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π-η mixing and charge symmetry violating N N potential in matter
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We construct density-dependent class III charge symmetry violating (CSV) potential caused by the mixing
of π -η mesons with off-shell corrections. The density dependence enters through the nonvanishing π -η mixing
driven by both the neutron-proton mass difference and their asymmetric density distribution. The contribution of
density-dependent mixing to the CSV potential is found to be appreciably larger than that of the vacuum part.
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I. INTRODUCTION

One of the interesting areas of research in nuclear physics
is the study of symmetries and their violation. The general
goal of the research in this area is to find small but observable
effects of charge symmetry violation (CSV) that might provide
significant insight into the dynamics of CSV interaction.

CSV of the NN interaction refers to a difference between
proton-proton and neutron-neutron interactions only. It is
most clearly manifested in 1S0 scattering lengths; that is,
the difference between pp and nn scattering lengths at 1S0

state is nonzero [1–3]. Other convincing evidence of CSV
comes from the binding energy difference of mirror nuclei,
which is known as the Okamoto-Nolen-Schifer anomaly [4–6].
The modern manifestation of CSV includes the difference of
neutron-proton form factors, hadronic correction to g − 2 [7],
the observation of the decay of � ′(3686) → (J/�)π0, and so
on [7].

The current understanding of CSV is that, at the fundamen-
tal level, it is caused by the finite mass difference between up
(u) and down (d) quarks [1,8–12]. As a consequence, at the
hadronic level, charge symmetry (CS) is violated because of
the nondegenerate mass of nucleons.

Various mechanisms can lead to CSV in NN interaction.
For example, neutral mesons with the same spin-parity but with
different isospin can mix at the fundamental level because
of quark mass difference (at the hadronic level owing to
neutron-proton mass splitting). The most important is the ρ-ω
mixing, which according to Refs. [10,13–17] is claimed to have
successfully explained CSV observables. The other examples
are π -η and π -η′ mixing [18–20]. It is shown in Ref. [21] that
π -η′ mixing is important because it is of opposite sign to π -η
mixing, where individual contribution is known to be small.

In previous work, the mixing amplitude was taken to be
either constant or on-shell [15,16], which is not consistent
for the construction of NN potential because the mixing
amplitude has strong momentum dependence [22–28]. Even
the ρ-ω mixing amplitude changes sign as one moves away
from the ρ(ω) pole to the spacelike region. It is important
to note that the mixing amplitude in the spacelike region is
relevant for construction of the CSV potential.

Once the mixing amplitude is known, one can construct
the CSV potential by evaluating a two-body NN scattering
diagram involving mixed intermediate states such as π -η or
ρ-ω. It is to be noted that external legs can also contribute to

the CSV if one incorporates relativistic corrections, which was
recently shown in Ref. [29].

In matter, there can be another source of symmetry breaking
if the ground state contains an unequal number of neutrons (n)
and protons (p) giving rise to ground-state-induced mixing of
various charged states such as ρ-ω or π -η mesons, even in the
limit Mn = Mp.

Such matter-induced mixing was studied in Refs. [30–35].
But none of these studies dealt with the construction of two-
body potential except for Ref. [36], where density-dependent
CSV potential was constructed considering only the effect of
the scalar mean field on the nucleon mass and excluding the
possibility of matter-driven mixing. Recently, the medium-
dependent CSV potential due to ρ-ω mixing was constructed
in Ref. [37].

The potential we construct here has two parts: one
corresponds to vacuum mixing and the other involves the
density-dependent mixing amplitude. The latter, as we discuss,
vanishes only when both the interaction and the ground state
respect isospin symmetry (i.e., only when both masses and the
densities for the proton and neutron are taken to be equal).
We would like to emphasize here that the density-dependent
part remains nonzero even in symmetric nuclear matter if
Mn �= Mp [see Eqs. (15)]. It should be noted, however, that
the “charge symmetry breaking” refers only to the effects of
the underlying interaction, in view of which the contribution
driven by the asymmetric state can be interpreted as a
correction to the CSV potential.

Although the vacuum contribution of π -η mixing to CSV
has been shown to be negligible compared to that of ρ-ω
mixing, in this work we explore the role of medium-dependent
π -η mixing amplitude in constructing the CSV potential,
taking into account the contribution of external legs.

Physically, in a dense system, intermediate mesons might be
absorbed and reemitted from the Fermi spheres. In symmetric
nuclear matter, the emission and absorption involving different
isospin states such as π and η cancel when the contributions of
both proton and neutron Fermi spheres are added, provided the
nucleon masses are taken to be equal. In asymmetric nuclear
matter, however, the unbalanced contributions coming from
the scattering of neutron and proton Fermi spheres lead to
the mixing that depends on both the density (ρB) and the
asymmetry parameter [α = (ρn − ρp)/ρB]. Inclusion of this
process is discussed in Sec. II.
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FIG. 1. Feynman diagrams that contribute to the construction of
CSV NN potential in matter. Solid lines represent nucleons and
dashed lines stand for mesons. The crossed circles indicate the
symmetry-breaking piece.

We present the formalism in Sec. II, where the three-
momentum-dependent π -η mixing amplitude is calculated to
construct the CSV potential in matter. The numerical results
are discussed in Sec. III. Finally, in Sec. IV, we summarize
our results.

II. FORMALISM

The following matrix element, which is required to con-
struct the CSV NN potential, is obtained from Fig. 1:

MNN
πη (q) = [ūN (p3)τ3(1)�π (q)uN (p1)]	π (q)
πη(q2)

×	η(q)[ūN (p4)�η(−q)uN (p2)]

+ [ūN (p3)�η(q)uN (p1)]	η(q)
πη(q2)

×	π (q)[ūN (p4)τ3(2)�π (−q)uN (p2)], (1)

where uN represents Dirac spinors; 
πη(q2) is the π -η mixing
amplitude; pi (i = 1, . . . , 4) and q are the four-momenta of
nucleons and mesons, respectively; and τ3(1) and τ3(2) are
isospin operators at vertices 1 and 2 (see Fig. 1). The vertex
factor is denoted by �j (q) (j = π, η), and 	j (q) stands for
meson propagator given by

	−1
j (q2) = q2 − m2

j . (2)

In the limit q0 → 0, Eq. (1) gives the momentum space CSV
NN potential, V NN

CSV(q).
In the present calculation, mixing is assumed to be

generated by the NN̄ loops, and the mixing amplitude 
πη(q2)
is generated by the difference between proton and neutron loop
contributions, as shown in Fig. 2:


πη(q2) = 
(p)
πη (q2) − 
(n)

πη(q2), (3)

where 

(p)
πη (q2) or 
(n)

πη(q2) is the π -η mixing self-energy. The
origin of the relative sign between proton and neutron loops in
Eq. (3) is related to the different signs involved in the coupling
of π0 and η to proton and neutron. The one loop contribution

= −π η π η π η

p − loop n − loop

FIG. 2. The mixing amplitude is generated by the difference
between proton and neutron loops.

= +π η π η π η

Π
p(n)
vac Π

p(n)
med

p(n) − loop

FIG. 3. The mixing self-energy contains a vacuum part and a
medium part.

to the mixing self-energy is given by

i
(N)
πη (q2) =

∫
d4k

(2π )4
Tr[�π (q)GN (k)�η(−q)GN (k + q)],

(4)

where the subscript N stands for the nucleon index (i.e., N =
p or n), and k = (k0, k) denotes the four-momentum of the
nucleon in the loops. The main ingredient of our calculation is
the in-medium nucleon propagator GN , which consists of free
(GF

N ) and density-dependent (GD
N ) parts [38]:

GF
N (k) = k/ + MN

k2 − M2
N + iζ

, (5a)

GD
N (k) = iπ

EN

(k/ + MN )δ(k0 − EN )θ (kN − |k|), (5b)

where EN =
√
M2

N + k2
N is the nucleon energy in which kN and

MN denote the Fermi momentum and the mass of the nucleon,
respectively. Note that the δ function in Eq. (5b) indicates
the nucleons are on-shell, whereas θ (kN − |k|) ensures that
propagating nucleons have momentum less than kN .

Like the in-medium nucleon propagator GN , the mixing
self-energy 
(N)

πη (q2) contains vacuum [
(N)
vac (q2)] and density-

dependent [
(N)
med(q2)] parts as shown in Fig. 3. It should

be noted that the density-dependent part is given by the
combination of GF

NGD
N + GD

NGF
N , corresponding to scattering

that we have discussed already, whereas the term proportional
to GD

NGD
N vanishes for low energy excitation [39]. The vacuum

part, namely [
(N)
vac (q2)], however, involves GF

NGF
N , which

gives rise to the usual CSV part of the potential owing to
the splitting of the neutron and proton mass.

The vacuum mixing contribution of the CSV NN potential
can be used to calculate the difference between nn and pp

scattering lengths, 	a = app − ann, at 1S0 state [29].

A. Pseudoscalar coupling

First we consider pseudoscalar (PS) coupling of nucleons
to the mesons to describe πNN and ηNN interactions, which
are represented by the following effective Lagrangians:

LPS
πNN = −igπ �̄γ5τ · �π�, (6a)

LPS
ηNN = −igη�̄γ5�η�, (6b)

where � and � represent the nucleon and meson fields,
respectively, and gj stands for the meson-nucleon coupling
constants. For PS coupling, the vertex factor �j = −igj γ5

(j = π, η).
Now we proceed to calculate the CSV NN potential. For

this purpose we must calculate the π -η mixing self-energy
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using Eq. (4). First we consider mixing in vacuum. After
performing trace calculation, the vacuum contribution of π -η
mixing self-energy is found to be


(N)
vac (q2) = 4igπ gη

∫
d4k

(2π )4

{
M2

N − k · (k + q)(
k2 − M2

N

)[
(k + q)2 − M2

N

]
}

.

(7)

From dimensional counting it is found that the integral of
Eq. (7) is divergent. We use dimensional regularization [40–42]
to isolate the singularities in Eq. (7), which reduces to [20]


(N)
vac (q2) = gπgη

4π2

{
q2

3
+

(
M2

N − q2

2

)

×
[

1 + 1

ε
− γE + ln(4πµ2)

]

−
∫ 1

0
dx

[
M2

N − 3q2x(1 − x)
]

× ln
[
M2

N − q2x(1 − x)
]}

. (8)

In Eq. (8), µ is an arbitrary scale parameter, γE is the
Euler-Mascheroni constant, and ε = 2 − D/2, where D stands
for the dimension of the integral. Notice that ε in Eq. (8)
contains the singularity and it diverges as D → 4. The
divergences of Eq. (8) can be removed by adding appropriate
counterterms [43].

It is clear from Eq. (8) that, unlike for the ρ-ω mixing
amplitude, the singularities cannot be removed by simply
subtracting the neutron loop contribution from the proton
loop contribution. This is because of the singular term is
proportional to the mass term. But one can eliminate this
singular term by subtracting 
(N)

vac (q2 = 0) from 
(N)
vac (q2),

which is


̂(N)
vac (q2) = 
(N)

vac (q2) − 
(N)
vac (q2 = 0)

= gπ gη

4π2

{
q2

3
+ M2

N ln M2
N

− q2

2

[
1 + 1

ε
− γE + ln(4πµ2)

]

−
∫ 1

0
dx

[
M2

N − 3q2x(1 − x)
]

× ln
[
M2

N − q2x(1 − x)
]}

. (9)

Note that 
̂(N)
vac (q2) is not finite but the divergent part

proportional to the mass term has been removed. Now one
can easily obtain a finite π -η mixing amplitude in vacuum by
subtracting 
̂(n)

vac(q2) from 
̂
(p)
vac(q2). In the following,


PS
vac(q2) = gπgη

4π2

[
q2 ln

(
Mp

Mn

)

+ q

√
4M2

p − q2 tan−1

(
q√

4M2
p − q2

)

− q

√
4M2

n − q2 tan−1

(
q√

4M2
n − q2

)]
, (10)

gives the q2-dependent π -η mixing amplitude. We obtain

PS

vac(q2 = m2
η) = −1197 MeV−2, while experimentally it is

found that 
PS
vac(q2 = m2

η) = −4200 MeV−2 [20]. In this
equation, we substitute q0 = 0 to obtain the three-momentum-
dependent mixing amplitude 
vac(q2), which is required for
the construction of CSV potential. Now, expanding the mixing
amplitude 
PS

vac(q2) in terms of q2/M2
N and keeping the lowest

order, we obtain


PS
vac(q2) = −a1q2, (11)

where a1 = gπ gη

4π2 ln(Mp/Mn) and, if Mp = Mn, the mixing
amplitude in vacuum, that is, 
PS

vac(q2), vanishes. This result
implies that CSV NN potential in vacuum does not exist for
Mp = Mn.

Now we calculate the density-dependent part of the
π -η mixing self-energy, which is denoted by 


(N)
med(q2). After

performing trace calculation and k0 integration, it reads



(N)
med(q2) = −8gπ gη

∫ 1

0

d3k
(2π )3EN

[
(k · q)2

q4 − 4(k · q)2

]
× θ (kN − |k|). (12)

Substituting EN � MN and q0 = 0 into Eq. (12) yields



(N)
med(q2) = gπgη

π2MN

[
k3
N

3
− q2kN

8

− q
8

(
k2
N − q2

4

)
ln

(
q + 2kN

q − 2kN

)]
. (13)

Equation (13) represents the three-momentum-dependent
medium part of the π -η mixing self-energy. The mixing
amplitude, as mentioned earlier, is again generated by the
difference between the contributions from the proton and
neutron loops. This medium part of the π -η mixing amplitude,
after suitable expansion in the terms of q/kN , reads


PS
med(q2) = a′

1 − b′
1q2, (14)

where the leading-order contribution is considered and

a′
1 = gπgη

3π2

(
k3
p

Mp

− k3
n

Mn

)
, (15a)

b′
1 = gπgη

4π2

(
kp

Mp

− kn

Mn

)
. (15b)

Following Eq. (1) and considering the contributions of
external nucleon legs, one obtains the momentum space
potential given as

V NN
CSV(q2) = T +

3

gπ gη

4M2
N

(σ1 · q)(σ2 · q)

PS

πη(q2)(
q2 + m2

π

)(
q2 + m2

η

)
×

[
1 − q2

8M2
N

− P2

2M2
N

]
, (16)

where T +
3 = τ3(1) + τ3(2) and P = (p1 + p3)/2 = (p2 +

p4)/2. Equation (16) presents CSV class III potential in
momentum space. In contrast to π -η mixing, ρ-ω mixing
produces both class III and class IV NN interactions [7,20,23].
Note that the terms within the square bracket in Eq. (16) are
the contributions from the external legs.
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The coordinate space CSV NN potential is obtained by
Fourier transformation of Eq. (16):

V NN
CSV(r) = V NN

vac (r) + V NN
med (r), (17)

where V NN
vac (r) represents the CSV NN potential in vacuum

and V NN
med (r) is the correction owing to density-driven mixing.

Explicitly V NN
vac (r) and V NN

med (r) are given by

V NN
vac (r) = −T +

3

gπgηa1

48πM2
N

[
m5

πU (xπ ) − m5
ηU (xη)

m2
η − m2

π

]
, (18a)

V NN
med (r) = −T +

3

gπgη

48πM2
N

{
a′

1

[
m3

πU (xπ ) − m3
ηU (xη)

m2
η − m2

π

]

+
(

a′
1

8M2
N

+ b′
1

)[
m5

πU (xπ ) − m5
ηU (xη)

m2
η − m2

π

]}
,

(18b)

where

U (xi) = Y0(xi)(σ1 · σ2) + S12(r̂)Y2(xi), (19a)

Y2(xi) =
(

1 + 3

xi

+ 3

x2
i

)
Y0(xi), (19b)

S12(r̂) = 3(σ1 · r̂)(σ2 · r̂) − (σ1 · σ2), (19c)

and where xi = mir , i = π, η, and Y0(xi) = e−xi

xi
.

Because mesons and nucleons are not point particles and
they have internal structures, one must incorporate vertex
corrections which, in principle, can be calculated using
renormalizable models based on hadronic degrees of freedom.
In the present calculation, the following phenomenological
form factors are used to incorporate the vertex corrections:

Fi(q2) =
(

�2
i − m2

i

�2
i + q2

)
, i = π, η, (20)

where �i is the cutofff parameter. With the inclusion of form
factors, Eqs. (18a) and (18b) reduce to

V NN
vac (r) = −T +

3

gπ gηa1

48πM2
N

{[
aπm5

πU (xπ ) − aηm
5
ηU (xη)

m2
η − m2

π

]

− λ

[
bπm5

πU (Xπ ) − bηm
5
ηU (Xη)

m2
η − m2

π

]}
, (21)

and

V NN
med (r) = −T +

3

gπ gη

48πM2
N

(
a′

1

[
aπm3

πU (xπ ) − aηm
3
ηU (xη)

m2
η − m2

π

]

+
(

a′
1

8M2
N

+ b′
1

)[
aπm5

πU (xπ ) − aηm
5
ηU (xη)

m2
η − m2

π

]

− λ

{
a′

1

[
bπm3

πU (Xπ ) − bηm
3
ηU (Xη)

m2
η − m2

π

]

+
(

a′
1

8M2
N

+b′
1

)[
bπm5

πU (Xπ ) − bηm
5
ηU (Xη)

m2
η − m2

π

]})
,

(22)

where Xi = �ir and

ai =
(

�2
j − m2

j

�2
j − m2

i

)
, (23a)

bi =
(

�2
j − m2

j

m2
j − �2

i

)
, i �= j, (23b)

λ =
(

m2
η − m2

π

�2
η − �2

π

)
. (23c)

B. Pseudovector coupling

Now we consider pseudovector (PV) coupling of nucleons
to the mesons to describe πNN and ηNN interactions, which
are represented by the following effective Lagrangians:

LPV
πNN = − gπ

2MN

�̄γ5γ
µ∂µτ · �π�, (24a)

LPV
ηNN = − gη

2MN

�̄γ5γ
µ∂µ�η�, (24b)

where �, �, τ , and g are defined in Sec. II A, and the vertex
factors �j = igj γ5γ

µqµ (j = π, η). The mixing self-energy
in vacuum is given by


(N)
vac (q2) = 4i

(
gπ

2MN

)(
gη

2MN

) ∫
d4k

(2π )4

×
{
q2

[
M2

N − k · (k + q)
] − 2q · (k + q)(k · q)(

k2 − M2
N

)[
(k + q)2 − M2

N

] }
.

(25)

Note that the preceding integral is also divergent and we
use dimensional regularization to isolate singularities, which
reduces to


(N)
vac (q2) = gπgη

8π2

{
−1

ε
+ γE − ln(4πµ2)

+
∫ 1

0
dx ln

[
M2

N − q2x(1 − x)
]}

q2, (26)

where ε, µ, and γE were discussed previously. It is to be
noted that, unlike PS coupling, the singularity in Eq. (26)
is not proportional to the mass term. Therefore, simple
subtraction of the neutron loop contribution from the proton
loop contribution, as for ρ-ω mixing in vacuum [23], removes
the divergent parts. Thus, the finite π -η mixing amplitude in
vacuum is found to be


PV
vac(q2) = gπgη

4π2

[
q2 ln

(
Mp

Mn

)

+ q

√
4M2

p − q2 tan−1

(
q√

4M2
p − q2

)

− q

√
4M2

n − q2 tan−1

(
q√

4M2
n − q2

)]
. (27)

Similar to PS coupling, the leading-order contribution of
the mixing amplitude in a vacuum is given by


PV
vac(q2) = −a2q2, (28)
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where a2 = gπ gη

4π2 ln(Mp/Mn). Notice, that the leading-order
contributions of π -η mixing amplitudes in vacuum are the
same for both PS and PV coupling.

The three-momentum-dependent medium part of π -η mix-
ing self-energy reads



(N)
med(q2) = − gπgη

8π2MN

×
[

q2kN + q
(

k2
N − q2

4

)
ln

(
q + 2kN

q − 2kN

)]
.

(29)

The leading-order contribution of the medium part of the
mixing amplitude, generated by the difference between the
proton and neutron loop contributions, is


PV
med(q2) = −b′

2q2, (30)

where

b′
2 = gπgη

4π2

(
kp

Mp

− kn

Mn

)
. (31)

Notice that the density-dependent mixing amplitude in
PV coupling differs from that of PS coupling only by the
term a′

1, which makes a difference between the medium part
of the CSV potentials. The momentum space potential is
given by

V NN
CSV(q2) = T +

3

gπ gη

4M2
N

(σ1 · q)(σ2 · q)

× 
PV
πη(q2)(

q2 + m2
π

)(
q2 + m2

η

)[
1 − q2

8M2
N

− P2

2M2
N

]
.

(32)

In deriving Eq. (32), contributions from the external leg
are considered and given within the square brackets. These
contributions are same as that of PS coupling. From this
momentum space CSV NN potential, one can obtain the
coordinate space potential:

V NN
vac (r) = −T +

3

gπ gηa2

48πM2
N

[
m5

πU (xπ ) − m5
ηU (xη)

m2
η − m2

π

]
, (33a)

V NN
med (r) = −T +

3

gπ gηb
′
2

48πM2
N

[
m5

πU (xπ ) − m5
ηU (xη)

m2
η − m2

π

]
. (33b)

Equations (33a) and (33b) show the coordinate space CSV
NN potential without form factors. It should be noted that the
CSV potentials in vacuum are the same for both PS and PV
couplings, whereas the density-dependent parts are different.
With form factors, Eqs. (33a) and (33b) reduce to

V NN
vac (r) = −T +

3

gπ gηa2

48πM2
N

{[
aπm5

πU (xπ ) − aηm
5
ηU (xη)

m2
η − m2

π

]

− λ

[
bπm5

πU (Xπ ) − bηm
5
ηU (Xη)

m2
η − m2

π

]}
, (34a)

0 500 1000 1500
q (MeV)

-0.02

0

0.02

 ∆
V

(q
2 )(

G
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-2
)

∆V
vac

∆V
PV

med

 ∆V
PS

med

FIG. 4. Difference between CSV nn and pp potentials in
momentum space.

V NN
med (r) = −T +

3

gπgηb
′
2

48πM2
N

{[
aπm5

πU (xπ ) − aηm
5
ηU (xη)

m2
η − m2

π

]

− λ

[
bπm5

πU (Xπ ) − bηm
5
ηU (Xη)

m2
η − m2

π

]}
. (34b)

III. RESULTS

In this section we present numerical results. All the figures
show the difference between CSV nn and pp potentials in
1S0 state. To obtain the density-dependent CSV potential, we
consider the nuclear matter density ρB = 0.148 fm−3 and the
asymmetry parameter α = 1/3.

Figure 4 shows the difference between CSV nn and
pp potentials in momentum space. The dotted and dashed
curves represent density-dependent contributions of PS and
PV couplings, respectively. The difference in the contributions
of the density-dependent part of the CSV potential for these
two types of coupling arises because of the term a′

1. The
vacuum contribution of CSV potentials for both PS and PV
couplings are the same, which is shown by the solid curve in
Fig. 4.

The CSV potential in coordinate space is presented in Fig. 5.
This figure shows the vacuum and medium contribution of the
CSV potential without form factors. The same contributions
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FIG. 5. Difference between CSV nn and pp potentials in coordi-
nate space without form factors.
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FIG. 6. Difference between CSV nn and pp potentials in coordi-
nate space with form factors.

with the form factors are demonstrated in Fig. 6. Both the
vacuum and the medium parts contribute with the same sign.
Note that CSV potentials change sign with the inclusion
of form factors. Figures 5 and 6 show that the medium
contribution near the core region is much larger than the
vacuum contribution.

The difference between nn and pp scattering lengths,
	a, was computed using the vacuum CSV potential con-
structed here using π -η mixing. It is found that 	a =

0.00082 fm without form factors and −0.0001 fm with form
factors.

IV. SUMMARY AND DISCUSSION

In the present work we constructed CS-violating two-body
potential driven by the mixing of π -η states. In particular
we discuss how such potential gets modified in the matter
because of matter-induced effects. It is observed that the
density-dependent contribution is larger than the vacuum
contribution near the core region. This density-dependent part
might contribute significantly to the CSV observables. We
estimate the contribution of π -η mixing to the difference of
pp and nn scattering lengths, 	a, where only the vacuum part
contributes. For both the density-dependent and the vacuum
parts, we find that the role of π -η mixing is smaller than that
of ρ-ω mixing [29,37].

We restrict ourselves to the hadronic model, which has rea-
sonable phenomenological success. In principle, such mixings
should be derived from quantum chromodynamics (QCD). It
would be interesting to compare the present estimates of the
mixing amplitude with calculations from other models, for
example, QCD in a large-Nc limit or the QCD sum rule. We
leave this for future investigation.
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