27], we note that the analytically
well-known PO families (Lissajous figures) have mainly the
classical degeneracies1 K = 4 and 2, depending on the com-
mensurable or incommensurable frequency relations. It indeed
turns out that one-dimensional (isolated, K = 0) trajectories
yield relatively small contributions (of the relative order h̄)
to the shell-correction energy δUscl (δUscl ∝ h̄−K/2) and may
therefore be neglected [22,27]. The classical dynamics in the
HO potential is considered in more detail in Appendix E 1.

1. Incommensurable frequencies

We consider first the case of the incommensurable frequen-
cies of the axially symmetric HO with the irrational η. In this
case, there are no isolated 3D (K = 4) families but the 2D
equatorial (EQ) ones of the POs of smaller degeneracy K = 2
exist with a given period number n in the equatorial (x, y)
plane (z = 0), perpendicular to the symmetry z axis. For the
action Sn of the PO family specified by n, with the constant
period of motion (43) linear in energy ε,

Sn(ε) = εtn, tn = nTEQ. (37)

The main period TEQ (or frequency ωpo = 2π/Tpo) of the
primitive (n = 1) PO of a certain type in the (x, y) plane is
given by

TEQ = 2π

ωEQ

= 2πn⊥
ω⊥

= 2πnz

ωz

. (38)

For the contribution of the EQ (K = 2) orbits into the level
density (29), one has [27]

δgEQ(ε) =
∑

n

δgEQ
n (ε),

δgEQ
n (ε) = 2ε

(h̄ω⊥)2
√
Fn

sin

[
2πn

ε

h̄ω⊥

]
, (39)

where Fn is the Gutzwiller stability factor [17,21,27],

Fn = 4 sin2

(
πnωz

ωEQ

)
. (40)

The Maslov phase was accounted for explicitly in the argument
of sine in Eq. (39). For the planar orbit contributions into the
energy shell correction δUscl (30), one obtains [27]

δUEQ = Re
∑

n

δUEQ
n ,

with δUEQ
n = 2dsλω2

EQ

(2πω⊥n)2
√
Fn

sin

(
2πnλ

h̄ωEQ

)
. (41)

1The classical degeneracy K is the number of independent param-
eters (single-valued integrals of motion besides the particle energy
ε) that specify one of the orbits of the family with the same action
Spo(ε).
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2. Commensurable frequencies

3D orbits. For the case of rational ratios η of frequencies,

ω⊥ : ωz = n⊥ : nz, (42)

where n⊥ and nz are primitive integers, one finds the main
period of motion along the 3D PO of the K = 4 family,

T3D = 2π

ω3D

= 2πn⊥
ω⊥

= 2πnz

ωz

= 2π

ω0

(
n2

⊥nz

)1/3
, (43)

where ω3D = 2π/T3D is the main HO frequency for motion
along the 3D orbit. The 3D PO action is given by Eq. (37) for
Sn(ε), where tn = nT3D, S3D

n (ε) = nεT3D. For this completely
degenerate case, Eq. (42), one has the subfamilies of the
two-dimensional K = 2 EQ POs along with the 3D (K = 4)
families.

For the contribution of the 3D orbits into the level-density
shell correction δgscl(ε), Eq. (29), for the commensurable case,
Eq. (42), one has

δg3D(ε) =
∑

n

δg3D
n (ε)

with δg3D
n (ε) = ε2

(h̄ω0)3
cos

[
2πn

ε

h̄ω3D

− πn(2n⊥ + nz)

]
,

(44)

where ω3D = 2π/T3D is the main HO frequency determined
by the period T3D (43).

3D and EQ orbits. For the commensurable case, Eq. (42),
the EQ POs mentioned previously yield the contributions
along with 3D orbits. These orbits lead to an interference of
their contributions into the level-density and free-energy shell
corrections. In the nonspherical η > 1 case for commensurable
frequencies, the EQ orbits are isolated families that give
the same contribution (39) for δgEQ as in the previous
incommensurable case along with Eq. (44) for δg3D, according
to Eq. (29):

δgscl(ε) = δg3D(ε) + δgEQ(ε). (45)

The smooth ETF component of the total semiclassical level
density gscl at leading order in h̄ can be found, for instance, in
Ref. [17].

For the energy shell correction δUscl, Eq. (30), in this HO
case, one has [27]

δU3D = Re
∑

n

δU 3D
n

with δU 3D
n = dsλ

2ω2
3D

(2π )2h̄ω3
0n

2
exp

{
i

[
2πnλ

h̄ω3D

− πn(2n⊥ + nz)

]}
, (46)

[see also Eq. (41) for the EQ orbit contribution]. Thus, in
the case Eq. (42), the energy shell correction δUscl takes
approximately the form [22,27]

δUscl = δU3D + δUEQ. (47)

D. Particle-density and rigid-body shell corrections

The rigid-body MI �
rig
κ for rotations of any potential well

around the parallel (κ = z) and perpendicular (κ = x) axes,

�rig
κ = m

∫
dr r2

⊥κ ρ(r),

r2
⊥z = x2 + y2, and r2

⊥x = y2 + z2, (48)

respectively, is expressed through the particle density,

ρ(r) = −ds

π
Im
∫

dεn(ε)[G(r1, r2; ε)]r1=r2=r. (49)

For the Green’s function G one can apply the semiclassical
expansion (23) in terms of the classical trajectories α. The
integration over ε in Eq. (49) is performed over the whole s.p.
energy spectrum.

Substituting the two-component splitting, Eq. (25), of the
semiclassical Green’s function G(r1, r2; ε) (23) into Eq. (49)
for the particle density ρ(r) (49), one has approximately

ρscl(r) = ρTF(r) + δρscl(r), (50)

where ρTF is given by Eq. (D2) and

δρscl(r) = −ds

π
Im
∫

dεδn(ε)[G1(r1, r2; ε)]r1=r2=r. (51)

In Eq. (49), we used n = ñ + δn [see Appendix C 1 around
Eq. (C10)] and neglected a small contribution of the term
related to the product ñG1 owing to the particle conservation,
Eq. (C4). Note that the semiclassical POT derivations of
the oscillating part of the particle density, Eq. (51), were
performed [46,47] in terms of the closed trajectories for
various Hamiltonians. The contributions of nonperiodic closed
trajectories into δρscl were studied in relation to the so-called
Friedel oscillations of the particle density ρscl near the surface
of the finite Fermi system. More precisely, we may improve
the TF approximation by accounting for the h̄ corrections of
the ETF approach [15,17–20,46]. For simplicity, we omit both
those and temperature [∝(T/λ)2] corrections, focusing mainly
on the shell-structure components coming from G1 of the
Green’s function sum, Eq. (25), and δn through those δρscl(r),
Eq. (51), of the particle density ρscl(r), Eq. (50).

Now using Eq. (50) in Eq. (48), one may similarly split
the rigid-body MI �

rig
κ into the smooth and fluctuating (shell)

components,

�
rig
κscl = �

rig
κTF + δ�

rig
κscl, (52)

where �
rig

xTF, according to Eq. (D1), is related to the TF
approximation of the particle density ρTF(r), Eq. (D2); see also
Eq. (A12) for �zTF = �

rig
zTF. As shown in Appendix D 1 by

direct calculations at zero temperature, for a finite temperature
T (including the entropy part STFT ), one obtains the following
relation between the TF expressions for the rigid-body MI
�

rig
xTF and free energy FTF,

�
rig
xTF = 1 + η2

3ω2
⊥

FTF, �
rig
zTF = 2

3ω2
⊥

FTF. (53)

Therefore, according to Eq. (18) for perpendicular and
Appendix A for parallel rotations, for the HO potential within
the TF approximation, without explicit use of the statistically
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equilibrium rotation condition (16), one, nevertheless, obtains
the same results as with Eqs. (21) and (22):

�xTF = �
rig
xTF = 1 + η2

3ω2
⊥

FTF, �zTF = �
rig
zTF = 2

3ω2
⊥

FTF.

(54)

For the shell component of the sum (52), δ�
rig
κ , changing

the order of integrations and using the semiclassical trajectory
expansion (23) for the oscillating Green’s function component
G1(r1, r2; ε) of the sum (25), one finds

δ�
rig
κscl = m

∫
dr r2

⊥κ δρscl(r)

= −mds

π
Im
∑
α 
=α0

∫
dε δn(ε)

∫
dr r2

⊥κAα(r, ε)

×
{

exp

[
i

h̄
Sα(r1, r2; ε) − iπ

2
µα

]}
r1→r2→r

,

Aα(r, ε) ≡ Aα (r, r; ε). (55)

As usual, with the precision of the semiclassical approxima-
tion, we evaluate the spatial integral by the SPM extended to
continuous symmetries [17,22,27]. The SPM condition writes[

∂S(r1, r2; ε)

∂r1

+ ∂S(r1, r2; ε)

∂r2

]∗
r1=r2=r

≡ (−p1 + p2)∗r1=r2=r = 0, (56)

where an asterisk means the SPM value of the spatial
coordinates and momenta, rj = r∗

j and pj = p∗
j (j = 1, 2),

at the closed trajectories in the phase space, r∗
1 = r∗

2 and
p∗

1 = p∗
2. Thus, with the standard relations for the canonical

variables, by using the action as a generating function, one
arrives at the PO condition on the right-hand side of Eq. (56).
Other smooth factors, r2

⊥κ and Aα(r, ε), of the integrand in
Eq. (55) can be taken off the integral over r at these stationary
points. Assuming that the quantum averages 〈κ2〉/ε are smooth
enough functions of ε compared to other factors, for instance,
δn, one may also take them approximately off the integral over
ε at the chemical potential, ε = λ. For example, for the HO
potential, they are simply exactly constants, 〈x2〉 = 〈y2〉 ∝
x2

m ∝ ε and 〈z2〉 ∝ z2
m ∝ ε, where xm, ym, and zm are the

maximal values of coordinates x, y, and z for a classically
accessible region at the given energy ε, |x| � xm, |y| � ym,
and |z| � zm, respectively:

xm = ym =
√

2ε

mω2
⊥

, zm =
√

2ε

mω2
z

. (57)

Therefore, the main contribution to the integral in Eq. (55)
comes from the PO stationary-phase points, determined
by Eq. (56), as for calculations of the level-density shell
corrections δgscl (29) [17,22]. The SPM condition (56) is
identity for any stationary point of the classically accessible
spatial region for particle motion filled by PO families in the
case of their high degeneracy K � 3, for instance, for the
contribution of the 3D orbits in the HO potential well with
commensurable frequencies. The stationary points occupy
some spatial subspace for smaller degeneracy K. In the latter

case of the EQ orbits (K = 2) in the HO potential well, the
SPM condition is identity in the equatorial plane z = 0.

For both parallel and perpendicular rotations, following
similar derivations of the oscillating component δgscl, Eq. (29),
of the level density gscl(ε) (28) and shell correction δFscl,
Eq. (34), after the subtraction of the heat part T δSscl as in
Appendix C, from Eq. (55), one obtains

δ�
rig
κscl = m

λ
Re
∑

po

〈
r2
⊥κ

〉
po,λ

δFpo, (58)

where 〈r2
⊥κ〉po,λ is the average given by

〈r2
⊥κ〉po,ε =

∫
drApo(r, ε)r2

⊥κ∫
drApo(r, ε)

(59)

at ε = λ, Apo(r, ε) are the Green’s function amplitudes
Aα(r, ε) for closed POs, α = po, defined specifically in
Sec. III A and Appendix E. Integration over r is performed
over the classically accessible region of the spatial coordinates.
The semiclassical expression (58) is general for any potential
well. Shorter POs dominate in the PO sum (58) [17,22,31]; see
Eqs. (30) and (34). Therefore, according to Eq. (34) for δFscl,
we obtain approximately the relation

δ�
rig
κscl ≈ m

λ

〈
r2
⊥κ

〉
λ

δFscl, (60)

where 〈r2
⊥κ〉λ is an average value of the quantity (59), indepen-

dent of the specific PO, at ε = λ over short dominating POs.
For the HO commensurable-frequency case the integration in
Eq. (59) over r for the 3D contribution means over the 3D
volume occupied by the 3D families of orbits, while for the
EQ orbit component the integral is taken over the 2D spatial
region filled by the EQ families in the equatorial (z = 0) plane.
For the incommensurable-frequency case one has the only
EQ-orbit contributions.

The average (59) can be easily calculated by using the
Green’s function amplitudes Apo, Eq. (E6) for 3D and
Eq. (E7) for EQ orbits, and the scale transformation of the
spatial variables, x = xmux , y = ymuy , and z = zmuz, with the
maximal values xm, ym, and zm, Eq. (57), of the coordinates x,
y, and z, as in Appendix D. Finally, we arrive at

δ�
rig
xscl = 1 + η2

3ω2
⊥

δFscl, δ�
rig
zscl = 2

3ω2
⊥

δFscl, (61)

where δFscl is the semiclassical PO sum, Eqs. (34), (30), (41),
(46), and (47) for the shell correction to the semiclassical free
energy Fscl. The second equation is in agreement with the result
(A14) obtained in Appendix A. Substituting the semiclassical
approximation (61) for δ�

rig
κ into Eq. (19) for δ�κ , one obtains

δ�xscl = 1 + η2

3ω2
⊥

δFscl, δ�zscl = 2

3ω2
⊥

δFscl. (62)

Moreover, one has the same relation (20) for the smooth TF
parts in the HO case; see Appendix D 1. Thus, by using the
general HO relationship (18) for the total moment �x , one
can prove semiclassically within the POT, up to the same h̄

corrections in the smooth TF part, that Eqs. (20) and (21) are
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true for the HO Hamiltonian,

�xscl = 1 + η2

3ω2
⊥

Fscl, Fscl = FTF + δFscl. (63)

We emphasize that the POT expressions (62) for δ�xscl and
(63) for �xscl were derived without direct use of the statistically
equilibrium rotation condition (16). However, as shown above,
it is exactly the same as found by applying the POT directly to
Eq. (20) under this condition.

Substituting the semiclassical PO expansion (34) for the
δFscl using Eq. (46) for 3D orbit families and Eq. (41) for EQ
POs into Eq. (61), one arrives finally at the POT expressions
for the MI shell corrections δ�x within the cranking model
in terms of the POs in the HO mean field. Note that in
this case the parallel, δ�z, and perpendicular, δ�x , MI shell
components are expressed through the 3D and EQ POs through
the free-energy shell correction, which contains, generally
speaking, both of them for the commensurable frequencies,
according to Eq. (47). The dominating contribution of one of
these families or the coexistence of both together depends on
the HO deformation parameter η of Eq. (18).

E. General semiclassical relation of perpendicular
rigid-body rotations

Substituting (25) into Eq. (9), one has a sum of several
terms,

�xscl = �00
x + �01

x + �10
x + �11

x , (64)

where

�νν ′
x = 2ds

π

∫
dεn(ε)

∫
dr1

∫
dr2 �x(r1) �x(r2)

× Re[Gν(r1, r2; ε)]Im[Gν ′(r1, r2; ε)], (65)

ν and ν ′ run independently two integers, 0 and 1. As shown
in Appendix D, the main smooth part of the semiclassical MI
�xscl, Eq. (64), is the TF rigid-body component related to the
first term �00

x averaged over the phase-space variables (see
Ref. [38] and previous publications [12–15]). The statistical
averaging over phase-space coordinates removes the nonlocal
long-range correlations. The h̄ corrections of the smooth
ETF approach to this TF approximation were obtained in
Refs. [15,19], and [20].

The shell-structure component δ�01
x of �01

x [see Eq. (65)
at ν = 0 and ν ′ = 1], in the total MI �xscl, Eq. (64), can
be related semiclassically to the shell correction δρscl(r) of
the particle density ρscl(r) through that of the rigid-body MI.
Indeed, substituting approximation (26) for Gα0

and Eq. (27)
for G1 into Eq. (65) for �01

x , we separate the shell component
δ�01

x in the total quantity �01
x (65) as in Appendix C 2

for the energy shell correction. Using the transformation of
the coordinates r1 and r2 to the center-of-mass and relative
ones, r = (r1 + r2)/2 and s = r2 − r1, with the help of
Appendix E 3, by using the averaging over the phase-space
variables in the local short-range approximation, sp/h̄ � 1,

one arrives at

δ�01
x = − dsm

π2h̄2

∑
α 
=α0

Im
∫

dεδn(ε)
∫

dr

×
∫

ds�x

(
r − s

2

)
�x

(
r + s

2

)
cos
[ s
h̄

p(r)
]

×Aα

(
r − s

2
, r + s

2
; ε
)

× exp

[
i

h̄
Sα

(
r − s

2
, r + s

2
; ε
)

− iπ

2
µα

]
≈ δ�rig

x ,

(66)

where δ�
rig
x is the shell correction to the rigid-body MI in

Eq. (55) related to the semiclassical particle-density shell
component δρscl(r), Eq. (51). Owing to averaging over phase-
space variables, one survives with the local short-range ap-
proximation. In particular, for the classical angular-momentum
projections in the integrand of the first expression in Eq. (66)
one can use the approximation

�x[r − (s/2)]�x[r + (s/2)] ≈ �2
x(r) = r2

⊥xp
2(r), (67)

where r2
⊥x is given in Eq. (48). Note that this classical angular-

momentum projection in the rotating body-fixed coordinate
system is caused by the global rotation rather than by the
motion of particles along the trajectories inside the nucleus.
According to the time-reversible symmetry of the Routhian,
the particles are, indeed, moving in the nonrotating coordinate
system along these trajectories in both directions with opposite
signs. Their contributions to the total angular momentum of
the nucleus turns out to be zero. Performing the integration
over s in Eq. (66) in the spherical coordinate system, one
obtains the rigid-body shell correction δ�

rig
x in the nearly

local approximation, as explained in Appendix E 3. Note that
the cranking model for the nuclear rotation implies that the
correlation corrections to Eq. (66) should be small enough
with respect to the main rigid-body component δ�

rig
x to be

neglected within the adiabatic picture of separation of the
global rotation of the Fermi system from its vibration and
internal motion of the particles. Other contributions, except for
a smooth rigid-body part coming from �00

x , like �10
x as referred

to the fluctuation (nonlocal) correction to the rigid-body MI,
are found semiclassically to be negligibly small owing to
the averaging over phase-space variables; see Appendix E.
In particular, for the HO Hamiltonian, it is shown that there
is almost no contribution of the δ�11

x at leading order in h̄.
Finally, for the semiclassical shell corrections to the MI for
perpendicular and parallel (alignment) rotations with respect
to the symmetry z axis, we arrive, for the deformed HO with
Eq. (66), at expressions (62). It turns out that these expressions
are the same as those found in Eq. (21) with the semiclassical
precision, but without explicit use of the equilibrium rotation
condition (16). The case of the spheroid cavity requires further
study and is discussed in a separate work.

IV. COMPARISON WITH QUANTUM RESULTS

Figure 2 shows the semiclassical energy shell correction
δUscl, Eqs. (30), (41), (46), and (47), and the corresponding
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FIG. 2. Quantum (QM), Eq. (C7),
and semiclassical (SCL), Eq. (47), shell-
structure energies δE ≈ δUscl at zero
temperature versus the chemical potential
λ for the spherical HO potential (all
quantities are in units of the HO shell
spacing h̄ω0) at the critical deformations
η = 1, 1.2, and 2. The SCM smooth-
ing parameters are γ /h̄ω0 = 1.5–2.5 and
M = 4–8. Thin dotted curves show the
contribution of the 3D orbits, and thin
dashed curves the EQ orbit contributions.

quantum SCM calculations of δE, Eq. (C7), as functions of the
chemical potential λ at zero temperature for different critical
symmetry-breaking and bifurcation deformations η = 1, 6/5,
and 2 of the HO potential [17]. This comparison exhibits a
practically perfect agreement between the semiclassical and
the quantum results, especially for η = 1 and 2. Note that this
agreement is not exact even for the semiclassical free-energy
shell corrections at zero temperature because we neglected the
terms of smaller order of the expansion in h̄1/2 after integration
over the s.p. energies by parts, in contrast to the level-density
calculations for the HO potential. Phases of the oscillations of
the level density are linear in energy but we have to account for
the energy dependence of their amplitudes. For the spherical

case (η = 1), one has only contributions of the families of 3D
orbits with the highest degeneracy K = 4. At the bifurcation
points η = 6/5 and 2 the relatively simple families of these 3D
POs appear along with EQ trajectories of smaller degeneracy.
For η = 6/5 one mainly has the contributions from EQ POs
because 3D orbits are generally too long in this case. For the
bifurcation point η = 2 one finds an interference of the two
comparably large contributions of EQ and 3D orbits, Eqs. (41)
and (46), respectively, with different periods, T3D = 2TEQ, as
shown at the bottom in Fig. 3. The semiclassical free-energy
shell correction δFscl, Eqs. (30), (34), (41), (46), and (47),
is displayed in Fig. 3 as a function of the particle number
variable, A1/3, and compared at a temperature of T = 0.1h̄ω0
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FIG. 3. Shell-structure free energy
δF (in HO units, h̄ω0) as a function of
the particle number variable A1/3 for the
critical deformations η = 1, 1.2, and 2 at
a temperature of T = 0.1h̄ω0. All other
parameters and notations are the same as
in Fig. 2.
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FIG. 4. Moment of inertia �x ,
Eq. (12) (quantum; QM), its average
�̃x (QMav) and rigid-body value �

rig
x ,

Eq. (17), at the statistically equilib-
rium rotation (RIG QM) and its TF
approach, Eq. (54) (RIG TF), as func-
tions of the chemical potential λ for
the same critical deformations η and
temperature T = 0.1h̄ω0 as in Fig. 3.
All moments of inertia are in units of
h̄/ω0 and λ is in units of h̄ω0.

with the corresponding quantum SCM results for the same
critical deformations. This comparison also shows a practically
perfect agreement between the semiclassical, Eq. (34), and
the quantum, Eq. (C1), results with a similar PO structure.
As shown in Figs. 2 and 3, instead of concave parabolas,
depending on the chemical potential λ, we observe convex ones
as functions of the particle number parameter A1/3 owing to
the oscillating component δλ of λ = λ̃ + δλ (λ̃ is the averaged
λ in the SCM).

Figures 4 and 5 show the total perpendicular and parallel MI
(quantum [QM]) �, Eq. (12) for �x and Eq. (A14) for �z, de-
pending on λ for the same critical deformations at temperature
T = 0.1h̄ωo, respectively. Large-scale oscillations are clearly

shown, decreasing sharply, however, with a deformation from
spherical to deformed shapes for the perpendicular rotation
case. In Fig. 4 we show also the quantum rigid-body MI �

rig
x ,

Eqs. (17) and (48) (RIG QM), in the sense of the quantum
particle density ρ(r), which contains the shell correction δρ(r)
owing to inhomogeneity of the energy levels near the Fermi
surface. These oscillations of �rig(λ) are seen everywhere
versus the smooth TF approach �

rig
TF, Eq. (53), related to the

TF particle density ρTF, Eq. (D2), through the TF free energy
FTF, but it is naturally more pronounced for the spherical
shape, at the top in Fig. 4. Note that the relative scale of
these oscillation amplitudes with respect to the averaged MI
behavior �̃ (QMav) is rather obviously large compared to the
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the alignment moment of inertia �z,
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zTF of the TF approach, Eq. (54)

(RIG TF), at statistically equilibrium
rotation.
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FIG. 6. Moment of inertia shell
correction δ�x (in the same units as
in Figs. 4 and 5) for perpendicular
rotation as a function of the particle
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and 0.2h̄ω0. The thin dotted line shows
the contribution of 3D orbits; the thin
dashed line, the contribution of EQ
orbits at a temperature T = 0.1h̄ω0;
and bold dashed line, the contribution
of EQ orbits at T = 0.2h̄ω0.

rigid-body MI shell corrections δ�
rig
x , while one has �̃ ≈ �

rig
TF.

As shown by this comparison, we emphasize the importance
of reducing oscillations of the total MI �x calculations to
the rigid-body MI shell correction δ�

rig
x (20) (RIG QM) of

the statistical equilibrium rotation in the cranking model by
its meaning itself. The quantum and semiclassical relations
� ∝ F [see Eqs. (20) and (63), respectively] seem to be
important because they allow us to separate clearly the shell
corrections in �x by applying the standard procedure for the
free-energy shell correction δF to the total free energy F (see
Appendix C 1). For instance, subtraction of the constant λ from
εi in the second of Eqs. (C7) is rather significant for obtaining
the correct value of the energy shell corrections.

A comparison similar to that in Fig. 3, is presented in
Fig. 6 for the quantum and semiclassical shell corrections
to the MI δ�x of Eqs. (21) and (62), respectively. Again,
an excellent agreement is observed between semiclassical
and quantum results as for the free-energy shell components
δF [see Eqs. (34) and (C1)]. It is not really astonishing
because of the proportionality of δ�x to δF [Eqs. (21) and
(62)]. One finds, in particular, the same clear interference of
contributions of 3D and EQ POs in the shell corrections to the
MI at η = 2. The exponential decrease in shell oscillations
with increasing temperature, owing to the temperature factor
Q(tnT /h̄), Eq. (33) in Eqs. (34) and (32), is clearly shown
in Fig. 6 too. The critical temperature for a disappearance
of shell effects in the MI is found for prolate deformations
(η > 1) and particle numbers A ∼ 100–200, at approximately
Tcr = h̄ωEQ/π ∼ h̄ω0/π ≈ 2–3 MeV just as for δF (see
Refs. [17] and [22]). By comparison of Fig. 6 with Fig. 4,
one observes a huge decrease in the oscillation amplitudes of
the MI for the statistically equilibrium compared to those of
nonequilibrium rotations. The particle number dependence
of the shell corrections δ�z to the total MI �z (alignment) in
Eqs. (22) and (62) is not shown because it is similar to that of
δ�x through their relations, δ�z ∝ δ�x ∝ δF .

V. CONCLUSIONS

We derived the shell correction components δ�x and δ�z

(perpendicular and alignment rotations) of the MI in terms of
the free-energy shell correction δF within the nonperturbative
extended POT through those of the rigid-body MI of the
equilibrium rotations, which is exact for an HO potential. For
the HO potential we extended to the finite-temperature case the
Zelevinsky derivation of the nonadiabatic MI at any rotation
frequency. For the deformed HO potential we found a perfect
agreement between semiclassical POT and quantum results for
the free-energy δF and the MI shell corrections δ�x and δ�z

at several critical deformations and temperatures. For higher
temperatures we show that the short EQ orbits are dominant.
For low temperatures one observes a remarkable interference
of the short 3D and EQ orbits in the superdeformed region. An
exponential decrease in all shell corrections with increasing
temperature is observed, as expected.

It would be worse to apply general points of this semi-
classical theory to the shell corrections of the MI for the
spheroid cavity and for the inertia parameter of the low-lying
collective excitations in nuclear dynamics involving magic
nuclei [35–37,45].
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APPENDIX A: PARALLEL ROTATION

As related to the Routhian of the Fermi gas within the crank-
ing model (1) for κ = z (alignment of the angular momenta
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of individual nucleons called here “parallel rotation”), for the
partition function for the axially symmetric potential well, one
may write [15–17,31,43]

ln Z(τ, ω, λ) = ds

∑
i

ln{1 + exp[τ (λ − εi + ωµi)]}, (A1)

where τ = 1/T , ω and λ are the Lagrange multipliers, µi is
the projection of the angular momentum in the s.p. state i. To
determine these Lagrange multipliers in the case of parallel
rotation, the constraints for the fixed angular momentum
projection to the symmetry axis Iz and particle number A

are given by

Iz = T
∂ ln Z

∂ω
= ds

∑
i

nω
i µi, A = T

∂ ln Z

∂λ
= ds

∑
i

nω
i ,

(A2)

Eω = −∂ ln Z

∂τ
= ds

∑
i

(εi − ωµi − λ)nω
i ,

nω
i =
{

1 + exp

[
εi − ωµi − λ

T

]}−1

, (A3)

where nω
i are the ω-dependent occupation numbers (3), λω =

λ + ωµi , Eω is the energy corresponding to the Routhian (1) at
κ = z [counted from the constant λA, according to Eq. (A2)].
Therefore, for the actual rotation energy E(ω) of Eq. (5) in the
laboratory system of coordinate, one writes

E(ω) = Eω + ωIz = ds

∑
i

(εi − λ)nω
i . (A4)

It is convenient to calculate the angular momentum pro-
jection Iz by transformation of the sum over s.p. states i

in the constraint relation (A2) to the integral over energy ε

and angular momentum projection µ of the particle with the
corresponding s.p. level density g(ε, µ),

Iz = ds

∫
dε

∫
dµµg(εω, µ)n(εω), εω = ε − ωµ, (A5)

n(ε) is the Fermi occupation numbers, Eq. (3), at ω = 0. The
MI �z for alignment can be found by differentiation of the
angular momentum Iz(ω), Eq. (A2) [or Eq. (A5)], in ω. With
the help of Eq. (3) in the adiabatic case at ω → 0,

�z =
(

∂Iz

∂ω

)
ω=0

= ds

∑
i

µ2
i

4T cosh2[(εi − λ)/2T ]

= ds

∑
i

µ2
i gTi(λ), (A6)

where gTi(λ) is given by

gTi(ε) = 1

4T cosh2 [(ε − εi) /2T ]
,

gTi(λ) = −
(

dn(ε)

dε

)
ε=εi

, (A7)

at ε = λ. It is convenient also to introduce the temperature level
density gT(ε) as the quantum level density g(ε), averaged over
the statistical ensemble, leading to a temperature spreading of

the energy levels [17],

gT(ε) =
∑

i

gTi(ε) → g(ε) =
∑

i

δ(ε − εi), (A8)

in the zero temperature limit T → 0.
The alignment results, Eqs. (A1)–(A6), can be applied to

any axially symmetric potential, in particular, in the spherical
limit where any polar axis can be considered the symmetry z

axis [31]. For instance, for the HO Hamiltonian we need only
to specify the spectrum εi, µi and quantum degeneracy of the
levels i in summations over i. Differentiating expression (A5)
for the angular momentum projection Iz of alignment of the
individual angular momenta of particles along the symmetry
z axis in Eq. (A6) for the adiabatic MI �z (at ω = 0), one has

�z = ds

∫
dε

∫
dµµ

{
∂

∂ω
[g(εω, µ)n (εω)]

}
ω=0

= −ds

∫
dε

∫
dµµ2 ∂

∂ε
[g (ε, µ) n(ε)] . (A9)

For analytical calculations of the shell-structure MI δ�z, we
substitute the semiclassical level density,

gscl(ε, µ) = gETF(ε, µ) + δgscl(ε, µ),

gscl(ε) =
∫

dµgscl(ε, µ), (A10)

into the integrand of Eq. (A9) for g(ε, µ) with a smooth ETF
component gETF(ε, µ); see, for example, Ref. [25] for its main
TF part. In this way, we may approximately present Eq. (A9)
as a sum of the smooth and shell fluctuating parts,

�zscl = �zTF + δ�zscl, (A11)

where �zTF is the TF approximation,

�zTF = ds〈µ2〉λgTF(λ) = m

∫
dr(x2 + y2)ρTF(r), (A12)

which is the rigid-body TF approach [25], �zTF = �
rig
zTF. By

using derivations similar to those in Appendix C, we determine
the shell component δ�zscl of Eq. (A11) through the shell-
structure level density δgscl(ε, µ) and fluctuations δn of the
occupation numbers. The particle conservation equation (C4)
is used in these derivations. For calculation of the semiclassical
shell-structure component δ�zscl of the sum (A11), one may
apply the general POT for the level-density shell corrections
δgscl(ε, µ) with the fixed angular momentum projection [25]
for the axially symmetric HO potential [25],

δgscl(ε, µ) = 1

2µmax
θ (µmax − |µ|) δgscl(ε), (A13)

where δgscl(ε) is the total semiclassical level-density shell
correction, Eq. (45) [27], for the case of commensurable
frequencies ω⊥/ωz = n⊥/nz, or the only δgEQ(ε), Eq. (39),
for the incommensurable case of an irrational ratio ω⊥/ωz.
In Eq. (A13), µmax is the maximal s.p. angular momentum
projection onto the symmetry z axis. By using Eqs. (A10)
and (A13) for the shell-structure MI part δ�z and integrating
explicitly over µ, one finds

δ�zscl = 2ds

3

∫
dεµmax(ε)

dµmax(ε)

dε
δgscl(ε)δn(ε). (A14)

064302-13



MAGNER, SITDIKOV, KHAMZIN, AND BARTEL PHYSICAL REVIEW C 81, 064302 (2010)

For the axially symmetric HO Hamiltonian µmax = ε/ω⊥ in
Eq. (A14), and according to Eq. (C7), we obtain the same
rigid-body expression, Eq. (61), as in Sec. III D for alignment
κ = z, after subtraction of the heat (entropy) part.

APPENDIX B: EXACT QUANTUM SOLUTIONS FOR THE
HARMONIC OSCILLATOR

By using the standard transformation from the phase-
space variables κ, pκ for the creation a+

κ and annihilation aκ

operators (κ = x, y, z) for the s.p. Routhian Hω, Eq. (1), one
has

Hω =
∑

κ

h̄ωκ

(
a+

κ aκ + 1

2

)
− ω�x, (B1)

where

�x = h̄

2

[
ωy + ωz√

ωyωz

(aya
+
z + a+

y az)

− ωy − ωz√
ωyωz

(ayaz + a+
y a+

z )

]
; (B2)

see Ref. [9]. It is convenient to use the Heisenberg represen-
tation, aκ (τ ) = eτHωaκe

−τHω , for the annihilation aκ (τ ) and
creation a+

κ (τ ) operators depending formally on the imaginary
time t , τ = it . The Heisenberg dynamical equations for these
operators can be written in the Liouville form,

Ȧ(τ ) = LA(τ ), (B3)

for the vector operator A with four components,
{ay, a

+
y , az, a

+
z }, written in a column and Liouville 4 × 4

matrix L (in h̄ = 1 units) constructed one above the other in
four rows, {−ωy, 0, p,−q}, {0, ωy, q,−p}, {p,−q,−ωz, 0},
and {q,−p, 0, ωz}, where p and q are given by

p = ω

2

ωy + ωz√
ωyωz

, q = ω

2

ωy − ωz√
ωyωz

. (B4)

For the formal solution one finds A(τ ) = �(τ )A(0), with
�(τ ) = eτL. Introducing the correlation matrix,

Cνµ = 〈Aν(τ )Aµ(0)〉 = 〈Aµ(0)Aν(0)〉, (B5)

for Cνµ one can write the following system of equations:∑
λ

[�νλ(τ ) − δνλ]Cλµ = −Mνµ, (B6)

where Mνµ = 1 for ν = 1, µ = 2, and ν = 3, µ = 4; −1 for
these exchanged indeces; and otherwise, zeros. Its formal
solution for the correlation matrix C is given by

C = −D−1M, D = �(τ ) − I, �(τ ) = eτL, (B7)

where I is the 4 × 4 unit matrix. The Liouville operator L
of Eq. (B4) has four eigenvalues ±ω± for the Routhian Hω,
Eq. (B1), which are determined by [5]

ω2
± = ω2 + ω2

y + ω2
z

2
± ω2

y − ω2
z

2

√√√√1 + 8ω2
(
ω2

y + ω2
z

)
(
ω2

y − ω2
z

)2 .

(B8)

As the Liouville matrix has four eigenvalues, the inverse matrix
D−1 of (B7) can be approximated by the cubic polynomial
under the conditions formulated in Refs. [40] and [41] through
its four unknown constants ϒν :

D−1 =
3∑

ν=0

ϒνLν. (B9)

These constants are defined by four simple linear equations,
3∑

ν=0

ϒνω
ν
± = N±i ,

3∑
ν=0

(−1)νϒνω
ν
± = −(N±i + 1),

N±i = (eτω± − 1)−1
, (B10)

with simple solutions,

ϒ0 = −1

2
, ϒ1 = (N−i + 1/2)ω3

+ − (N+i + 1/2)ω3
−

ω−ω+(ω2+ − ω2−)
,

(B11)
ϒ2 = 0, ϒ3 = (N+i + 1/2) ω− − (N−i + 1/2) ω+

ω−ω+(ω2+ − ω2−)
.

For instance, for relatively large τ [low temperatures in units
of h̄ω0, T/h̄ω0, for τ = 1/T , as in Eq. (A1)], one can use
analytically the corresponding expansion in a large τL and
find that Eq. (B9) becomes identity.

Substituting Eq. (B11) into the determinant of the inversed
matrix D−1, Eq. (B9), we calculate the correlation matrix
elements Cνµ, Eq. (B7). After lengthy derivations of the
average of the s.p. angular momentum 〈�x〉i in state i through
Eq. (B2) and

ω〈�x〉i = p (C14 + C23) − q (C13 + C24) , (B12)

one arrives exactly at the same Zelevinsky’s result [5] for
arbitrary frequency ω,

〈�x〉i = ω

[
N−i + 1/2

ω−

(
2

ω2
y + ω2

z

ω2+ − ω2−
− 1

)

− N+i + 1/2

ω+

(
2

ω2
y + ω2

z

ω2+ − ω2−
+ 1

)]
, (B13)

where N±i are, however, the temperature-dependent Bose
quantum numbers of Eq. (B10). From this expression, by
summation over the s.p. states i as in Eq. (13), one obtains
the MI �x(ω) [5],

�x(ω) =
∑

i

ni

〈�x〉i
ω

= 2
ω2

y + ω2
z

ω2+ − ω2−

(ℵ−
ω−

− ℵ+
ω+

)

−
(ℵ+

ω+
+ ℵ−

ω−

)
, ℵ± =

∑
i

ni

(
N±i + 1

2

)
.

(B14)

Note that this expression, under the conditions of Refs. [40]
and [41], can be applied for finite temperatures T = 1/τ

that appear through the oscillator occupation numbers N±i in
Eq. (B10). The dynamic MI of Eq. (5) is determined by a direct
differentiation of Eq. (B14) with respect to ω. Both definitions
of the MI lead to the same adiabatic expression, Eq. (12).
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APPENDIX C: ENERGY SHELL CORRECTIONS

C1. Quantum calculations

For comparison of the semiclassical expression (34) of the
free-energy δF and thermodynamic-potential shell corrections
δ� with the quantum shell components, one writes

δF = Fs.p. − F̃s.p., δ� = �s.p. − �̃s.p., (C1)

where

F = E − T S = � + λA, (C2)

defined, for instance, through the thermodynamic potential of
a quantum Fermi gas [43],

�s.p.(T , λ) = dsT
∑

i

ln

[
1 − n

(
εi − λ

T

)]
. (C3)

The tilde in Eq. (C1) indicates the Strutinsky smoothing
of the s.p. quantities [10,11,17]. For the particle number
conservation, one has

A = ds

∑
i

ni = ds

∑
i

ñi . (C4)

In Eqs. (C3) and (C4), ni and εi are the Fermi occupation
numbers and energies in quantum states i for a given s.p.
Hamiltonian H of Eq. (1) [see Eq. (3) at ω = 0 for the
occupation numbers ni]. In Eq. (C4), ñi are the averaged Fermi
occupation numbers, determined usually by the Strutinsky
smoothing procedure [10,11,17] at the averaged chemical
potential λ = λ̃ found from the particle number conservation
condition, Eq. (C4), λ̃ = λ̃(A):

ñ

(
ε − λ

T

)
=
∫ ∞

−∞
dλ′ n

(
ε − λ′

T

)
ξM

(
λ′ − λ

γ

)
,

ξM (x) = 1√
π

exp(−x2)P2M (x). (C5)

Here the correction polynomial of the order of 2M , P2M (x) =∑2M
k=0,2,... αkHk(x), is defined through the recurrence relations,

αk = −αk−2/2k, α0 = 1, and Hk(x) is the standard Hermite
polynomial. The tilde in Eq. (C1) might be defined as the
averaging over the chemical potential; see Eq. (C5).

According to the general thermodynamic relations, Eq. (C2)
[43], one may define the shell-structure internal energy,

δE = δF + T δS, (C6)

as the internal energy shell correction δE to the total energy
E of a heated system [10,11,17],

δE = Es.p. − Ẽs.p. = 2
∑

i

(εi − λ)δni

≈
∫

dε (ε − λ) δg(ε)δn

(
ε − λ

T

)
. (C7)

The sum over spectrum εi in the internal energy of the heated
quantum Fermi gas Es.p. can be presented through the integral
over all energies ε with the level density g(ε) as

Es.p. = 2
∫

dεεg(ε)n

(
ε − λ

T

)
. (C8)

The level density g(ε) [see Eq. (A8)], averaged over spectrum
gγ (ε), with the Gaussian weight having an averaging width
γ much smaller than the distance between gross shells,
h̄ω0 ≈ εF /A1/3 ∼ 7–10 MeV for heavy nuclei, A ∼ 40–200,
is expressed in terms of the smooth g̃(ε) and shell-structure
δg(ε) components:

gγ (ε) = g̃(ε) + δgγ (ε). (C9)

The quantum shell correction to the level density δg(ε) in
Eq. (C7) is also averaged over this γ as δgγ (ε) in Eq. (C9),
and then the limit γ → 0 is taken in the integrand of Eq. (C7).
The shell correction to the Fermi occupation numbers (C4) is
given by

δn(x) = n(x) − ñ(x), x = (ε − λ)/T , (C10)

where ñ(x) is the smoothed occupation numbers, Eq. (C5),
and δE = δU at temperature T = 0. For comparison of
quantum and semiclassical results for δgγ (ε), one should do
the same averaging procedure for both compared quantities
(the correction polynomial degree M = 0 in the Strutinsky
SCM; see Refs. [17] and [22]). The smooth level density
g̃(ε) is determined by the values γ̃ and M̃ for the averaging
parameters, the Gaussian width γ and correction polynomial
degree M , on the so-called plateau in dependence of δgγ (ε)
on γ for several M (usually M = 4–10) at fixed characteristic
energies ε. This density g̃(ε) is constant independent of the
averaging parameters on this plateau. The smooth density
component of the level density g̃(ε) can be approximated
with very good precision by the ETF approach [17,18],
g̃(ε) ≈ gETF(ε). The smooth energy is given by

Ẽs.p. =
∫

dεεg̃(ε)ñ

(
ε − λ̃

T

)
, (C11)

excluding any shell fluctuations in all quantities of importance,
namely, in the level density gγ (ε), Eq. (C9), occupation num-
bers n(x) = ñ + δn associated with Eq. (C10), and chemical
potential λ = λ̃ + δλ. The shell-structure occupation numbers
δn are defined by the Strutinsky SCM [10,11,17] through the
averaged occupation numbers ñi ; see Eq. (C5). Up to small
terms, of the order of (γ̃ /λ)2, (γ̃ /λ)δλ/λ, and (δλ/λ)2, we
arrived at Eq. (C7). For convenience, writing λ̃ = λ − δλ from
Eq. (C10), we expanded smooth quantities marked by a tilde
here in δλ, keeping only linear terms in δλ/λ.

For calculations of the shell component δ� of the thermo-
dynamic potential �, one calculates first �s.p.(T , λ), Eq. (C3),
and then, �̃s.p.(T , λ) by using the Strutinsky smoothing
procedure over λ, as defined in Eq. (C5), directly for the
sum over states in Eq. (C3). The plateau condition for δ�

of Eqs. (C1) is studied as a function of averaging parameters γ

and M at several typical λ, and then the values γ̃ of γ ’s and M̃

of M’s in Eq. (C5) at this plateau are taken for the calculations
of δ�(T , λ) as a function of λ and corresponding particle
number A through λ(A). The smoothing over λ is the same as
that over spectrum εi because they appear in �s.p., Eq. (C3),
through differences εi − λ. We have to keep in mind that the
variable λ should be the same in quantum and semiclassical
calculations for their comparison.
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C2. Semiclassical derivations

For the shell-structure level density δg
γ

scl(ε), averaged with
the same Gaussian weight and width γ (see Ref. [22]), one has

δg
γ

scl(ε) =
∑

po

δgpo(ε)exp[−(tpoγ /h̄)2], tpo = ∂Spo

∂ε
.

(C12)

Substituting the POT expansion of this δg
γ

scl(ε) into Eq. (C7),
we expand the smooth amplitude Apo(ε) of δgpo(ε) (28) at zero
order and its action Spo(ε) at linear order in powers of ε − λ

at an energy equal to the chemical potential, ε = λ [17,22,31,
36]. Introducing also the dimensionless energy variable x [see
Eq. (C10)], in the limit γ → 0 one finds

δE = ReT 2
∑

po

δgpo(λ)
∫ ∞

−∞
dxxδn(x)exp(iZpox), (C13)

where δgpo(λ) is the PO component of the POT level-density
shell correction, Eq. (29), at energy ε = λ, and Zpo is given by
Eq. (33). As usual in the Sommerfeld expansion in powers of
T/λ [43], up to higher order in T/λ, the low limit is extended
to −∞. Integrating now by parts and using the property of 0
for δn(x) at both integration limits, one obtains

δE = −Re
∑

po

δUpo

[∫ ∞

−∞
dx

dδn(x)

dx
exp(iZpox)

− iZpo

∫ ∞

−∞
dxx

dδn(x)

dx
exp(iZpox)

]
. (C14)

Using the approximate relation [36],

dδn(x)

dx
= − 1

4cosh2(x/2)
, (C15)

one finally arrives at Eq. (35). The shell-structure components
δ�(T , λ) and δF in Eq. (C1), for the thermodynamic potential
�s.p.(T , λ) [Eq. (C3)] and free energy Fs.p. [see Eq. (C2)], can
be similarly approximated by the POT expression (34) (see
Refs. [31] and [32]).

APPENDIX D: LOCAL THOMAS-FERMI MOMENT
OF INERTIA

D1. The Thomas-Fermi approach

For the MI �
rig
x , Eqs. (17) and (48), within the TF approach,

one has [12–15,17]

�
rig
xTF = m

∫
drr2

⊥xρTF(r) = mds

6π2h̄3

∫
dr(y2 + z2)p3

F ,

(D1)

where ρTF is the TF particle density,

ρTF(r) = −ds

π
Im
∫

dεn(ε)[G0(r1, r2; ε)]r1=r2=r = dsp
3
F

6π2h̄3 .

(D2)

G0 is defined in Eq. (26), pF (r) = (2m{εF − m[(x2 +
y2)ω2

⊥ + ω2
zz

2]})1/2 for the HO potential. For simplicity, we
put zero temperature, T = 0, in this section of Appendix D.

Using the “spherization” scaling transformation of the spatial
coordinates x, y, z to the dimensional Cartesian coordinates
ux, uy, uz of vector u, x = xmux , y = ymuy , z = zmuz [see
Eq. (57) for maximal values of the coordinates x, y, z at
the given energy ε = εF ], one integrates exactly over r in
Eq. (D1). With symmetry properties of integrals in these new
coordinates, one then obtains

�
rig
κT F = mω2

⊥

(
1 + η2

3ω2
⊥

)
zmx4

m

∫
du u2ρ0(ux, uy, uz), (D3)

where

ρ0(ux, uy, uz) = ρTF(x, y, z) = ds(2mεF )3/2

6π2h̄3 (1 − u2)3/2,

u2 = u2
x + u2

y + u2
z. (D4)

Taking exactly analytically the integral over the radial variable
u from 0 to 1 in Eq. (D3) in the spherical coordinate system,
du = duxduyduz = u2du sin θdθdϕ and writing 4π for the
angle integration, one obtains

�
rig
xTF =

(
1 + η2

3ω2
⊥

)
ε4
F

3(h̄ω0)3
. (D5)

For the TF energy ETF one has

ETF = ds

∫
drdp

(2πh̄)3

{
p2

2m
+ m

2

[
ω2

⊥(x2 + y2) + ω2
zz

2]}.
(D6)

Using the virial theorem, according to which the average of the
kinetic and HO potential parts of this integral are equivalent,
and a similar “spherization” scaling transformation of the
spatial coordinates and analytical integration, one obtains

ETF = mω2
⊥zmx4

m

∫
du u2ρ0(ux, uy, uz) = ε4

F

3(h̄ω0)3
. (D7)

From a comparison of Eq. (D5) with Eq. (D7), one finds the
same relation between the TF MI �

rig
x and the energy ETF at

zero temperature T = 0,

�
rig
κTF =

(
1 + η2

3ω2
⊥

)
ETF, (D8)

as that obtained in the case of applying the statistically
equilibrium relation (16) [see Eq. (20)]. Similarly, we may
show the relation (22) between �

rig
z and ETF for the parallel

rotation; see Appendix A. Note that one may obtain the mass of
a Fermi particle system from the cranking model expression
with a dipole kind of s.p. operator within this model for a
translation invariant motion [48].

D2. From the local short-range periodic-orbit theory
to the Thomas-Fermi approach

For semiclassical calculations of �00
x from Eq. (65) of the

sum (64), we have to separate the nearly local (short-range)
parts from the nonlocal (long-range) contributions in the MI,
Eq. (9) [38]. This is in contrast to the local POT level-density
and energy shell correction calculations, where we need only
closed orbits r1 = r2 = r. This can be done by using averaging
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in the phase space as in derivations of the liquid-drop model
from many-body finite Fermi systems of interacting strongly
particles. For calculations of the smooth MI we can apply the
nearly local approximation [45], Sα(r1, r2; εF )/h̄ ≈ kF Lα <∼
1, where Lα is the length of the trajectory α in expansion
(23), and kF is the Fermi momentum in units of h̄. In this
almost-local case, after Strutinsky averaging [10,11,17], the
most important contribution comes from the trajectory α0, with
a short length smaller than or of the order of the wavelength
1/kF near the Fermi surface, Lα0

≈ s = |r2 − r1| <∼ 1/kF �
R, for a large semiclassical parameter, kF R � 1, where R is
the size of the nucleus. For simplicity of Eqs. (65) for the
MI component �̃00

x , the variables {r1, r2} can be transformed
to {r, s}, r = (r1 + r2) /2, s = r2 − r1. The Green’s function
term of the sum (23), Gα0

, in the new variables r, s for small
enough length s of the trajectory α0, s/R � 1, is reduced
approximately to a simple well-known analytical form G0,
similar to that of a free particle motion [see Eq. (26)]. We use
this approach to the Green’s function to relate approximately
the smooth part of the MI �00

x of Eq. (65) with the rigid-
body TF MI. With this Green’s function approximation, from
Eq. (65) one has

�00
x = 2ds

π

∫ ∞

0
dεn(ε)

∫
dr
∫

ds �x

(
r − s

2

)
�x

(
r + s

2

)

× Re
[
Gα0

(
r − s

2
, r + s

2
; ε
)]

× Im
[
Gα0

(
r − s

2
, r + s

2
; ε
)]

≈ dsm
2

π2h̄3

∫
dεn(ε)

∫
drr2

⊥xp(r)

×
∫

sin θsdθsdϕs sin2

[
1

h̄
smaxp(r)

]
. (D9)

In the last equation, we used Eq. (67) for the classical angular
momentum of the particle for the rotation around the x

axis within the nearly local approximation (26). Then we
transformed the integral over s to the spherical coordinate
system, ds = s2ds sin θsdθsdϕs , with the center at point r
and the polar axis directed to the r vector, and integrated
over modulus s from 0 to its maximal value smax, depending
on angles of s such that the integral over angles θs and ϕs

becomes rather complicated. However, we may note that the
phase-space averaging of the sine squared in its integrand is
1/2. Therefore, we like to separate the local part related to
this mean value 1/2 from nonlocal correlations by its identical
adding and subtracting:

�00
x = �xTF + ��00

x , �xTF = m

∫
drr2

⊥x ρTF(r). (D10)

Here the first local part �xTF is exactly the rigid-body MI (D1)
with the TF particle density ρTF(r), Eq. (D2),

ρTF(r) = dsm

2π2h̄3

∫
dεn(ε)p(r) ≈ dsp

3
F (r)

6π2h̄3 , (D11)

and ��00
x includes the nonlocal long-range correlations,

��00
x = dsm

2

π2h̄3

∫
dεn(ε)

∫
drr2

⊥p(r)
∫

sin θsdθsdϕs

×
{

sin2

[
1

h̄
smaxp(r)

]
− 1/2

}
. (D12)

For simplicity, we omitted the temperature corrections,
∼T 2/λ2, which can be easily included by using the standard
Sommerfeld expansion [43]. The integral over angles θs, ϕs

were taken within the same local approximation in the first
term of the sum in Eq. (D10) as 4π . Local averaging of the
nonlocal component (D12) is 0, and we arrive at the smooth
TF component �xTF of Eq. (D10). The h̄ corrections of a more
precise ETF approach for the smooth MI can be included too
(see Refs. [15,19], and [20]).

Note that we found a rigid-body inertia �xTF [see
Eq. (D10)] by using essentially averaging over the phase-space
variables, which removes the second nonlocal term ��00

x , in
particular, Strutinsky averaging over energies of the s.p. states
εi . The result is diagonal with respect to energies εi of the
s.p. states i, which is beyond the perturbation cranking model
formula (6). Taking averaging, we ignored exclusion of the
diagonal terms in Eq. (6) or (9), thinking of these formulas in
a more general sense than within the perturbation approach.
Thus, the averaged moment �̃x can be approximated by the
smooth (rigid-body) TF part �xTF of �00

x in Eq. (D10) with h̄

corrections of the ETF approach [19,20].

APPENDIX E: PERIODIC-ORBIT CONTRIBUTIONS
TO δ�x

E1. Classical harmonic-oscillator dynamics

The solutions of the classical Newtonian dynamical equa-
tions, r = r(t) and p = p(t), for a phase-space trajectory α in
the HO potential,

H = p2

2m
+ m

2

[
ω2

⊥(x2 + y2) + ω2
zz

2
]
, (E1)

going from an initial point r1 = {x1, y1, z1} at initial time t = 0
to a final point r2 = {x2, y2, z2} at time t = tα , can be written
analytically in the explicit form [27]

κ(t) = κ1
sin (ωκt + φκ )

sin φκ

,

pκ (t) = mκ̇(t) = mωκκ1
cos (ωκt + φκ )

sin φκ

, κ = x, y, z.

(E2)

The phases φx , φy , and φz are related through the energy
conservation,

ε = m

2

(
x2

1ω
2
x

sin2 φx

+ y2
1ω2

y

sin2 φy

+ z2
1ω

2
z

sin2 φz

)
, (E3)

which allows us to express one of the phases through ε and the
other two through, for example, φz(ε, φx, φy).

In the case of incommensurable frequencies (irrational η),
all closed (and therefore periodic) classical trajectories in
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the axially symmetric HO potential are EQ orbits with the
degeneracy K = 2, and 3D trajectories appear only with a
nonperiodic motion in the z direction. For commensurable
frequencies (rational η), both 3D and EQ POs contribute to
the degeneracies K = 4 and 2, respectively. A closed HO
trajectory corresponds to a PO (or part of a PO), whereas a
nonclosed trajectory is isolated (K = 0).

E2. Jacobian and amplitude calculations

For the case of isolated nonclosed classical trajectories in
expansion (23), one can apply the Gutzwiller approximation
[17,21,22] for the Green’s function G(r1, r2; ε) (see Eq. (23)]
to the amplitude, Eq. (24). For calculations of the Jacobian
Jα (p1, tα; r2, ε) of transformation of the initial momentum p1

and time of motion tα to the final coordinate r2 and energy
ε, we need to express the variations δp1 and δr2 of initial
momentum p1 (at the point r1) and final coordinate r2 through
δφi :

δpκ1 = −mωκκ1

sin2 φκ

δφκ, δκ2 = −κ1
sin(ωκtα)

sin2 φκ

δφκ . (E4)

Using also, locally along the trajectory between r1 and r2, a
transformation to Cartesian coordinates {x ′, y ′, z′}, where x ′ is
along the trajectory α, and y ′, z′ perpendicular to it. Due to the
invariance properties of the Jacobian, one then obtains [21,22]
for any r1 
= r2:

Jα (p1, tα; r2, ε) = − m2

p1p2

(
∂py1

∂y2

∂pz1

∂z2
− ∂pz1

∂y2

∂py1

∂z2

)
= 0,

(E5)

where we have used the Hamilton-Jacobi equation of classical
motion and Eq. (E4). Therefore, for non-closed trajectories,
the amplitudes Aα , Eq. (24), vanish.

For closed (r1 = r2 = r) orbits (POs) an enhancement of
the amplitudes Apo in Eq. (23) must be taken into account
[22,27], owing to their increased degeneracy (see the text). In
that particular case of the 3D family of closed (and, therefore,
periodic) orbits for the amplitudes of the Green’s function (23)
in Eq. (59) at α 
= α0, one finds [27]

A3D
n (r, ε) = −mp(r)

2πh̄3 ,

with p(r) =
√

2m
{
ε − m

2

[
ω2

⊥(x2 + y2) + ω2
zz

2
]}

,

(E6)

independently of the period number n specifying the POs. For
the EQ POs, one has [27]

AEQ
n (r, ε) = (8πh̄5)−1/2m{|Jn(pz1, z2)|1/2}r1→r2→r,

(E7)

Jn(pz1, z2) =
{

∂pz1

∂z2

}
n

.

E3. Calculations of the periodic-orbit components of δ�x

To obtain the component �01
x of the MI, according to

Eq. (66), one can evaluate the integral over s in the spherical
coordinate system, ds = s2ds sin θsdθsdϕs , with the center

at the point r and the polar axis directed along the initial
momentum p(r) for the trajectory α (p = |p(r)|),

p2

πh̄2

∫ smax

0
sds

∫ π

0
sin θsdθs

∫ 2π

0
dϕs cos

( sp
h̄

)

× exp

(
i

h̄
sp cos θs

)
= 1 − cos

(
2

h̄
smaxp

)
, (E8)

whereas for �10
x one needs

p2

2πh̄2

∫ smax

0
sds

∫ π

0
sin θsdθs

∫ 2π

0
dϕs sin

( sp
h̄

)

× exp

(
i

h̄
sp cos θs

)
= smaxp

h̄
− sin

(
2

h̄
smaxp

)
. (E9)

The local average over phase-space variables in Eqs. (E8) and
(E9) removes the oscillating terms, and in the nearly local
approximation, psmax/h̄ � 1, one can neglect the quantity
(E9) compared to that of (E8), in which one finds the finite
value 1 for the integral, as in Appendix D 2. Thus, �10

x

is contributing to the nonlocal long-range correlation part
of �x , whereas with Eq. (E8) one approximately obtains
the rigid-body shell correction δ�

rig
x in Eq. (66). In these

derivations we used the nearly local short-range approxima-
tion for the amplitude Aα[r − (s/2), r + (s/2); ε] and action
Sα [r − (s/2), r + (s/2); ε] in the Green’s function,

G1 =
∑
α 
=α0

Aα

(
r − s

2
, r + s

2
; ε
)

× exp

[
i

h̄
Sα

(
r − s

2
, r + s

2
; ε
)

− iπ

2
µα

]
, (E10)

namely,

Aα

(
r − s

2
, r + s

2
; ε

)
≈ Aα(r, r; ε), Sα

(
r − s

2
, r + s

2
; ε

)
≈ Sα(r, r; ε) + ps. (E11)

By using averaging over the phase-space variables, the second
nonlocal correlation term in Eq. (E8) disappears and we arrive
finally at the last approximation (66) for δ�01

x .
For the shell correction to �11

x we substitute [see Eq. (65)]
the G1 for contributions of trajectories α 
= α0 into the
expansion (23), and one can write δ�11

x = δ�11
x,+1 + δ�11

x,−1,
where, according to Eq. (27),

δ�11
x,ε = ds

2
Im
∑

α,α′ 
=α0

∫
dεδn(ε)

∫
dr1

×
∫

dr2�x(r1)�x(r2)Aα(r1, r2; ε)Aα′(r1, r2; ε)

× exp

[
i

h̄
(Sα′ + εSα) − i

π

2
(µα′ + εµα)

]
, ε = ±1.

(E12)

The SPM condition for the integrations over r1 and r2 is written
[36][

∂

∂r1
(Sα′ + εSα)

]∗
= 0,

[
∂

∂r2
(Sα′ + εSα)

]∗
= 0, (E13)
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where asterisks mark SPM values. These conditions can be
written in a more transparent form as p∗

jα′ = −εp∗
jα , j = 1, 2,

which implies that for ε = −1, for instance, the particle
momenta for the paths α′ and α at the given initial r1 and
final r2 points must be identical. One of the solutions of
these SPM conditions is α′ = α for any pair of stationary
points r1 =r∗

1 and r2 =r∗
2, and the argument in the exponential

of Eq. (E12) is trivially 0. There is no such contribution
to δ�11

x,−1 because the integral in Eq. (E12) is then over
a function δn(ε) that is strongly fluctuating near the Fermi
surface where the rest of the integrand is approximately
constant, just as for the particle number conservation, we have∫

dεδn(ε) = 0 [11,36,37]. In what follows we investigate in
more detail the case of commensurable frequencies. In that
case other solutions for α′ must be considered, corresponding
to a particle motion along path α from initial point r1

with momentum p∗
1α′ =−εp∗

1α , but performing an arbitrary
number of additional PO cycles after the spatial point r2

with p∗
2α′ =−εp∗

2α . In the case r∗
1 
= r∗

2 one has nonclosed
isolated (K = 0) stationary trajectories. In this case, expanding
the phase Sα′ + εSα in Eq. (E12) as a function of r1 and

r2 around the stationary points r∗
1 and r∗

2, we can use the
amplitudes of the Gutzwiller expression (24) for isolated paths
[22,27,36]. According to Eq. (E5), the integrands contain the
product of Jacobians Jα (p1, tα; r2, ε) and Jα′ (p1, tα′ ; r2, ε)
(which are 0) for the isolated trajectories, and �11

x results
in 0. For commensurable frequencies, assuming κ∗

1 = κ∗
2 for

any κ = {x, y, z} automatically implies κ∗
1 = κ∗

2 for all κ ,
corresponding to closed POs. In this case, the contribution
of these orbits is small (of order h̄1/2 for 3D orbits or of
order h̄ for EQ orbits) compared to the leading δ�01

x term
in Eq. (66). The appearance of the factor h̄1/2 is caused
by the SPM integration over one of the variables κ1 = κ2,
leading to a closed trajectory in the commensurable case.
For the case ε = 1, one can simply exchange α′ and α, r1

and r2, and the direction of motion along α′ with respect
to trajectory α. In the case of incommensurable frequencies,
trajectories in the EQ plane z = 0 can be considered in a
similar way. For the HO potential, the SPM integration over
r1 and r2 in Eq. (E12) generates a factor h̄1/2 that results
in δ�11

x being small and eventually negligible compared
to δ�01

x .
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