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The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to
accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-
radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state
properties of 4He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds
a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the
binding energies of the six-body nuclei 6He and 6Li with the JISP16 nuclear force. Again an excellent convergence
is observed.
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I. INTRODUCTION

The effective interaction method is one of the pillars of
contemporary nuclear many-body theory. Its roots can be
traced back to the early theoretical effort to bridge the gap
between the hard-core bare nucleon-nucleon (NN ) interaction
of the time and the soft phenomenological potential models
that were successfully employed in shell-model calculations
to reproduce nuclear properties. Over the years different
approaches have been developed to derive the effective inter-
action. The most notable are the Bloch-Horowitz equation, the
Brückner G matrix, the Kuo-Brown folded diagram method,
and the Lee-Suzuki similarity transformation. In contrast
with the many-body community, until the middle of the
1990s effective interactions were rarely used, if at all, in
nuclear few-body calculations. Into this field the effective
interaction was introduced by Navratil and Barrett [1] who
have performed a no-core shell-model (NCSM) calculation in
a harmonic-oscillator (HO) basis. By using the Lee-Suzuki
similarity transformation [2], Navratil and Barrett have shown
that an effective interaction leads to substantial acceleration
in the convergence of the HO expansion, and that reliable
convergent results can be obtained with this method.

By following the NCSM example, we have formulated an
effective interaction for the hyperspherical-harmonics (HH)
expansion [3]. The HH basis is not obtained from a confining
potential, which is different from the HO case, and therefore
leads to a better description of the asymptotic tail of the wave
function and, consequently, of low-energy observables. By
constructing an effective interaction for the HH one aims to
keep this advantage intact. The Hilbert space for the HH basis
is an outer product of hyper-radial and hyperspherical sections.
The hyperspherical part exhibits a very slow convergence for
potentials with a strong short-range repulsion. Therefore, in
such cases it is desirable to construct an effective interaction
that accelerates the convergence of the hyperspherical
expansion. Similar problems do not exist for the hyper-radial
part which thus should be left untouched. Consequently, one
is led into a solution where the model space is defined through
the hyperspherical (grand) angular momentum quantum
number K while the hyper-radial coordinate ρ appears in the

HH effective interaction as a parameter. The starting point in
constructing this effective interaction is a pseudo-two-body
Hamiltonian that contains the hyperspherical kinetic energy
but no hyper-radial derivatives. The HH effective interaction
(EIHH) derived that way is by construction state dependent
and, in addition, it depends on the collective hyper-radial
coordinate ρ. As has been shown in various applications
(see, e.g., [4–9]) the EIHH technique leads to a tremendous
acceleration of the HH convergence rate.

The introduction of modern potential models, such as
the CD-Bonn [10] or the effective-field-theory (EFT) NN +
NNN potentials [11–13], poses a new challenge to the
EIHH method. In contrast with local realistic NN + NNN

potentials, such as the Argonne AV18 NN force [14] and the
Urbana IX three-nucleon force [15], the CD-Bonn and the
EFT potentials are nonlocal, and therefore the existing EIHH
formalism is not suitable to deal with them.

In this work we describe a generalization of the EIHH
method to also accommodate nonlocal forces. In this for-
mulation we aim to retain the advantages of the HH expan-
sion, in particular the previously mentioned good long-range
behavior. For simplicity we shall restrict the discussion to
two-body interactions. A generalization of our results to the
full nuclear Hamiltonian, also including three-body forces, is
straightforward.

The paper is organized as follows. In Sec. I we briefly
review the original formulation of the EIHH method for local
potentials. In Sec. II we describe its generalization to nonlocal
forces. Numerical results presenting the merits of the EIHH
method for nonlocal forces are given in Sec. III.

II. OUTLINE OF THE EIHH METHOD—LOCAL
POTENTIALS

In the effective interaction approach [3,16,17] the lowest
eigenvalues of an A-body Hamiltonian,

H [A] = H0 + V, (1)

are treated in the following way. The Hilbert space of H [A] is
divided into a model space and a residual space through the
use of the eigenprojectors P and Q of H0, which satisfy the
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relations

[H0, P ] = [H0,Q] = 0, QH0P = PH0Q = 0,
(2)

P + Q = 1.

The Hamiltonian H [A] is then replaced by the effective model
space Hamiltonian

H [A]eff = PH0P + PV [A]effP, (3)

which by construction has the same energy levels as the
low-lying states of H [A]. In general the effective interaction
appearing in Eq. (3) is an A-body interaction. Its construction
is as difficult as finding the full-space solutions. Therefore,
one has to approximate V [A]eff . However, one must build the
approximate effective potential in such a way that it coincides
with the bare one for P −→ 1, so that an enlargement of the
model space leads to a convergence of the eigenenergies to the
true values. The NCSM and the EIHH methods are developed
along these lines.

In the HH formalism a Hamiltonian

H [A] =
A∑

i=1

p 2
i

2m
+

A∑
i<j

vij (4)

for A particles with particle momenta pi and equal masses m

is written as

H [A] = Tρ + TK (ρ) + V [A](ρ,�A), (5)

where

V [A](ρ,�A) ≡
A∑

i<j

vij (6)

denotes the bare two-body potential and

Tρ = − 1

2m
�ρ, TK (ρ) = 1

2m

K̂2
A

ρ2
(7)

are the hyper-radial and hypercentrifugal kinetic energies,
respectively. In the previous equation �ρ is the Laplace
operator with respect to the hyper-radial coordinate

ρ =
√√√√ N∑

j=1

η2
j , (8)

where the various ηj denote the N = A − 1 Jacobi vectors,
while K̂A is the hyperspherical grand angular momentum
operator and �A the (3A − 4)-dimensional hyperangle. The
wave function is expanded into the HH series,

� =
∑

[KA]n

Cn[KA]Rn(ρ)Y[KA](�A) , (9)

where Rn(ρ) are the hyper-radial basis functions and
Y[KA](�A) are the hyperspherical-harmonics functions cou-
pled with the internal degrees of freedom to yield a completely
antisymmetric wave function with definite angular momentum
and isospin ([KA] stands for a set of quantum numbers, see
Ref. [3]). The shortcoming of the HH expansion is the slow
convergence of the HH series for realistic nuclear forces. On
the contrary, usually only a small number of hyper-radial

basis states, Rn, is needed. It is therefore desirable to design
an effective interaction that accelerates the hyperspherical
convergence. These considerations lead to the natural choice
of H0 = TK (ρ) for the unperturbed Hamiltonian [3]. Accord-
ingly, the model space P is defined as the complete set
of HH basis functions with generalized angular momentum
quantum number KA � KP , and the Q space as the complete
set of HH basis functions with KA > KP . The states will
be denoted by {|p〉, p = 1, 2, . . . , nP } for the P space and
{|q〉, q = np+1, np+2, . . . , nQ} for the Q space. Of course, in
principal one has nQ −→ ∞, but for actual calculations one
has to consider a finite Q space but with a sufficiently large nQ.

For each value ρ of the hyper-radius an effective adiabatic
Hamiltonian is constructed,

H[A]eff(ρ,�A) = PTK (ρ)P + P V [A]eff(ρ,�A) P. (10)

We would like to emphasize that in Eq. (10) ρ has to be
regarded as a parameter, while the dynamics is described by
the variable �A.

As already pointed out, the effective potential would
be a complicated A-body interaction, therefore V [A]eff is
approximated by a sum of two-body terms

V [A]eff �
A∑

i<j

v
[2]eff
i,j . (11)

Owing to the use of antisymmetric wave functions one only
needs to calculate the effective interaction operator relative to
one pair, since

〈V [A]eff〉 �
〈

A∑
i<j

v
[2]eff
i,j

〉
= A(A − 1)

2

〈
v

[2]eff
A,A−1

〉
. (12)

The two-body effective potential v
[2]eff
A,A−1 is determined as

follows. First, for each value ρ of the hyper-radial coordinate
one defines a quasi-two-body adiabatic Hamiltonian contain-
ing the hypercentrifugal kinetic energy and the bare potential
between the last two particles

H[2](ρ ; �A,A−1) = TK (ρ) + vA,A−1(ρ,�A,A−1) , (13)

where the hyperangle �A,A−1 = (θA,A−1, η̂A,A−1) is related to
the Jacobi vector

ηA,A−1 =
√

1

2
(rA − rA−1) (14)

through the relation

ηA,A−1 = ρ sin θA,A−1η̂A,A−1. (15)

The Hamiltonian of Eq. (13) is then transformed into the A-
body HH basis,

H[2]
[KA],[K ′

A](ρ) = δ[KA],[K ′
A]KA(KA + 3N − 2)

1

2m

1

ρ2

+ v
[2]
[KA],[K ′

A](ρ), (16)

and diagonalized. Here

v
[2]
[KA],[K ′

A](ρ) =
∫

d�A Y∗
[KA](�A)vA,A−1(ρ,�A,A−1)

×Y[K ′
A](�A). (17)
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Such a diagonalization is easily performed because ρ is only
a parameter in H[2] (there are no derivatives with respect to
ρ) and for each value of ρ the Hamiltonian H[2](ρ ; �A,A−1)
depends only on three variables. This is just due to our choice
of the A-(A − 1) pair. The obtained eigenstates will be denoted
by |ϕj (ρ)〉 as they are continuous functions of ρ.

One proceeds with applying the Lee-Suzuki [2] similarity
transformation to H[2] in order to get the corresponding
Hermitian effective Hamiltonian

H[2]eff(ρ) = U†(ρ)H[2](ρ)U(ρ), (18)

where

U(ρ) = [P + ω(ρ)]
1√

P [1 + ω†(ρ)ω(ρ)]P
. (19)

The operator ω(ρ) is obtained using the following property
[2]:

ω(ρ) = Qω(ρ) P. (20)

The matrix ω(ρ) is calculated for each value of ρ taking the
nP states |ϕj (ρ)〉 with the lowest eigenvalues. Each of these
states leads to the following system of (nQ − nP ) equations:

〈q|ϕj (ρ)〉 =
∑

p

〈q|ω(ρ)|p〉 〈p|ϕj (ρ)〉. (21)

The nP (nQ − nP ) matrix elements 〈q|ω(ρ)|p〉 are obtained by
solving this equation system (21). Once the effective quasi-
two-body Hamiltonian H[2]eff is constructed, the effective
potential is obtained by a subtraction of the hypercentrifugal
kinetic energy

v
[2]eff
A,A−1 = H[2]eff(ρ) − TK (ρ). (22)

Using this ρ-dependent effective potential and taking into
account Eqs. (10)–(12) one solves the A-body problem with
the effective Hamiltonian

H [A]eff = Tρ + H[A]eff = Tρ + TK +
∑
i<j

v
[2]eff
ij (23)

in the P space. One repeats the procedure, enlarging the P

space up to a convergence of the low-lying energies of the
A-body system.

We would like to emphasize the following points: (i) The
hyper-radius is a parameter rather than a coordinate, and v[2]eff

is determined for various fixed ρ values; therefore, while
being a two-body interaction, it depends on the whole A-body
system via this collective coordinate. (ii) There is an additional
dependence of v[2]eff on the quantum number KA−2 of the
residual system [see Eqs. (19) and (20) of Ref. [3]]. (iii) It is
evident thatU(ρ) −→ 1 for P −→ 1 and thus v[2]eff converges
to the bare vA,A−1; therefore the energy spectrum converges to
the exact one. (iv) Via the operator U(ρ) the effective potential
v[2]eff contains information about a large part of the PQ space
interaction, hence the convergence to the exact eigenvalues of
H [A] is accelerated with respect to the normal HH expansion.

III. HYPERSPHERICAL EFFECTIVE INTERACTION FOR
NONLOCAL POTENTIALS

In the HO effective interaction approach there is no
principal difference in the treatment of local and nonlocal
forces. Therefore, in the HH case one might be tempted to
follow the same steps as in the preceding section, that is, to
define TK (ρ) as H0, to keep ρ as a parameter, and to substitute
the potential

vA,A−1(ρ,�A,A−1; ρ ′,�′
A,A−1) = vA,A−1(r, r ′)

in Eq. (13), in order to get the following quasi-two-body
Hamiltonian:

H[2](ρ �A,A−1; ρ ′�′
A,A−1)

= TK (ρ) + vA,A−1(ρ,�A,A−1; ρ ′,�′
A,A−1). (24)

By doing so one immediately realizes that such a H[2] is non-
Hermitian since for a given parameter set ρ 	= ρ ′ one has

vA,A−1(ρ,�A,A−1; ρ ′,�′
A,A−1)

	= v∗
A,A−1(ρ,�′

A,A−1; ρ ′,�A,A−1).

A possible remedy to this problem is to include the hyper-
radial kinetic energy term in the quasi-two-body Hamiltonian
so that ρ will become a dynamic variable. Such a step forces
an enlargement of the model space to include not only HH
states but also hyper-radial states. In the following we will
point out that an effective interaction derived from a quasi-
two-body Hamiltonian containing Tρ will be either useless
or will ruin the asymptotic behavior of the wave function,
which is one of the most important advantages of the HH
method.

To illustrate this point we include Tρ into H0 [H0 =
Tρ + TK (ρ)]. The eigenfunctions of H0 are then given by
ϕE = 1/(qρ)3N/2−1JK+(3N−2)/2(qρ)Y(�A) that have eigenval-
ues E = q2/(2m) [here Jν(x) are the Bessel functions]. It is
now evident that the spectrum becomes independent of the HH
quantum numbers and for each HH state there is an infinite
number of hyper-radial states. This leads to important conse-
quences for the construction of the corresponding effective in-
teraction from the quasi-two-body H[2] = H0 + vA,A−1 with a
realistic (i.e., nonconfining), two-nucleon potential vi,j . In fact,
at a sufficiently high energy the kinetic energy term becomes
dominant, leading to eigenfunctions similar to the functions
ϕE discussed previously. Consequently, at some point the
effective interaction constructed that way will be completely
ineffective in folding HH states into the P space. One could
change this picture by including a confining potential V0 to H0,
which, of course, eventually will be subtracted. This would be
very similar to the effective interaction in the HO case and
would lead to an asymptotic behavior of the hyper-radial basis
states Rn which is determined by the confining V0. Thus one
would obtain nonphysical basis states. Therefore, we limit
our attention to the choice H0 = TK (ρ), and seek a way to
construct an HH effective interaction based on the same P

and Q spaces as in the preceding section. It is evident that for
ρ = ρ ′ the quasi-two-body Hamiltonian H[2], Eq. (24), is a
Hermitian operator in the HH space. In that specific case H[2]

is local and v
[2]eff
[KA],[K ′

A](ρ, ρ) can be constructed following the

064001-3



BARNEA, LEIDEMANN, AND ORLANDINI PHYSICAL REVIEW C 81, 064001 (2010)

steps outlined in Sec. I. Using this result we can approximate
the nonlocal effective interaction through the relation

v
[2]eff
[KA],[K ′

A](ρ, ρ ′) = v
[2]
[KA],[K ′

A](ρ, ρ ′) + δ(ρ − ρ ′)

× [
v

[2]eff
[KA],[K ′

A](ρ, ρ) − v
[2]
[KA],[K ′

A](ρ, ρ)
]
.

(25)

In this expression all nonlocal effects regarding the hy-
perspherical coordinates are incorporated, while the hyper-
radial part of the nonlocality remains excluded. Because the
hyper-radius is a so-called slow variable and, in addition,
because NN forces show only moderate nonlocalities this
formulation of the HH effective interaction should be rather
satisfactory.

Equation (25) represents a nonlocal HH effective interac-
tion derived from the diagonal hyper-radial matrix element
of H[2] in the position representation. This derivation can
be generalized to an arbitrary hyper-radial basis. Consider a
complete set of hyper-radial states {Rn(ρ); n = 1, . . .}. The
matrix elements of the quasi-two-body Hamiltonian between
basis states of the form Rn(ρ)Y[KA] are given by

H[2]
n[KA],n′[K ′

A] = δ[KA],[K ′
A]KA(KA + 3N − 2)

× 1

2m
〈n| 1

ρ2
|n′〉 + v

[2]
n[KA],n′[K ′

A], (26)

where

v
[2]
n[KA],n′[K ′

A] =
∫

dV dV ′ R∗
n(ρ)Y∗

[KA](�A)vA,A−1

× (ρ,�A,A−1; ρ ′,�′
A,A−1)Rn′(ρ ′)Y[K ′

A](�
′
A)

(27)

and

〈n| 1

ρ2
|n′ 〉 =

∫
ρ3A−4 dρ R∗

n(ρ)
1

ρ2
Rn′ (ρ). (28)

In this representation, the parameters ρ, ρ ′ are replaced by the
indices n, n′, and H[2] is Hermitian in the HH sector only if
n = n′. Setting n = n′, Eq. (26) can be used as a starting point
for deriving an effective interaction v

[2]eff
n[KA],n[K ′

A], following the

procedure in Sec. II for the Hamiltonian H[2]
[KA],[K ′

A](ρ). The

resulting n-diagonal effective interaction v
[2]eff
n[KA],n[K ′

A] can then
be used to define an effective interaction of the form

v
[2]eff
n[KA]n′,[K ′

A] = v
[2]
n[KA],n′[K ′

A] + δn,n′
(
v

[2]eff
n[KA],n[K ′

A] − v
[2]
n[KA],n[K ′

A]

)
.

(29)

This procedure is valid for an arbitrary choice of hyper-
radial basis functions. The question is which of this choices
will lead to a better effective interaction (i.e., to a faster
convergence of the HH expansion). Before answering this
question through numerical experiments, we would like to put
it in a different form. Assume that {Rn(ρ); n = 1, . . . , N} is
our hyper-radial basis of choice, truncated at some n = N . This
basis can be used to diagonalize any Hermitian hyper-radial

operator Ô(ρ, ρ ′),

ÔRÔ
ν (ρ) = λνR

Ô
ν (ρ), (30)

where

RÔ
ν (ρ) =

N∑
n=1

Uν,nRn(ρ) (31)

and Uν,n are the eigenvectors of the matrix Ôn,n′ = 〈Rn|Ô|Rn′ 〉
that we approximate through Gaussian integration. Obviously
the basis {RÔ

ν } is defined by the operator Ô, and we can replace
the quest for the best basis set by a quest for the best operator
Ô. Using this transformation the effective interaction takes the
form

v
[2]eff
n[KA]n′,[K ′

A] =
∑
ν,ν ′

U−1
n,ν

[
v

[2]
ν[KA],ν ′[K ′

A]

+ δν,ν ′
(
v

[2]eff
ν[KA],ν[K ′

A] − v
[2]
ν[KA],ν[K ′

A]

)]
Uν ′,n′

= v
[2]
n[KA],n′[K ′

A] +
∑

ν

U−1
n,ν

(
v

[2]eff
ν[KA],ν[K ′

A]

− v
[2]
ν[KA],ν[K ′

A]

)
Uν,n′ . (32)

Possible choices for Ô may be Ô = 1, Ô = ρ̂, or in general
Ô = ρ̂m. In the limit N −→ ∞ and with accurate numerical
integration, the operators of the form Ô = ρ̂m, m 	= 0 lead to
the position representation regardless of the value of m. For a
finite basis, however, this equivalence does not hold and some
values of m might be better than others. The choice Ô = 1,
the identity operator, is equivalent to retaining our original
arbitrary basis. These various possibilities are explored in
Sec. IV.

To conclude this section we would like to discuss different
possibilities of extending the nonlocal effective interaction
to off-diagonal hyper-radial potential matrix elements. It is
evident that one can Hermitize the interaction by considering
v

[2]
n[KA],n′[K ′

A] + v
[2]
n′[KA],n[K ′

A], which then leads to an effective

potential (v[2]
n[KA],n′[K ′

A] + v
[2]
n′[KA],n[K ′

A])
eff . This can then be used

for the following approximation of the off-diagonal matrix
elements:

v
[2]eff
n[KA],n′[K ′

A] = 1
2

[(
v

[2]
n[KA],n′[K ′

A] + v
[2]
n′[KA],n[K ′

A]

)eff

+ (
v

[2]
n[KA],n′[K ′

A] − v
[2]
n′[KA],n[K ′

A]

)]
. (33)

Another possibility is given by the introduction of a new hyper-
radial state

|n + n′〉 = |n〉 + |n′〉 (34)

with the subsequent calculation of the effective interaction
v

[2]eff
n+n′[KA],n+n′[K ′

A]. In addition, if we assume the approximations

v
[2]eff
n+n′[KA],n+n′[K ′

A] = v
[2]eff
n[KA],n[K ′

A] + v
[2]eff
n′[KA],n′[K ′

A]

+ v
[2]eff
n[KA],n′[K ′

A] + v
[2]eff
n′[KA],n[K ′

A], (35)

v
[2]eff
n[KA],n′[K ′

A] − v
[2]eff
n′[KA],n[K ′

A] = v
[2]
n[KA],n′[K ′

A] − v
[2]
n′[KA],n[K ′

A],

(36)
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one finds

v
[2]eff
n[KA],n′[K ′

A] = 1
2

(
v

[2]eff
n+n′[KA],n+n′[K ′

A] − v
[2]eff
n[KA],n[K ′

A]

− v
[2]eff
n′[KA],n′[K ′

A] + v
[2]
n[KA],n′[K ′

A] − v
[2]
n′[KA],n[K ′

A]

)
.

(37)

We tested the effective interactions from Eqs. (33)–(37), but
they did not lead to an improvement of the HH convergence.
This is probably due to the mixing of bare and effective
interactions in Eqs. (33)–(37).

A more promising possibility, which we did not yet explore
numerically, can be obtained in the following way. In addition
to Eq. (34), one considers

|n − n′〉 = |n〉 − i|n′〉 (38)

and calculates the diagonal effective interaction for each of the
hyper-radial states |n ± n′〉. Besides using Eq. (35), one also
uses the approximation

v
[2]eff
n−n′[KA],n−n′[K ′

A] = v
[2]eff
n[KA],n[K ′

A] + v
[2]eff
n′[KA],n′[K ′

A]

− iv
[2]eff
n[KA],n′[K ′

A] + iv
[2]eff
n′[KA],n[K ′

A]. (39)

The off-diagonal matrix elements v
[2]eff
n[KA],n′[K ′

A] can then be
deduced from Eqs. (35) and (39).

IV. RESULTS AND DISCUSSION

The Idaho-N3LO NN force of Entem and Machleidt [12]
is a typical example of a modern EFT potential model. In
this section we study the binding energy and radius of 4He
with this interaction as a first test case for the quality of the
nonlocal EIHH method presented in Sec. III. As second test
case we will then consider the ground-state energies of 6He
and 6Li with the nonlocal JISP16 nuclear force [18]. In our
calculation we take the symmetrized HH basis functions of
[19] and the hyper-radial functions

Rn(ρ) =
√

n!

(n + αL)!
b−3(A−1)/2

(ρ

b

)(αL−3A+4)/2

×LαL

n (ρ/b) exp[−ρ/(2b)], (40)

where LαL
n (x) are the associated Laguerre polynomials, b =

0.3 fm is a range parameter, and the Laguerre parameter αL is
taken to be 5.

In order to work with the nonlocal Idaho-N3LO force we
use a representation of the potential model on a HO basis
(�HO = 30 MeV, Nmax = 20, Jmax = 4). With the bare poten-
tial we obtain a 4He ground-state energy of −25.37(2) MeV
and a 4He radius of 1.515(4) fm. By comparing with other high-
precision results for 4He ground-state energy [−25.38 MeV
[20], −25.37 MeV [20,21], −25.39(1) MeV [22], and radius
(1.516 fm [20], 1.515(2) fm [22]], one finds excellent agree-
ment (see also Table I). Thus, it is evident that our treatment of
the Idaho-N3LO NN potential leads to sufficiently accurate
results.

Now we turn to the numerical tests for the nonlocal
effective interaction. In Fig. 1 we present a comparison of
results for different effective interactions (i.e., calculated for

TABLE I. Convergence of the HH expansion for the 4He ground-
state energy (in MeV) and the 4He ground-state energy for the 4He
radius root-mean-square radius (in fm) with the bare nonlocal Idaho-
N3LO potential and with the corresponding effective interaction
using O = 1/ρ2. Corresponding results with other methods are also
given.

Kmax Bare Effective

〈H 〉
√

〈r2〉 〈H 〉
√

〈r2〉
2 −3.507 1.935 −17.773 1.620
4 −13.356 1.523 −22.188 1.533
6 −20.135 1.446 −24.228 1.496
8 −23.721 1.451 −25.445 1.498
10 −24.617 1.470 −25.363 1.506
12 −25.115 1.491 −25.439 1.515
14 −25.259 1.501 −25.398 1.516
16 −25.310 1.509 −25.390 1.518
18 −25.359 1.513 −5.385 1.518
20 −25.370 1.515 −25.381 1.518

−25.37(2) 1.515(4) −25.38(1) 1.518(1)

HH [20] −25.38 1.516
FY [20,21] −25.37 −
NCSM [22] −25.39(1) 1.515(2)

different operators Ô according to the prescription given in the
preceding section). In these calculations we have have used
N = 30 hyper-radial basis functions. From the results in the
figure one can infer that Ô = 1/ρm, with m > 1, leads to the
best results. It means that in spite of the principle equivalence
of Ô = ρ and Ô = 1/ρ2, in practice a stronger decreasing
function of ρ has an apparent advantage. By comparing the
results for bare and effective interaction one sees that with
the effective interaction a very good convergence is already
obtained with K = 8, whereas for the bare potential one needs
to go up to K = 14 for a similarly good convergence.
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FIG. 1. (Color online) The ground-state energy of the 4He nucleus
with the Idaho N3LO NN force [12]. A comparison between different
nonlocal HH effective interactions that correspond to different choices
of the operator O (see text).
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FIG. 2. (Color online) The ground-state energies of 6He and 6Li
with the bare JISP16 nuclear force [18] and with the corresponding
nonlocal effective interaction taking Ô = 1/ρ2; dashed lines: extrap-
olated final results for the bare JISP16 force.

In Table I we illustrate the convergence patterns for effective
(Ô = 1/ρ2) and bare interactions in greater detail. Besides the
results for the 4He ground-state energy we also list those for
the 4He radius. One sees from the inspection of the table that
for the bare interactions one needs to go up to Kmax = 16 and
18 for the ground-state energy and radius, respectively, if one
requests a convergence precision of 0.3%. For the effective
interaction one has a completely different scenario. In fact,
Kmax = 8 (ground-state energy) and 12 (radius) are already
sufficient for such high-precision results. As the convergence
pattern of the EIHH method is usually unknown we make
the following estimates. In the case of a monotonic conver-
gence for at least the four highest Kmax values we take twice the
difference of the last two calculated Kmax points. Otherwise,
we try to give an estimate by considering the overall picture.

In Fig. 2 we show the results for the ground-state energies of
the six-body nuclei 6He and 6Li with the JISP16 nuclear force.
It is readily seen that one has essentially converged results with

the effective interaction for both nuclei with a very low Kmax

value, namely Kmax = 6. The convergence of the bare JISP16
potential (taken from [23]) is by comparison much slower.
Even for the highest considered Kmax value, Kmax = 14,
converged results are not yet obtained. However, the very
regular convergence patterns allow us to make extrapolations
to determine approximate final results (dashed lines in Fig. 2).
In Table II we present the 6He, 6Li ground-state energies as a
function of Kmax. From the table it can be seen that the effective
interaction results predicts an extra binding of 200–300 keV
with respect to the extrapolated HH bare calculations [23] as
well as with the extrapolated NCSM calculations [24] that
agree with each other. At first sight, this discrepancy seems
to be too large in view of the estimated extrapolation errors
of [23,24] (see [24] for a detailed analysis). However, without
a theorem for the convergence pattern of the ground-state
energy, the estimated extrapolation error is at best an educated
guess. Further investigations would be needed before one can
conclude whether there is a real contradication between the
results of the various methods.

We summarize our results as follows. We have extended
the formulation of the effective interaction hyperspherical-
harmonics approach to nonlocal two-body potentials. In the
derived effective interaction all nonlocal effects regarding
the hyperspherical coordinates are incorporated, while the
hyper-radial part of the nonlocality remains excluded. Because
the hyper-radius is a so-called slow variable and because NN

forces show only moderate nonlocalities, this formulation of
the HH effective interaction turns out to be rather satisfactory.
In fact, we have tested this effective interaction in applications
with four- and six-body nuclei. In the case of 4He we have used
the Idaho N3LO NN potential and calculated 4He ground-state
energy and radius with bare and effective interactions. For both
observables a much faster HH convergence is obtained with
the effective interaction. For the 6He and 6Li we calculated the
ground-state energies with the JISP16 nuclear force. With the
present computer resources it was not possible to obtain in [23]
converged HH results for the bare interaction, but the regular
convergence pattern allowed us to extrapolate the final results.

TABLE II. Convergence of the HH expansion for the 6He, 6Li ground-state energies (in
MeV) with the bare nonlocal JISP16 potential and with the corresponding effective interaction
using O = 1/ρ2. Corresponding results with the NCSM method are also given.

Kmax
6He 6Li

Bare Effective Bare Effective

2 −11.043 −37.792 −10.422 −40.622
4 −18.366 −27.670 −19.392 −30.635
6 −24.103 −29.049 −26.124 −31.718
8 −26.391 −28.858 −28.854 −31.614
10 −27.560 −28.964 −30.155 −31.643
12 −28.112 −28.963 −30.797 −31.671

14 −28.424 – −31.132 –
−28.96(3) −31.67(3)

HH (extrap.) [23] −28.70(13) −31.46(5) –
NCSM (extrap. A) [24] −8.68(12) −31.43(12)
NCSM (extrap. B) [24] −28.69(5) −31.44(5)
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On the contrary, with the effective interaction convergence
was reached with a rather small effective interaction model
space. In addition these results agree quite well with the
extrapolated results for the bare interaction. All this shows that
use of the nonlocal EIHH leads to very reliable results. For the
future the possibility now exists of using the EIHH approach
for nonlocal NN potentials for microscopic calculation of

continuum reactions with six-body nuclei via the Lorentz
integral transform method [25,26].
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