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Parity-violating polarization in np → dγ with a pionless effective field theory
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We consider the two-nucleon weak interaction with a pionless effective field theory. Dibaryon fields are
introduced to ensure fast convergence of the perturbative expansion. Weak interactions are accounted for with
the parity-violating dibaryon-nucleon-nucleon vertices, which contain unknown weak coupling constants. We
apply the model to the calculation of a parity-violating observable in the radiative neutron capture on a proton at
threshold. Result is obtained up to the linear order of the weak dibaryon-nucleon-nucleon coupling constants. We
compare our result to the ones obtained from other approaches, and discuss investigation of the weak interaction
in few-body systems.
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I. INTRODUCTION

Weak nucleon-nucleon (NN ) interaction has recently been
formulated in the framework of effective field theory (EFT)
[1], where parity-violating (PV) weak NN potentials were
obtained up to next-to-next-to leading order in both pionful
and pionless theories. Weak potentials thus obtained were
subsequently employed in the calculation of PV observables
in the two-nucleon systems [2–4], and the results demonstrate
that the perturbative expansion converges reasonably, and thus
the EFT is a working tool for the description of weak NN

interaction at low energies.
In this work, we consider a pionless theory with dibaryon

fields, which are auxiliary fields describing the two-nucleon
states. Introducing a dibaryon field for the deuteron, we can
take into account the effective range contribution (γρd ∼
0.4) to the deuteron propagator up to infinite order, and it
consequently makes the convergence of the theory better than
the pionless EFT that does not have dibaryon fields. Since the
scattering lengths and the effective ranges are large in the two-
nucleon S states, summation of effective range contribution to
infinite order in the dibaryon formalism is especially useful
for the two-nucleon systems that are dominated by S states.
Parity-violating vertex in the pionless theory in Ref. [1]
consists of the multiplication of a two-nucleon field in an S

state with one in a P state. Given a rule to map a two-nucleon
state to the corresponding dibaryon field, we can obtain the PV
Lagrangian that describes the weak NN interaction in terms of
PV dibaryon-nucleon-nucleon or dibaryon-dibaryon vertices.
In this work, we obtain the PV Lagrangian with dibaryon
fields by transforming the two-nucleon fields in the S states
to the corresponding dibaryon ones, while the P states are
represented in terms of the two-nucleon fields. Then the weak
NN interaction is described with the PV dibaryon-nucleon-
nucleon (dNN) vertices, which have unknown weak dNN

coupling constants.

*hch@daegu.ac.kr

With the weak interaction thus obtained, we calculate
the PV polarization (Pγ ) in np → dγ at threshold. Parity-
violating polarization has been calculated with the weak
one-meson exchange potentials (conventionally referred to as
DDH potential [5]), and with a few strong interaction models
[6]. The results in Ref. [6] show substantial dependence on
the strong interaction model, and are dominated by the ρ- and
ω-meson exchange terms in the DDH potential. In the EFT, ρ,
ω, and heavier mesons are integrated out because their masses
are large scales in low-energy few-body processes, and their
contributions are embedded in the low-energy constants in the
NN contact terms. Because the PV polarization in np → dγ is
dominated by the heavy-meson terms in the DDH potential, if
it is considered in the EFT, only the contact terms are relevant.
Therefore, pionless theories provide a natural framework for
the investigation of the problem in the context of EFT. With the
weak interaction described by the PV dNN vertices, we calcu-
late Pγ and obtain the result up to linear order of the unknown
weak dNN coupling constants. We compare the result with the
ones obtained from other approaches, and discuss the problems
for the weak interaction at low energies in the few-body
system.

We outline the paper as the following. In Sec. II, we present
the parity-conserving and the parity-violating Lagrangians that
are relevant to the calculation in the work. In Sec. III, we obtain
the PV polarization in the unpolarized neutron capture on a
proton at threshold with the Lagrangians obtained in Sec. II,
and discuss the result. We summarize the paper and discuss
extension of the investigation to few-body systems in Sec. IV.

II. EFFECTIVE LAGRANGIAN

The parity-conserving part of the Lagrangian includes
strong and electromagnetic (EM) interactions. Parity-
conserving terms with dibaryon fields can be written as

LPC = LN + Ls + Lt + Lst , (1)

where LN , Ls , and Lt represent the strong interactions for the
nucleon, dibaryon in the 1S0 state, and dibaryon in the 3S1

state, respectively, and Lst the EM transition between the 1S0
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and the 3S1 states. Terms relevant to this work read

LN = N †
(

iv · D + 1

2mN

{(v · D)2 − D2}
)

N, (2)

Ls = σss
†
a

{
iv · D + 1

4mN

[(v · D)2 − D2] + �s

}
sa

− ys

{
s†a

[
NT P (1S0)

a N
] + H.c.

}
, (3)

Lt = σt t
†
i

{
iv · D + 1

4mN

[(v · D)2 − D2] + �t

}
ti

− yt

{
t
†
i

[
NT P

(3S1)
i N

] + H.c.
}
, (4)

Lst = L1

mN

√
r0ρd

[t†i s3Bi + H.c.], (5)

where the projection operators for the 1S0 and the 3S1 states
are defined, respectively, as

P (1S0)
a = 1√

8
σ2τ2τa, (6)

P
(3S1)
i = 1√

8
σ2σiτ2. (7)

In the nonrelativisitic limit, we assume v2 = 1 for the velocity
vector vµ, and the covariant derivative is defined as Dµ = ∂µ −
iVext

µ , where Vext
µ is the external vector field. Dibaryon fields in

the 1S0 and the 3S1 states are denoted by sa and ti , respectively,
and Bi is the magnetic field given by �B = ∇ × �Vext. σs and
σt are sign factors having a value −1, and �s and �t are the
mass difference between the dibaryon and the two-nucleon
states, �s,t = ms,t − 2mN . Low-energy constants ys and yt

are the strong dNN coupling constants, which are determined
from the empirical values of the effective ranges in the 1S0

and 3S1 states, respectively. We obtain ys = 2
mN

√
2π
r0

and yt =
2

mN

√
2π
ρd

, where r0 is the effective range in the 1S0 state and ρd

is the effective range for the deuteron. Low-energy constant
L1 is a photon-dibaryon-dibaryon coupling constant for the
M1 transition, and it will be determined from experiments.

Parity-violating terms for the two-nucleon weak interac-
tions can be written as

LPV =
∑
�I

L�I
PV, (8)

where �I denotes the isospin change at the PV vertex. Because
�(L + S + I ) is even and �L is odd at a PV vertex, �(S +
I ) = 1 for the two-nucleon system, and thus we have

LPV = L0
PV + L1

PV. (9)

Because the total angular momentum is conserved in the
interaction, parity admixtures allowed by the PV vertices for
the lowest orbital states are 1S0 ↔ 3P0, and 3S1 ↔ 1P1 due to
L0

PV, and 3S1 ↔ 3P1 due to L1
PV. As a result, nonrelativistic

P-odd and T-even Lagrangian for the neutron-proton system
with �I = 0 can be written as

L0
PV = h0s

dNN

2
√

2ρdr0m
5/2
N

s
†
3N

T σ2σiτ2τ3
i

2
(
←
∇ − →

∇)iN + H.c.

(10)

+ h0t
dNN

2
√

2ρdm
5/2
N

t
†
i N

T σ2τ2
i

2
(
←
∇ − →

∇)iN + H.c., (11)

where h0s
dNN and h0t

dNN denote the weak dNN coupling
constants. Spin-isospin operator σ2σiτ2τa in Eq. (10) projects
the two-nucleon system to the 3P0 state, and thus the PV vertex
in the equation produces 3P0 mixture in the 1S0 state. Similarly,
the operator σ2τ2 in Eq. (11) is the projection operator for the
1P1 state, and thus the term mixes the 1P1 state to the 3S1 state.
For the �I = 1 part, we have 3P1 admixture to the 3S1 state,
so the Lagrangian reads

L1
PV = i

h1
dNN

2
√

2ρdm
5/2
N

εijkt
†
i N

T σ2σjτ2τ3
i

2
(
←
∇ − →

∇)kN + H.c.

(12)

Lagrangians given by Eqs. (10), (11), (12) account for the weak
interactions between a neutron and a proton in the pionless
theory with dibaryon fields.

III. RESULT AND DISCUSSION

In the pionless theory, expansion parameters are Q/mπ or
Q/
, where Q is a small momentum, mπ the pion mass,
and 
 a symmetry breaking scale. Because the scattering
lengths and effective ranges in the 1S0 and the 3S1 states
are large, we count their inverse as small scales, that is,
(γ, 1/as, 1/at , 1/r0, 1/ρd ) ∼ Q. as(t) is the scattering length
in the 1S0(3S1) state, and γ = √

mNB, where B is the binding
energy of the deuteron. Propagators for the nucleon and the
dibaryon are counted as 1/Q2 and a loop integral contributes
an order of Q5.

Feynman diagrams for the PV amplitude at leading order
(Q0) are depicted in Fig. 1. Single straight and wavy lines
represent the nucleon and the photon fields, respectively.
Double line with solid circle denotes the dressed dibaryon
field. Because y ∝ r

−1/2
0 ∼ Q1/2, the order of a nucleon loop

inserted in the dibaryon propagator is Q0, which does not
change the order of the dibaryon propagator. Therefore, we
have to sum nucleon loops in the dibaryon propagators up to
infinite order, and the result of the summation is called the
dressed dibaryon field. Small dots at the dibaryon-nucleon-
nucleon vertices denote the strong dNN vertices proportional
to ys or yt , and the circles with a cross represent the weak
dNN vertices proportional to h0s

dNN, h0t
dNN, and h1

dNN. For
the photon-nucleon-nucleon coupling in Figs. 1(a)–1(c), we
employ the vertex function of the convection current given by

i�VNN(E1) = i

2mN

(1 + τ3)
1

2
( �p + �p′) · �ε∗

γ , (13)

where �p and �p′ are momenta for the incoming and outgoing
nucleons, respectively, and �ε∗

γ is the polarization of the outgo-
ing photons. For the weak photon-dibaryon-nucleon-nucleon
vertices in Figs. 1(d)–1(f), we assume minimal coupling to the
weak dNN vertex,

�∇ → �∇ − i
e

2
(1 + τ3) �Vext, (14)

where �Vext denotes the external photon field.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Leading order (Q0) PV diagrams for np capture. Single straight line denotes a nucleon, wavy line a photon, and a double line with
a solid circle stands for dressed dibaryon propagator. Circle with a cross represents a PV dNN vertex.

Parity-violating polarization Pγ in np → dγ is defined as

Pγ = σ+ − σ−
σ+ + σ−

, (15)

where σ+ and σ− are the total cross sections for the photons
with right and left helicities, respectively. Pγ was measured in
70s, and the result reads Pγ = (1.8 ± 1.8) × 10−7 [8]. Because
of the difficulty to measure the polarization of outgoing
photons in np → dγ , modern facilities with intense laser
beams are more interested in measuring PV asymmetry in
d �γ → np. Parity-violating asymmetry in d �γ → np has been
recently calculated with the DDH potential up to 10 MeV
above threshold [9,10]. Magnitude of the asymmetry is maxi-
mum at threshold and it decreases very quickly as the energy
increases. Since Pγ is equal to the PV asymmetry in d �γ → np

at threshold because of detailed balance, measurement of the
asymmetry at threshold can be directly related to Pγ .

Transition amplitude for the neutron-proton capture process
can be written as

iMnp = [Y �ε∗
d · (k̂ × �ε∗

γ ) − iZ�ε∗
d · �ε∗

γ ]NT P
(1S0)
3 N, (16)

where Y and Z are the parity-conserving and parity-violating
terms, respectively. At threshold parity-conserving amplitude
Y is dominated by the M1 transition, and we take the result in
Ref. [11],

Y =
√

2π

m2
N

√
γ

1 − γρd

[(1 + κV )(1 − γ as) − γ 2asL1], (17)

where κV = 3.706, γ = √
mNB = 45.7 MeV, ρd = 1.764 fm,

and as = −23.732 fm. Factor 1/(1 − γρd ) in the square root
originates from the infinite sum of the nucleon loop in the
dibaryon propagator. Low-energy constant L1 is fitted to the
np capture cross section at threshold, σexp = 334.2 ± 0.5 mb,
and we obtain L1 = −4.427 ± 0.015 fm [11]. Same as the
parity-conserving amplitude, transition also occurs from the
initial 1S0 state to the final 3S1 one for the parity-violating
amplitude Z. Each diagram in Fig. 1 gives the PV amplitude,

Za = −1

3

h0t
dNN

m2
N

√
mNρd

√
γ

1 − γρd

p2

γ 2 + p2
, (18)

Zb = −1

3

h0s
dNN

m2
N

√
mNρd

√
γ

1 − γρd

1
1
as

− 1
2 r0p2 + ip

γ 3 + ip3

γ 2 + p2
,

(19)

Zc = −1

3

h0t
dNN

m2
N

√
mNρd

√
γ

1 − γρd

1
1
as

− 1
2 r0p2 + ip

γ 3 + ip3

γ 2 + p2
,

(20)

Zd = 1

2

h0t
dNN

m2
N

√
mNρd

√
γ

1 − γρd

, (21)

Ze = 1

2

h0s
dNN

m2
N

√
mNρd

√
γ

1 − γρd

γ
1
as

− 1
2 r0p2 + ip

, (22)

Zf = −1

2

h0t
dNN

m2
N

√
mNρd

√
γ

1 − γρd

ip
1
as

− 1
2 r0p2 + ip

, (23)

where r0 = 2.70 fm. Taking the limit p → 0 at threshold, we
obtain the net PV amplitude,

Z = 1

m2
N

√
mNρd

√
γ

1 − γρd

×
[
h0t

dNN

(
1

2
− 1

3
γ as

)
+ 1

6
h0s

dNNγ as

]
, (24)

and the PV polarization Pγ at leading order reads

Pγ = −2
Re(YZ∗)

|Y |2

= −
√

2

πmNρd

(
1
2 − 1

3γ as

)
h0t

dNN + 1
6γ ash

0s
dNN

(1 + κV )(1 − γ as) − γ 2asL1

= −(
2.59h0t

dNN − 1.01h0s
dNN

) × 10−2. (25)

Parity-violating polarization depends on two weak coupling
constants h0t

dNN and h0s
dNN, and thus we cannot determine them

uniquely from a single measurement of Pγ at threshold. In
order to determine them unambiguously, we need more data for
Pγ at energies above threshold, or measurement of observables
that are dependent on h0t

dNN and/or h0s
dNN. We will discuss this

matter in the next section.
We now try to compare our result to the one obtained with

a pionless EFT without dibaryon fields [2]. The comparison
may be viable if we have relations for the weak coupling
constants in the two theories. Lagrangians for the strong
interactions at leading order in the pionless theory are
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given as

L = N †
(

i∂0 + ∇2

2mN

)
N − C

(1S0)
0 (NT P (1S0)N )†(NT P (1S0)N )

−C
(3S1)
0 (NT P (3S1)N )†(NT P (3S1)N ) + · · · , (26)

where C
(1S0)
0 and C

(3S1)
0 are the strong coupling constants for

the 1S0 and the 3S1 states, respectively. Comparing the strong
Lagrangians given by Eq. (26) to those with dibaryon fields,
Eqs. (3) and (4) in this work, we obtain the rules to transform
the two-nucleon field to the dibaryon one as

NT P (1S0)
a N → ys

C
(1S0)
0

sa, NT P
(3S1)
i N → yt

C
(3S1)
0

ti . (27)

Substituting the transformations given by Eq. (27) into the
pionless weak Lagrangians in Ref. [7], and comparing them
with the weak Lagrangians in Eqs. (10)–(12) in this work, we
can have the relations for the weak coupling constants in the
two theories. Employing the strong coupling constants in the
power divergence subtraction scheme,

1

C
(1S0)
0

= mN

4π

(
1

a0
− µ

)
,

1

C
(3S1)
0

= mN

4π

(
γ − 1

2γ 2ρd − µ
)
,

(28)

where µ is the renormalization point, we obtain the relations
for the weak coupling constants as

h0s
dNN = 16

√
ρdmN

2π
m2

N

(
1

a0
− µ

) (
C(1S0−3P0)

�I=0 − 2C(1S0−3P0)
�I=2

)
,

(29)

h0t
dNN = 16

√
ρdmN

2π
m2

N

(
γ − 1

2γ 2ρd − µ
)
C(3S1−1P1). (30)

Inserting Eqs. (29) and (30) to the PV amplitude in Eq. (24)
and assuming µ = mπ , we obtain

Z ∝ C(3S1−1P1) − 0.56
(
C(1S0−3P0)

�I=0 − 2C(1S0−3P0)
�I=2

)
. (31)

Isospin change is zero at the vertex denoted by C(3S1−1P1) (i.e.,

�I = 0). Assuming a rough relation C(3S1−1P1) ∼ C(1S0−3P0)
�I=0 ,

we obtain Z ∼ 0.44C(1S0−3P0)
�I=0 + 1.12C(1S0−3P0)

�I=2 , where the ra-

tio of the coefficient for C(1S0−3P0)
�I=0 (�I = 0) to that for

C(1S0−3P0)
�I=2 (�I = 2) is approximately 1 : 2.5. Parity-violating

polarization has been calculated in Ref. [2], where strong
interaction is described by Argonne v18 model (Av18) [12],
weak interaction by the pionless EFT, and the EM operator is
obtained by using the Siegert theorem. The result in Ref. [2]
is represented in terms of Danilov parameters. Transforming
the Danilov parameters to the PV low-energy constants in the
pionless theory, Pγ in Ref. [2] is written as

Pγ (hybrid) = (−0.25C1 + 2.14C3 + 4.18C5) × 10−3, (32)

where C1 and C3 correspond to �I = 0 vertices and C5

to �I = 2 one. Assuming C3 ∼ C1 and comparing the
coefficients for C1 (�I = 0) to that for C5 (�I = 2) in
Eq. (32), we obtain a ratio 1 : 2.3, which is similar to the ratio
from our result. A similar value of the ratio for �I = 0 to

�I = 2 was also obtained from the calculation that employed
DDH potential for the weak interaction, Av18 for the strong
interaction, and EM operator with the Siegert theorem [6].

IV. CONCLUSION

We have calculated the parity-violating polarization in the
radiative neutron capture on a proton at threshold with a
new framework, pionless EFT with dibaryon fields. Two-
nucleon weak interactions are described with the parity-
violating dibaryon-nucleon-nucleon vertices, whose coupling
constants are not determined yet. Parity-violating polarization
is obtained as a linear combination of two weak dNN coupling
constants. If the weak dNN coupling constants are determined
precisely from either experiments or theories, we may be able
to understand and predict weak phenomena in the two-nucleon
system at low energies with the pionless EFT with dibaryon
fields.

There are five unknown weak coupling constants in the
pionless theory [13] and therefore we need at least five data
in order to determine them unambiguously. Pγ may be one of
them. Recently PV longitudinal asymmetries in �pp, �np, and
�nn scattering have been calculated with a pionless EFT [7].
Longitudinal asymmetry in �pp depends on three PV coupling

constants C(1S0−3P0)
�I=0,1,2 , and thus the datum at 13.6 MeV [14]

provides a constraint for the weak coupling constants. Parity-
violating asymmetry in �np → dγ and the anapole moment
of the deuteron have been calculated in both conventional
and EFT approaches [15–19], and the results turn out to
be dominated by h1

dNN (or the weak pion-nucleon coupling
constant h1

π ). Measurement of the PV asymmetry in �np → dγ

at SNS is expected to provide an important constraint with
which we can determine the value of weak coupling constant
h1

dNN (or h1
π ). Turning to the possibilities in the three-body

system, one can find a recent calculation of the weak effect
in the spin rotation in �nd scattering [20]. DDH potential was
employed for the weak interaction, and the result is dominated
by h1

π . Measurement of the asymmetry in �np and the spin
rotation in �nd will provide a double-check for h1

π (or h1
dNN).

To determine the remaining weak coupling constants in the
pionless EFT, we need calculations and measurements for as
many observables as possible.

Among the PV observables in the few-body system, PV
asymmetry in �nd → tγ at threshold provides an interesting
probe. The PV asymmetry in the process was measured at
ILL [21], and the result was

At
γ = (4.2 ± 3.8) × 10−6.

Theoretical calculation of At
γ in Ref. [22] adopted DDH po-

tential for the weak interaction, and examined the dependence
on the strong interaction models such as de Tourreil-Sprung
(TS) and Reid soft core (RSC). The results are interesting
in the following aspects. First, dependence on the strong
interaction model is non-negligible; TS model gives a result
At

γ (TS) = 0.81 × 10−6 while RSC gives At
γ (RSC) = 0.61 ×

10−6. Second, isoscalar, isovector, and isotensor parts of the
weak interaction in the DDH potential give similar contribution
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to At
γ (i.e., 0.40, 0.45, and −0.04 in units of 10−6, respectively)

with the TS model. This means that the contributions from
the π -, ρ-, and ω- exchanges in the DDH potential are
similar. Non-negligible dependence on the strong interaction
model, and the significant contribution from the heavy mesons
in the weak interaction are the features common with the
PV polarization in np → dγ [6]. In this problem, therefore,
pionless EFT will provide us with a natural and systematic
way to parametrize the parity mixing in the few-body system
due to weak interactions. Pionless EFT with dibaryon fields
has recently been applied to the EM transitions in nd → tγ

[23,24], and the results agree to data to a good accuracy.
Now the pionless EFT with dibaryon fields well accounts for
the strong and the electromagnetic interactions in the two-
and three-nucleon systems. With the formalism established
thus far, therefore, we may be able to make a self-contained
prediction for the PV asymmetry in �nd → tγ .

Parity violation in the few-body system may show us
effects that are not accessible in the two-nucleon systems. For
instance, strong three-nucleon force can give non-negligible
correction to the one- and two-body contributions to the PV
observables. There has been no consideration on the weak
three-nucleon force, but we have recently obtained nonzero
components of the weak three-nucleon force in a preliminary
calculation [25]. Two- and three-body PV meson-exchange
currents may be important issues, too. We expect that the
EFT will play a vital role in the understanding of the weak
interaction in the few-body system.
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