
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 81, 061602(R) (2010)

Elastic scattering of 8B from 12C with internal three-cluster structure of 8B

K. Horii,1,* M. Takashina,1,2,3 T. Furumoto,3,4 Y. Sakuragi,3,5 and H. Toki1
1Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan

2Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
3RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5Department of Physics, Osaka City University, Osaka 558-8585, Japan

(Received 19 April 2010; published 17 June 2010)

We study theoretically the elastic scattering of 8B from 12C at Elab = 95 MeV. The 8B nucleus consists of
weakly bound 7Be and proton, while the 7Be nucleus has an internal cluster structure of α + 3He. We treat the
last proton in 8B in the adiabatic recoil approximation and also take into account the excitation of 7Be including
resonance states by a coupled-channel method with consideration of the cluster structure. It turns out that the
excitation to the resonance state of 7Be in 8B is important for the 8B elastic scattering.
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Owing to the development of radioactive nuclear beams we
have now a powerful experimental tool for studying unstable
nuclei. Of particular interest is to use a halo nucleus as a
projectile and to measure elastic and inelastic scattering cross
sections. A halo nucleus has the feature that the binding
energy of the last nucleon is extremely small and therefore
the spatial extent of the halo nucleon (nucleons) is very large.
It is interesting to investigate theoretically the role of the halo
nucleon (nucleons) in the elastic and inelastic processes.

It is known that 8B is a typical example of halo nucleus:
The binding energy of the last proton is only 0.137 MeV and
8B has a proton halo structure with the core 7Be nucleus [1].
Therefore, some authors have attempted to describe the elastic
scattering of 8B by including the 8B → 7Be + p breakup
effect [2,3]. Meanwhile, this system has another interesting
feature that the core 7Be nucleus is also a weakly bound system
of α + 3He, the separation energy of which is 1.583 MeV,
and has a well-developed cluster structure. As shown recently
for the case of the α + 12C cluster states in 16O [4], the
rotational coupling between the well-developed cluster states
is considerably strong. Indeed, the 7Be-induced reaction has
been analyzed by taking into account the excitation to the
α + 3He cluster states [5], which includes the resonance states,
as well as the bound excited one. In this sense, it is interesting to
study how these weakly bound systems p + 7Be and α + 3He
play their roles in the elastic scattering of 8B with a target
nucleus, where the breakup energy into the three body-system
α + 3He + p is only 1.72 MeV.

The purpose of this Rapid Communication is to study
theoretically the elastic scattering cross section of 8B with
12C at Elab = 95 MeV [6] as an example of elastic scattering
of halo nuclei with an internal cluster structure of the core. In
principle, we should formulate this elastic scattering process
in terms of the three-cluster structure of 8B and the target
nucleus. This means that we have to deal with a four-body
scattering problem, which should be a large-scale calculation.
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However, the halo property of the 8B nucleus in the elastic
scattering reminds us of the study of weakly bound deuteron
elastic scattering in terms of the sudden approximation [7]. In
this approximation, the elastic scattering amplitude is written
as the coherent sum of the proton scattering amplitude with
the other neutron as a spectator, and the neutron scattering
amplitude with the other proton as a spectator. It was shown
that the sudden approximation gave the equivalent result to
that of the continuum-discretized coupled-channel (CDCC)
calculation [7]. When we apply the sudden approximation to
the case of a halo nucleus, the scattering process is described
as the sum of the component of the valence nucleon scattering
with the core as a spectator, and that of the core with the valence
nucleon as a spectator. It is expected that the contribution of
the former component is very small compared to that of the
latter one owing to the difference of the mass between the
core nucleus and the valence nucleon, and therefore, can be
dropped off. The similar idea has already been suggested by
Johnson et al. [8] in the study of elastic scattering of halo nuclei
using a new type of adiabatic approximation, which we call
as adiabatic recoil approximation. In their method, the halo
nucleon is treated as a spectator and its effect is treated by the
form factor and the recoil effect through the mass difference
between the core nucleus and the projectile one (core plus halo
nucleon). Namely, the elastic scattering cross section is written
in terms of the cross section of the pointlike projectile nucleus
with the target nucleus scattering by the core-target interaction
and the form factor of the halo nucleon.

As has been mentioned, 8B consists of three clusters.
The binding energy of the last proton with the rest (EB =
0.137 MeV) is much smaller than that of α + 3He in 7Be
(EB = 1.583 MeV), and the spatial extension of the halo
proton is much larger than that of the α + 3He system.

This fact indicates that the halo proton is weakly coupled
with 7Be and should act as a spectator in the collision
process. Hence, we may be able to apply the adiabatic recoil
approximation for the elastic scattering of 8B by assuming
the motion of the halo proton is adiabatic in the course of the
elastic scattering. However, when one of the two clusters in the
core 7Be nucleus make collision with the target nucleus, both
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clusters make strong interaction with one another because they
are spatially close. In other words, the cluster structure of the
core nucleus 7Be is expected to make a dynamical contribution
to the scattering process, and hence, we ought to describe
this process in terms of the coupled-channel (CC) approach.
Considering the preceding specific feature of 8B, we formulate
the 8B elastic scattering and investigate how each dynamical
system plays its role in the elastic scattering process.

In the present Rapid Communication, we take the following
two steps: adiabatic treatment for the halo nucleon and
dynamical treatment of the core nucleus. We first describe
the adiabatic recoil approximation [8] to deal with a halo
nucleon as spectator, in which the projectile nucleus is treated
as a pointlike particle. Here we denote the projectile by
A = C + h, while the target nucleus is denoted by B. The
Hamiltonian of the total system is written as

H = TR + Tρ + VCh + VCB + VhB, (1)

where TR indicates the kinetic energy between the projectile
A and the target B. The interaction between the core nucleus
C and the target B is written as VCB , and that between the halo
nucleon h and B as VhB . We are then supposed to solve the
following Schrödinger equation:

H�(+)(ρ, R) = E�(+)(ρ, R), (2)

where ρ and R are the relative coordinate between C and h

and that between A and B, respectively. When R is sufficiently
large, �(+)(ρ, R) is written as

�(+)(ρ, R) = ϕ(ρ)eıK·R + outgoing waves. (3)

Here, K is the relative momentum between the projectile and
target nuclei and relates with the total energy E as E = h̄2K2

2µ
,

where µ = MA+MB

MAMB
is the projectile-target reduced mass. The

internal wave function ϕ(ρ) is obtained by solving the equation

(Tρ + VCh)ϕ(ρ) = −εϕ(ρ). (4)

In the adiabatic recoil approximation, the energies ε of all
states in the projectile nucleus are replaced with that of the
ground state ε0, and interaction between the halo nucleon
and the target VhB is dropped off, where the interaction VhB

includes the Coulomb potential between the proton and the
target. Then Eq. (2) for the three-body scattering problem
is now reduced to the equation for easily solvable two-body
problem:

(TR + VCB − E0)�(+)
AD(ρ, R) = 0, (5)

where E0 = E + ε0. The total wave function can be written as
a factorized form,

�
(+)
AD(ρ, R) = ϕ(ρ)eiahK·ρχ (+)

K (R′), (6)

where ah = Mh

Mh+MC
, R′ is the relative coordinate between C

and B, and Eq. (5) is reduced to the equation for χ
(+)
K (R′) as

[TR′ + VCB(R′) − E0]χ (+)
K (R′) = 0. (7)

It should be noted that the kinetic energy TR′ contains the
projectile-target reduced mass µ, and χ

(+)
K (R′) describes the

elastic scattering of the pointlike projectile nucleus with the
reduced mass µ, by the interaction VCB . The T matrix of the
elastic scattering is

Tel =
∫

dρ

∫
d Rϕ∗(ρ)e−ıK ′ ·RVCB(R′)�(+)

AD(ρ, R)

= F ( Q)

[∫
d R′e−ıK ′ ·R′

VCB(R′)χ (+)
K (R′)

]
. (8)

Finally, the elastic scattering cross section in the adiabatic
recoil approximation is written as

(
dσ

d�

)
el

= |Tel|2 = |F ( Q)|2
(

dσ

d�

)
point

, (9)

where

F ( Q) ≡
∫

dρ|ϕ(ρ)|2eı Q·ρ (10)

is the form factor and Q = ah(K − K ′). The elastic scattering
cross section is expressed as that of the pointlike projectile
nucleus with the target multiplied by the form factor of the
halo nucleon.

Even after we have expressed the elastic scattering cross
section of the 8B + 12C system in the adiabatic recoil approxi-
mation in the three-body picture of the 7Be + p + 12C system,
we still have to work out the scattering of the 7Be core with the
internal cluster structure of α + 3He and the target nucleus 12C
as the next step, because dynamical excitation of the α + 3He
cluster degree of freedom in 7Be is essentially important [5]
in a proper description of 7Be scattering by target nuclei, as
discussed earlier. Of course, the scattering wave function of
this step is in principle different from χ

(+)
K (R′) of Eq. (7),

because χ
(+)
K (R′) is for the elastic scattering of the pointlike

8B projectile nucleus with an inert 7Be core. Instead of solving
Eq. (7), we solve the CC equations considering the excitation
effect of the 7Be nucleus, and the resultant elastic scattering
cross section is substituted into the pointlike projectile nucleus
scattering cross section ( dσ

d�
)point in Eq. (9).

Before proceeding to this step, we first analyze the
experimental data of 7Be elastic scattering to test the validity
of the present CC framework. To include the dynamical effect
of 7Be in the 7Be + 12C elastic scattering, we solve the CC
equation

[
− h̄2

2µ′ ∇′2 + Uββ(R′) − (E0 − εβ)

]
χ̃β(R′)

=
∑
β ′ �=β

Uββ ′(R′)χ̃β ′(R′), (11)

where µ′ = MC+MB

MCMB
(core-target reduced mass), β and β ′

represent channels labeled by the states of 7Be, and Uββ ′(R′)
represents the diagonal (β = β ′) or coupling (β ′ �= β)
potential. For 12C, we only consider the ground state, because
its excitation effect is expected to be small compared with the
7Be excitation effect [5,9]. In the present study, the real part
of the nuclear potential is given by the double-folding model
(DFM). Generally, the DFM potential consists of the direct
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and exchange parts as

Vββ ′ =
∑

i∈C,j=∈B

[〈ij |vD|ij 〉 + 〈ij |vEX|ji〉]

= V D
ββ ′ + V EX

ββ ′ . (12)

The direct part is written in the form as

V D
ββ ′ (R′) =

∫
ρC

ββ ′ (r1)ρB(r2)vD(ρ,E/A, s) d r1d r2, (13)

where s = r2 − r1 + R′, and the exchange part is

V EX
ββ ′ (R′) =

∫
ρC

ββ ′(r1, r1 + s)ρB(r2, r2 − s)vEX(ρ,E/A, s)

× exp

{
ik(R′) · s

µ′

}
d r1d r2. (14)

In Eqs. (13) and (14), ρC
ββ ′ represents the transition density

between the state in the channel β and that in the channel β ′ of
the core nucleus C (7Be), while ρB represents the ground-state
density of the target nucleus B. The density matrix ρ(r, r′) in
Eq. (14) is approximated in the same manner as in Ref. [10]

ρ(r, r′) = 3

keff
F · s

j1
(
keff
f · s

)
ρ

(
r + r′

2

)
, (15)

where keff
f is the effective Fermi momentum [11] defined by

keff
F =

{
(3π2ρ)2/3 + 5Cs[
ρ2]

3ρ2
+ 5 
2 ρ

36ρ

}1/2

, (16)

where we adopt Cs = 1/4 following Ref. [12]. For the effective
nucleon-nucleon potential, we adopt the CDM3Y6 interaction
[13]. Because CDM3Y has no imaginary part, we assume that
the shape of the imaginary part is that of the real potential.
Then, the diagonal or coupling potential is written as

Uββ ′ (R′) = (1 + ıNW )Vββ ′(R′) + V coul
ββ ′ (R′), (17)

where V coul
ββ ′ (R′) is the double-folded Coulomb potential, and

NW is the normalization factor for the imaginary potential,
which is determined phenomenologically.

In the CC calculation, we include the ground ( 3
2

−
), 1

2
−

,
7
2

−
, and 5

2

−
states in 7Be. The former two states are bound

states, while the latter ones are resonance states. Their diagonal
and transition densities are given by the following procedure:
Because it is known that 7Be has a well-developed α + 3He
cluster structure, we first assume that the 7Be wave function is
written as

�C
I� = φD

[
φE

1
2

× ϕ
(I )
� (r)

]
I
, (18)

where φD(φE
1
2

) is the α(3He) cluster wave function of Gaussian

type with an appropriate size. The 3He has a half intrinsic
spin φE

1
2

and couples with the relative wave function ϕ
(I )
� (r)

between α and 3He to total spin I . Thus, the two bound
states and the two resonance states mentioned earlier are the
spin doublet in the 2p state (� = 1) and that in the 1f state
(� = 3), respectively, where we take into account the Pauli
principle between the clusters. We assume that ϕ

(I )
� (r) can be

obtained by a simple potential model calculation, namely, the

TABLE I. The potential parameters for α-3He relative motion.
Vce and Vls are the strength parameters for the central part and the
spin-orbit part, respectively. The quantities R0 and RC are the radii
of the nuclear potential and of the Coulomb potential and a0 is the
diffuseness parameter.

Vce Vls R0 RC a0

(MeV) (MeV) (fm) (fm) (fm)

3/2−, 1/2− 93.8 4.0 2.05 2.05 0.70
7/2−, 5/2− 90.0 7.0 2.05 2.05 0.70

separation energy method, in which the potential geometry is
assumed to be the Woods-Saxon type for the central part and
the Thomas type with the Woods-Saxon form factor for the
spin-orbit part. The potential parameters for the ground and
1
2

−
states are determined so as to reproduce the separation

energies to α and 3He, the values of which are 1.58 and
1.14 MeV for the 3

2
−

and 1
2

−
states, respectively, and the

root-mean-square matter radius of the ground state is 2.40 fm.
The potential parameters are listed in Table I, which gives the
quadrupole moment of the ground state Qm = −5.36 fm2 and
electric transition strength B(E2, g.s. → 1

2
−

) = 15.3 e2 fm4

(where g.s. stands for ground state). These results are similar to
those of the RGM (resonating-group-method) calculation [14]:
Qm = −4.89 fm2 and B(E2, g.s. → 1

2
−

) = 22.7 e2 fm4. For

the remaining resonance states ( 7
2

−
and 5

2

−
), the potential

parameters are determined so as to reproduce the α + 3He
scattering phase shifts [15], including the resonance energies
3.12 and 5.16 MeV, and we use the momentum-bin prescription
in the CDCC method [9] to make a wave packet. Using the
obtained 7Be wave function �C

I�, the diagonal or transition
density is defined as

ρC
ββ ′ (r1) = 〈

�C
I�

∣∣∑
i

δ(ri − r1)
∣∣�C

I ′�′
〉
. (19)

The quantum numbers associated with the spins are indicated
by β in the left-hand side of Eq. (19). The density matrix in
Eq. (15) is given by the density calculation (19). ρB in Eqs. (13)
and (14) is the ground-state density of 12C, for which we use
the one obtained by the 3α RGM calculation [16].

First, we study the elastic scattering of the 7Be nucleus
from the target nucleus by solving the preceding CC equation.
Because the experiment was performed with a mixed target
of 12C and 14N [6], we calculate the elastic scattering cross
sections for both 12C and 14N targets and sum them with the
appropriate ratio. The 14N density is derived from the observed
electron-scattering charge form factor. The normalization
factor NW for the imaginary potential in Eq. (17) is assumed
to be common for the 12C and 14N targets, and is chosen as
0.2 by fitting the full CC calculations to the experimental data.
The calculated results are smeared with an angular resolution
of 1◦ and are shown in Fig. 1. The dot-dashed curve represents
the result of the single-channel calculation, while the dotted,
dashed, and solid curves represent those of the CC calculations
adding the excitation channels one by one. The solid curve
is the full-channel calculation. It is found that the effect of
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FIG. 1. The elastic scattering cross section of 7Be with 12C and
14N targets. The solid circles are the experimental data, which are
taken from Ref. [6]. The dot-dashed curve represents the result of the
single-channel calculation, while the dotted, dashed, and solid curves
represent those of the CC calculations adding the excited states one
by one.

the CCs is important for bringing down the cross section at
the backward angles. Among the three states, the excitation
to the resonance state with 7

2
−

is found to have the largest
contribution to the elastic scattering.

We seem to miss slightly the cross sections around 8◦.
Based on the preceding results, we proceed to the next step:

We calculate the elastic scattering of 8B with a 12C target at
Elab = 95 MeV by using the adiabatic recoil approximation.
To obtain the pointlike projectile cross section ( dσ

d�
)point in

Eq. (9), we solve the same CC equation as the 7Be + 12C case
except for the reduced mass µ (instead of µ′) and the incident
energy Elab = 95 MeV (instead of Elab = 87 MeV). The form
factor F ( Q) in Eq. (10) is calculated from the p + 7Be wave

function ϕ(ρ), the size of which is chosen as 〈ρ2〉 1
2 = 4.51 fm

[17]. The result is shown in Fig. 2. The calculated angular
distribution is smeared with an angular resolution of 0.7◦. The
solid curve represents the result where the pointlike projectile
cross section is obtained by solving the full CC calculation
and is found to reproduce the experimental data (solid circles).
To see the excitation effect of 7Be in the process of the 8B
elastic scattering, we also show the cross section obtained by
using the pointlike projectile cross section with the single-
channel calculation by the dashed curve. Comparing the solid
and dashed curves, it is found that the core excitation effect is
significant at backward angles in the 8B elastic scattering.

We also study the proton breakup effects (8B → 7Be + p).
To estimate the effect of the 8B → 7Be + p breakup process on
the 8B + 12C elastic scattering, we perform the cluster folding
model calculation for the (7Be + p) + 12C system. As for the
potential between 7Be and 12C, we use the Woods-Saxon type,
and the parameters of which are determined so as to reproduce
the result of the full CC calculation as shown by the solid curve
in Fig. 1. In the search process, we use the computer code ALPS
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8B+12C elastic
Elab=95MeV

exp

Adiabatic Recoil

No core-ex.

Cluster Folding

FIG. 2. The elastic scattering cross section of 8B with 12C
calculated using the adiabatic recoil approximation. The experimental
data (solid circles) are taken from Ref. [6], where the natural carbon
target is used. The solid curve shows the result of the full calculation
including the excitation of the core 7Be nucleus, while the dashed
curve does not include the excitation of the core 7Be nucleus.
The dotted curve shows the results of the calculation with cluster
folding model under the same Hamiltonian of the adiabatic recoil
approximation.

[18]. Here, we drop the contribution of the p + 12C potential
for the cluster folding calculation so that we can compare this
calculation with the adiabatic recoil approximation under the
same assumption of Hamiltonian. Inclusion of the p + 12C
potential is found to give a small change on the cross section
at the forward angle. This fact shows that the contribution
of the p-12C Coulomb potential, which is dropped under the
adiabatic recoil approximation, causes a smaller cross section
at the forward angle. This approximation to drop the Coulomb
potential of the halo proton cannot be used for elastic scattering
with heavy nuclei as 208Pb, because the Coulomb interaction
becomes much larger than the light target case considered
here. The cluster folding model calculation with the preceding
7Be + 12C potential includes the excitation effect of 7Be but
does not include the 8B → 7Be + p breakup effect. The result
is shown by the dotted curve in Fig. 2. The difference between
the solid and dotted curves is smaller than that between the
solid and dashed curves especially at the backward angles,
which indicates that the 8B → 7Be + p breakup effect is not
crucial in the 8B elastic scattering process, compared with the
excitation effect of 7Be.

Finally, we show that the result does not depend largely on
the size of the halo in Fig. 3. The solid, dashed, and dotted
curves represent the results with the form factors of the halo

wave function, the sizes of which are 〈ρ2〉 1
2 = 4.51 [17], 3.73

[19], and 5.49 fm [20], respectively. From these results of
Figs. 2 and 3, it seems that the contribution of the valence
proton to the elastic scattering is small in spite of the small
separation energy. This implies that the conclusion on the
minor role of the 8B → 7Be + p breakup effect on the elastic
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FIG. 3. The elastic scattering cross section of 8B with 12C
calculated using the adiabatic recoil approximation. The solid,
dashed, and dotted curves represent the results with the form factors

of the halo wave function, the sizes of which are 〈ρ2〉 1
2 = 4.51 [17],

3.73 [19], and 5.49 fm [20], respectively. The inset shows the
corresponding form factors.

scattering will not change by a more detailed treatment of the
8B internal structure as an α + 3He + p three-body system.
Hence, it is essential to take into account the cluster structure
of 7Be and describe the inelastic excitation of the internal
cluster states for the description of 8B elastic scattering.

In summary, we have studied the elastic scattering of 8B
from 12C at Elab = 95 MeV. The interesting feature of 8B is the
halo structure of the last proton, which has the binding energy
of EB = 0.137 MeV. At the same time, the core nucleus 7Be
itself has a cluster structure with α and 3He, whose binding
energy is 1.583 MeV. Although, in principle, we should treat
the fragility of these three internal clusters α + 3He + p all
together, the difference of the binding energies between the
p + 7Be and α + 3He systems enables us to treat them in
the different approaches: The fact that the state of the proton
halo is especially fragile motivates us to use the adiabatic
recoil approximation. However, 7Be has an internal cluster
structure and the low-lying intrinsic states are considered in
the CC method. Although the elastic scattering of the halo
proton with the target nucleus contributes only slightly, the
core 7Be nucleus excitation to the resonance state is found to
be important in the scattering process of 8B.

The authors acknowledge fruitful discussions with
Dr. Taniguchi on the cluster structure of nuclei and its relation
with reactions. They also thank the members of the RCNP
theory group for constructive discussions.
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