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Constraints on models for the initial collision geometry in ultrarelativistic heavy ion collisions
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Monte Carlo simulations are used to compute the centrality dependence of the collision zone eccentricities
(ε2,4), for both spherical and deformed ground state nuclei, for different model scenarios. Sizable model dependent
differences are observed. They indicate that measurements of the second and fourth order Fourier flow coefficients
v2,4, expressed as the ratio v4

(v2)2 , can provide robust constraints for distinguishing between different theoretical
models for the initial-state eccentricity. Such constraints could remove one of the largest impediments to a more
precise determination of the specific viscosity from precision v2,4 measurements at the Relativistic Heavy Ion
Collider (RHIC).
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Energetic collisions between heavy ions at the Relativistic
Heavy Ion Collider (RHIC), produce a strongly interacting
quark gluon plasma (QGP). In noncentral collisions, the
hydrodynamic-like expansion of this plasma [1–6] results in
the anisotropic flow of particles in the plane transverse to
the beam direction [7,8]. At midrapidity, the magnitude of
this momentum anisotropy is characterized by the even order
Fourier coefficients;

vn = 〈ein(φp−�RP )〉, n = 2, 4, . . . , (1)

where φp is the azimuthal angle of an emitted particle,
�RP is the azimuth of the reaction plane and the brackets
denote averaging over particles and events. The elliptic flow
coefficient v2 is observed to dominate over the higher order
coefficients in Au + Au collisions at RHIC (i.e., vn ∝ (v2)

n
2

and v2 � 1) [9,10].
The magnitudes and trends of v2,4 are known to be sensitive

to the transport properties of the expanding partonic matter
[3,4,6,11–17]. Consequently, there is considerable current
interest in their use for quantitative extraction of the specific
shear viscosity, i.e., the ratio of shear viscosity η to entropy
density s of the plasma. Such extractions are currently being
pursued via comparisons to viscous relativistic hydrodynamic
simulations [16–18], transport model calculations [14,15]
and hybrid approaches which involve the parametrization of
scaling violations to ideal hydrodynamic behavior [10,12,13].
In all cases, accurate knowledge of the initial eccentricity ε2,4

of the collision zone, is a crucial unresolved prerequisite for
quantitative extraction of η

s
.

To date, no direct experimental measurements of ε2,4 have
been reported. Thus, the necessary theoretical estimates have
been obtained by way of the overlap geometry corresponding
to the impact parameter b of the collision, or the number of
participants Npart in the collision zone. A robust constraint
for Npart values can be obtained via measurements of the
final hadron multiplicity or transverse energy. However,
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for a given value of Npart, the theoretical models used to
estimate ε2 give results which differ by as much as ∼25%
[19,20]—a difference which leads to an approximate factor of
two uncertainty in the extracted η/s value [16]. Therefore,
an experimental constraint which facilitates a clear choice
between the different theoretical models is essential for further
progress toward precise extraction of η/s.

In ideal fluid dynamics, anisotropic flow is directly propor-
tional to the initial eccentricity of the collision zone. A constant
ratio for the flow coefficients v4

(v2)2 ≈ 0.5 is also predicted [21].
It is well established that initial eccentricity fluctuations also
influence the magnitude of v2,4 significantly [5,10,21–23], i.e.,
the presence of these fluctuations serve to increase the value
of v2,4. Therefore, one avenue to search for new experimental
constraints, is to use ε2,4 as a proxy for v2,4 and study
the model dependencies of their magnitudes and trends vs.
Npart. In this communication we present calculated results of
ε2,4 for collisions of near-spherical and deformed isotopes,
for the Glauber [22,24] and the factorized Kharzeev-Levin-
Nardi (fKLN) [25,26] models, i.e., the two primary models
currently employed for eccentricity estimates. We find sizable
differences, both in magnitude and trend, for the the ratios

ε4
(ε2)2 obtained from both models. This suggests that systematic
comparisons of the measurements for the Npart dependence
of the ratio v4

(v2)2 for these isotopic systems, can give direct
experimental constraints for these models.

Monte Carlo (MC) simulations were used to calculate
event averaged eccentricities (denoted here as ε2,4) within
the framework of the Glauber (MC-Glauber) and fKLN
(MC-KLN) models, for near-spherical and deformed nuclei
which belong to an isobaric or isotopic series. Here, the
essential point is that, for such series, a broad range of ground
state deformations have been observed for relatively small
changes in the the number of protons or neutrons [27,28].
For each event, the spatial distribution of nucleons in the
colliding nuclei were generated according to the deformed
Woods-Saxon function:

ρ(r) = ρ0

1 + e(r−R0(1+β2Y20(θ)+β4Y40(θ)))/d
, (2)
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where R0 and d are the radius and diffuseness parameters
and β2,4 are the deformation parameters which characterizes
the density distribution of the nucleus about its polarization
axis (z′).

To generate collisions for a given centrality selection, the
orientation of the polarization axis for each nucleus (θ1, φ1 and
θ2, φ2, respectively) was randomly chosen in the coordinate
frame whose z axis is the beam direction. For each collision, the
values for Npart and the number of binary collisions Ncoll were
determined within the Glauber ansatz [24]. The associated ε2,4

values were then evaluated from the two-dimensional profile
of the density of sources in the transverse plane ρs(r⊥), using
modified versions of MC-Glauber [24] and MC-KLN [26],
respectively.

For each event, we compute an event shape vector Sn and
the azimuth of the the rotation angle �∗

n for nth harmonic of
the shape profile [29]:

Snx ≡ Sn cos (n�∗
n ) =

∫
dr⊥ρs(r⊥)ω(r⊥) cos(nφ), (3)

Sny ≡ Sn sin (n�∗
n ) =

∫
dr⊥ρs(r⊥)ω(r⊥) sin(nφ), (4)

�∗
n = 1

n
tan−1

(
Sny

Snx

)
, (5)

where φ is the azimuthal angle of each source and the weight
ω(r⊥) = r⊥2. The eccentricities were calculated as

ε2 = 〈cos 2 (φ − �∗
2 )〉, ε4 = 〈cos 4 (φ − �∗

2 )〉, (6)

where the brackets denote averaging over sources, as well as
events belonging to a particular centrality or impact param-
eter range. For the MC-Glauber calculations, an additional
entropy density weight was applied reflecting the combination
of spatial coordinates of participating nucleons and binary
collisions [19,23]:

ρs(r⊥) ∝
[

(1 − α)

2

dNpart

d2r⊥
+ α

dNcoll

d2r⊥

]
, (7)

where α = 0.14 was constrained by multiplicity measure-
ments as a function of Npart for Au + Au collisions [30].

The procedures outlined above [cf. Eqs. (2)–(7)] ensure
that, in addition to the fluctuations which stem from the orien-
tation of the initial “almond-shaped” collision zone [relative to
the impact parameter], the shape-induced fluctuations due to
nuclear deformation are also taken into account. Note that ε2,4

[cf. Eq. (6)] correspond to v2,4 measurements in the so-called
participant plane [22,24]. That is, the higher harmonic ε4

is evaluated relative to the principal axis determined by
maximizing the quadrupole moment. This is analogous to the
measurement of v4 with respect to the second order event-plane
in actual experiments. One consequence is that the density
profile is suppressed, as well as the moment for the higher
harmonic.

Calculations were performed for a variety of isotopes
and isobars with a broad range of known β2,4 values.
Here, we show and discuss only a representative set of
results for 197Au (R = 6.38 fm, β2 = −0.13, β4 = −0.03),
148Dy (R = 5.80 fm, β2 = 0.00, β4 = 0.00), and 158Dy

FIG. 1. Calculated values of ε2,4 vs. Npart for MC-Glauber (open
symbols) and MC-KLN (closed symbols) for Au + Au collisions (a)
and near-spherical 148Dy and deformed 158Dy as indicated in (b).

(R = 5.93 fm, β2 = 0.26, β4 = 0.06) [27,28]. For these cal-
culations we used the value d = 0.53 fm.

Figure 1(a) shows a comparison of ε2,4 vs. Npart for
MC-Glauber (open symbols) and MC-KLN (filled symbols)
for Au + Au collisions. The filled symbols indicate larger ε2,4

values for MC-KLN over most of the considered Npart range.
The effect of shape deformation is illustrated in Fig. 1(b)
where a comparison of ε2,4 vs. Npart (for MC-Glauber) is
shown for the two Dy isotopes indicated. Both ε2 and ε4

show a sizable increase for the isotope with the largest
ground state deformation (158Dy). This reflects the important
influence of shape-driven eccentricity fluctuations in collisions
of deformed nuclei [31–34]. The magnitudes and trends of all
of these eccentricities are expected to influence the measured
values of v2,4 for these systems.

A priori, the model-driven and shape-driven eccentricity
differences shown in Fig. 1, need not be the same for
ε2 and ε4. Therefore, we present the ratio ε4

(ε2)2 vs. Npart,

for both models in Fig. 2. The ratios obtained for 148Dy
(near-spherical) and 158Dy (deformed) with MC-Glauber are
compared in Fig. 2(a); the same comparison is given in
Fig. 2(b) but for MC-KLN calculations. Figure 2(a) indicates
a significant difference between the ratio ε4

(ε2)2 for 148Dy and
158Dy over the full range of Npart considered. This difference
stems from additional shape-driven fluctuations present in in
collisions of 158Dy, but absent in collisions of 148Dy. The same
comparison for MC-KLN results, shown in Fig. 2(b), points to
a smaller difference for these ratios, as well as a different Npart

dependence. We attribute this to the difference in the transverse
density distributions employed in MC-Glauber and MC-KLN.

For a given value of Npart, the measured ratio of the flow co-
efficients v4

(v2)2 for 158Dy + 158Dy and 148Dy + 148Dy collisions,
are expected to reflect the magnitude and trend of the ratio ε4

(ε2)2

(note that a constant ratio ≈ 0.5 is predicted for ideal hydro-
dynamics without the influence of fluctuations [21]). Figure 2
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FIG. 2. Comparison of ε4
(ε2)2 vs. Npart for near-spherical 148Dy

(filled symbols) and deformed 158Dy (open symbols) collisions.
Results are shown for MC-Glauber (a) and MC-KLN (b), respectively.

suggests that a relatively clear distinction between fKLN-like
and Glauber-like initial collision geometries could be made
via systematic studies of v4

(v2)2 for near-spherical and deformed
isotopes/isobars. Specifically, a relatively smaller (larger)
difference between the ratios v4

(v2)2 for each isotope, would
be expected for fKLN (Glauber) initial geometries. Similarly
the scaling of v2,4 data from the isotopic or isobaric pair would
be expected only for MC-Glauber or MC-KLN eccentricities.
Note that the influence of a finite viscosity is expected to be the
same for both systems and therefore would not change these
conclusions.

The filled symbols in Figs. 2(a) and 2(b) also suggest a sub-
stantial difference in the ε4

(ε2)2 ratios predicted by MC-Glauber
and MC-KLN, respectively, for collisions between near-
spherical nuclei. This difference is also apparent in Fig. 3(a)
where the calculated ratios for Au + Au (β2 = −0.13, β4 =
−0.03) collisions are shown. The MC-KLN results (filled
circles) indicate a relatively flat dependence for 40 � Npart �
200, which contrasts with the characteristic decrease, for the
same Npart range, seen in the MC-Glauber results.

As discussed earlier, each of these trends is expected to
influence the measured ratios of the flow coefficients v4

(v2)2 .
Therefore, an experimental observation of a relatively flat
Npart dependence for v4

(v2)2 (over the range 40 � Npart � 200),
could be an indication for fKLN-like collision geometries in
Au + Au collisions. Such a trend has been observed in the
preliminary and final data sets reported in Refs. [10,21,35] and
is consistent with the conclusions reached in Refs. [10,36] that
the Npart and impact parameter dependence of the eccentricity
scaled flow coefficients v2

ε2
and v4

ε4
favor fKLN-like initial

collision geometries.
The closed symbols in Figs. 2(b) and 3(a) indicate a decreas-

ing trend for ε4
(ε2)2 for near-spherical nuclei for Npart � 200.

This decrease can be attributed to the fact that, in each event,
ε4 is computed in the reference frame which maximizes the

FIG. 3. Npart dependence of ε4
(ε2)2 (a), ε4(m)

(ε2(m))2 (b), and R(m)
(R) (c) for

Au + Au collisions (see text). The open and closed symbols indicate
the results from MC-Glauber and MC-KLN, respectively.

quadrupole shape distribution, i.e., the so-called participant
frame. In this frame, ε4 can take on positive or negative event-
by-event values. Consequently, smaller mean values are ob-
tained, especially in the most central collisions. Figure 2 shows
that the relatively large ground state deformation for 158Dy
(open symbols) leads to an increase of ε4

(ε2)2 (relative to that for

the spherical 148Dy isotope) which is especially pronounced
in the most central collisions. However, Fig. 3(a) shows that
the modest deformation for the Au nuclei does not lead to
a similarly increasing trend for Npart � 200 as implied by
data [21,35].

The relatively flat Npart dependence for v4
(v2)2 , over the range

40 � Npart � 200 in Fig. 3(a), suggests fKLN-like collision
geometries. Consequently, it is interesting to investigate
whether or not the magnitude of the ratios for Npart � 200,
can be influenced without significant impact on the values
for Npart � 200. Figure 3(b) shows that a large increase of

ε4
(ε2)2 can indeed be obtained for Npart � 200 with relatively
little change in the magnitude and trend of the ratios for
Npart � 200. This was achieved by introducing a correlation
or mixing (m) between the principal axes of the quadrupole
(�∗

2 ) and hexadecapole (�∗
4 ) density profiles associated with

ε2 and ε4, respectively. That is, the orientation of �∗
2 was

modified to obtain the new value �∗∗
2 = (1 − γ )�∗

2 + γ�∗
4 ,

where γ = 0.2. This procedure is motivated by the finding that,
in addition to the v4 contributions which stem from the initial
hexadecapole density profile, experimental measurements
could also have a contribution from v2 [with magnitude
∝ (v2)2] [29,37]. The correlation has little, if any, influence
on the ε2 values, but does have a strong influence on ε4

(ε2)2 in
the most central collisions. This is demonstrated in Fig. 3(c)
where the double ratio R(m)

R [R(m) = ε4(m)
(ε2(m))2 and R = ε4

(ε2)2 ] is
shown.

In summary, we have presented results for the initial
eccentricities ε2,4 for collisions of near-spherical and deformed
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nuclei, for the two primary models currently employed for
eccentricity estimates at RHIC. The calculated ratios for

ε4
(ε2)2 , which are expected to influence the measured values
of v4

(v2)2 , indicate sizable model dependent differences (both in
magnitude and trend) which can be exploited to differentiate
between the models. The ε4

(ε2)2 ratios obtained as a function of
Npart for Au + Au collisions with the fKLN model ansatz, show
trends which are strongly suggestive of the measured ratios
for v4

(v2)2 observed in Au + Au collisions for 40 � Npart � 200.
For more central collisions (Npart � 200), the observed trend

is strongly influenced by initial eccentricity fluctuations if a
correlation between the principal axes of the quadrupole and
hexadecapole density profiles is assumed. New measurements
of v4

(v2)2 for collisions of near-spherical and deformed isotopes
(or isobars) are required to exploit these tests.
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