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Nonlinear waves in a quark gluon plasma
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We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in
other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have
been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking
into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or
even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around
equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the
energy density. We solve them numerically and find that localized perturbations can propagate for long distances
in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.
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I. INTRODUCTION

The heavy-ion collisions performed at Brookhaven Na-
tional Laboratory’s Relativistic Heavy-Ion Collider (RHIC)
create a hot and dense medium, which behaves as a perfect
fluid. During the first years of the RHIC program, hydrody-
namics was applied to describe the space-time evolution of the
bulk of the fluid. In the last years hydrodynamics became
relevant to study also the perturbations on the fluid, such
as, for example, the waves generated by the passage of a
supersonic parton. This field was opened by the observation
of a broad structure in azimuthal di-hadron correlations [1,2].
This broad structure is called the “away-side jet” and recoils
against the “near-side jet” (or “trigger jet”). In the framework
of hydrodynamics, this observation could be explained by the
conical shock waves generated by large energy deposition in
the hydrodynamical medium [3–14]. Although quite elegant,
this understanding of the away-side jet in terms of conical
shock waves still needs confirmation. A very recent and
improved analysis by the STAR collaboration has given further
support to this picture [15]. A more solid evidence of this
phenomenon may come from the study of jets at the Large
Hadron Collider (LHC), where the energy released by the
nuclear projectiles in the central rapidity region will be larger
[16] and so the formed fireball will be larger and live longer,
allowing for a more complete study of waves.

In this work we discuss another possible mechanism for
the formation of broad structures in the away-side jet. In the
limit where the jet loses most of its energy, which is rapidly
thermalized and incorporated to fluid, a pulse is formed,
which propagates through the fluid. During its motion this
energy density pulse spreads both in the longitudinal and
transverse direction. After hadronization this traveling and
expanding “hot spot” will form particles with a broader angular
distribution than those coming from the near-side jet. This
is depicted in Fig. 1. Notice that in this process there is
no Mach cone formation. During the motion of the energy
density pulse, the medium undergoes an expansion leading to
a spread of this pulse. A further spreading will occur during
the hadronization and final particle formation. Therefore, in
this picture it is essential that the initial perturbation remains

localized to a good extent. Otherwise, it will spread too much
and destroy the jet-like topology, which is compatible with
data. Highly localized perturbations can exist and propagate
through a fluid. The most famous are the Korteweg-de Vries
(KdV) solitons, which are solutions of the KdV equation. This
equation may be derived from the equations of hydrodynamics
under certain conditions. One of them is to preserve the
nonlinear terms of the Euler and continuity equations. The
other one is to have a third-order spatial derivative term. This
term comes from the equation of state of the fluid and it appears
because the Lagrangian density contains higher derivative
couplings [17–19] or because of the Laplacians appearing
in the equations of motion of the fields of the theory [20].
This happens, for example, in the nonlinear Walecka model
of nuclear matter at zero and finite temperature. For a quark
gluon plasma (QGP) it depends on the coupling regime and
on the properties of the QCD vacuum. As it will be seen in
this work, if we consider the simplest case of a free gas of
massless quarks and gluons, the hydrodynamical equations do
not give origin to the KdV equation. Instead they generate
a nonlinear differential equation for the perturbation which
has no third-order stabilizing term. This equation is called
breaking wave equation and is also very well known in the
literature. The numerical solution of this equation shows that
an initial Gaussian-like perturbation in the energy density
evolves creating a vertical “wall” in its front, which breaks
and loses localization. In our case, surprisingly enough, this
same phenomenon happens but it takes a very long time
and long distances, compared to the nuclear scales. So, from
the practical point of view, there is no distinction between a
breaking pulse and a soliton. This persistence of localization
in the breaking wave is the main result of our article and
gives support to the process shown in Fig. 1. However, from
this finding to a realistic calculation and a serious attempt to
describe the data there is still a long way. The next step now will
be to quantify the broadening of the moving bubble in Fig. 1,
which will be directly reflected in the angular distribution of
the fragments. For this we need to extend our formalism to
two spatial dimensions (longitudinal x and radial r). This is
a heavily numerical project and it is still in progress. Based
on previous works with the analogous nonrelativistic problem
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FIG. 1. Parton-parton collision forming two back-to-back jets,
which evolve in a hot quark gluon plasma. The circles represent
localized (soliton-like) energy density perturbations which traverse
the fluid and suffer expansion, forming a narrow near-side jet and a
broad away-side jet.

for nuclear matter, discussed in Ref. [21], we have reasons
to expect a soliton-like evolution along the x direction with
a “leakage” to the radial direction, which would cause the
angular broadening in the final matter distribution.

In the theoretical description of these perturbations
[4,10,11], very often the hydrodynamic equations are lin-
earized for simplicity. As it is usually done in nonrelativistic
hydrodynamics, linearization consists [22] in considering only
first-order terms in the velocity and in the energy and pressure
perturbations and neglecting higher-order terms and deriva-
tives involving them. In this work we revisit the relativistic
hydrodynamic equations expanding them in a different way,
in terms of a small expansion parameter (σ ) closely following
what is done in magnetohydrodynamics of plasmas [23] and
keeping the nonlinear features of the problem. Techniques of
plasma physics started to be applied to nuclear hydrodynamics
long ago [24,25] to study perturbations in the cold nucleus,
treated as a fluid. We extended those pioneering studies to
relativistic and warm nuclear matter [17–20] and now to the
quark gluon plasma (QGP).

The most interesting aspect of [17–20,24,25] was to find
at some point of the development, the (KdV) equation for the
perturbation in the nuclear matter density. This is the “nuclear
soliton.” Our main contribution was to establish a connection
between the KdV equation (and the properties of its solitonic
solutions) and a modern underlying nuclear matter theory
(which in our case was a variant of the nonlinear Walecka
model) and then to show that the soliton solution exists even
in relativistic hydrodynamics [17,18].

In the next section we review the main formulas of
relativistic hydrodynamics. In Sec. III we discuss the quark
gluon plasma equation of state. In Secs. IV and V we show
how to derive the differential equations which govern the
time evolution of perturbations at zero and finite temperature,
respectively. In Sec. VI we present the numerical solutions of
the obtained differential equations and in Sec. VII we present
some conclusions.

II. RELATIVISTIC FLUID DYNAMICS

In this section we review the main expressions of one-
dimensional relativistic hydrodynamics, which we are going

to apply to study QPG both at zero and finite temperature.
In the case of a cold QGP we might be concerned about
quantum effects. Indeed, in (cold) nuclear physics, in the study
of the nucleus or of compound nuclei produced in reactions
at low energy, it is necessary to include, for example, Pauli
blocking effects. In our case, the cold QGP may exist in
the core of compact stars. Compared to cold nuclei, these
stars are different in two main aspects: They are infinite (to a
good approximation) and the density is much higher than the
normal nuclear density. In bound systems, the boundary is a
source of discretization of the energy levels. If the boundary
is very far away the levels tend to form a continuum. At the
same time, at higher densities hadronic matter is believed to
be in a deconfined phase, where the coupling constant goes
asymptotically to zero. However, in the core of neutron stars
this coupling is probably not yet so small and one might
have to worry about nonperturbative effects. Moreover, it is
also believed that the matter in the core of neutron stars is
in a color superconducting phase and, more precisely, in a
color-flavor locked (CFL) phase. In this phase the quarks
form a difermion condensate and this is the condition for
the existence of superfluidity. Therefore, CFL matter is a
superfluid! Superfluidity is a property of quantum systems,
which have to be treated with an extension of classical
hydrodynamics. The equations of the relativistic superfluid
have been studied in recent years (see, for example, Refs. [26]
and [27]) and they require the knowledge of many unknowns
such as some new conductivity and viscosity coefficients. In
this context, our formalism based on classical hydrodynamics
is admittedly crude because it does not take into account
quantum effects. The correct quantum description should be
based on the hydrodynamics of relativistic colored superfluids,
which is very complicated and still in its infancy. Therefore,
we believe that our treatment is the best tool to a first study
of the propagation of nonlinear waves in cold and dense quark
matter. This confidence in perfect fluid hydrodynamics as
a tool to study the core of neutron stars comes also from
some recent studies published in Refs. [28] and [29]. In these
articles, hydrodynamics has been successfully used to describe
the motion of layers in compact stars, with an equation of
state derived from the MIT bag model at zero (or very low)
temperature.

Throughout this work we employ natural units c = 1,
h̄ = 1, and (Boltzmann’s constant) kB = 1. The velocity
four-vector uν is defined as u0 = γ , �u = γ �v, where γ is the
Lorentz factor given by γ = (1 − v2)−1/2 and thus uνuν = 1.
The velocity field of the matter is �v = �v(t, x, y, z). The
energy-momentum tensor is, as usual, given:

Tµν = (ε + p)uµuν − pgµν, (1)

where ε and p are the energy density and pressure, respectively.
Energy-momentum conservation is ensured by

∂νTµ
ν = 0. (2)

The projection of (2) onto a direction perpendicular to uµ gives
the relativistic version of the Euler equation [30,31]:

∂ �v
∂t

+ (�v · �∇)�v = − 1

(ε + p)γ 2

(
�∇p + �v ∂p

∂t

)
. (3)
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The relativistic version of the continuity equation for the
baryon density is [30]

∂νjB
ν = 0. (4)

Because jB
ν = uνρB , the above equation can be rewritten as

∂ρB

∂t
+ γ 2vρB

(
∂v

∂t
+ �v · �∇v

)
+ �∇ · (ρB �v) = 0. (5)

The relativistic version of the continuity equation for the
entropy density is given by the projection of (2) onto the
direction of uν [31]:

(ε + p)∂µuµ + uµ∂µε = 0. (6)

At this point we recall the Gibbs relation:

ε + p = µBρB + T s, (7)

and the first law of thermodynamics:

dε = T ds + µBdρB. (8)

We will later consider a hot gas of quarks and gluons, where the
net baryon density is zero, [i.e., ρB = 0 (dρB = 0) at T �= 0].
Using this last relation in (8) and then inserting (8) and (7) in
(6) we arrive at

T s(∂µuµ) + T uµ(∂µs) = 0,

and finally at

∂ν(suν) = 0, (9)

which was expected for a perfect fluid. For future use, the
above formula will be expanded as

∂s

∂t
+ γ 2vs

(
∂v

∂t
+ �v · �∇v

)
+ �∇ · (s�v) = 0, (10)

which is quite similar to (5).

III. THE QGP EQUATION OF STATE

We are going to use the ideal gas equation of state (EOS)
for the QGP because it is a simple starting point. Moreover, it
seems to produce a sensible phenomenology of compact stars,
as shown in Refs. [32] and [33]. In this EOS the pressure and
energy density are functions of the quark Fermi momentum
[i.e., p = p(kF ) and ε = ε(kF )]. Because kF is related to the
baryon density, ρB , we can also write p = p(ρB), ε = ε(ρB).
Finally we substitute the intermediate variables and connect
directly p and ε. Indeed, for an ideal gas we have p = ε/3.

One can improve the EOS introducing perturbative interac-
tions among the constituents. This was done, for example,
in Ref. [34]. In this case the pressure and energy density
depend explicitly on the chemical potential and on powers
of the coupling constant αs . Because it is a running coupling
it depends on the QCD scale 	QCD. We can go further and
try to introduce nonperturbative interactions. In the high-
temperature and low-density region we can just use results
from lattice QCD. In the region of low (or zero) T and high
baryon density (or chemical potential), lattice calculations are
not yet reliable and we have to use models. One of them
is the Polyakov loop extended Nambu-Jona-Lasinio model

(PNJL) [35]. In all these EOS new parameters characterizing
the interaction appear but we still have p = p(ε), where p and
ε may depend on the coordinates but not on their derivatives.

All these improved equations of state, when plugged into
our hydrodynamical equations would yield breaking wave
equations for the baryon density perturbations, with different
coefficients. The only ingredients which might lead us to an
equation with a dispersive term (KdV-like) are (i) Laplacian
terms from equations of motion of the vector fields treated in an
improved mean-field approximation (MFA), where derivatives
of the fields are not completely neglected [20]; (ii) higher-order
derivative terms in the Lagrangian (and therefore also in p and
ε also treated in a more flexible version of the mean-field
approximation [17,18].

In QCD, option (i) is not possible. We need to make
a mean-field approximation. Everything is similar to the
traditional MFA used in Walecka-type models, except that the
derivatives of the fields are not neglected. In QCD the MFA
washes out the gluon field because of color. A nonvanishing
gluon field would “choose” some direction in the adjoint color
space, without a good reason for that. Option (ii) suffers
from the same problem mentioned above. Moreover, there
are no higher-order derivative terms in the QCD Lagrangian.
They might be added by hand to mimic some nonperturbative
effect caused by the nontrivial vacuum. We refrain from doing
this here, because this would be a significant departure from
standard QCD.

Our equation of state is derived from the MIT bag model.
It describes an ideal gas of quarks and gluons and takes into
account the effects of confinement through the bag constant
B. This constant is interpreted as the energy needed to create
a bubble or bag in the vacuum (in which the noninteracting
quarks and gluons are confined) and it can be extracted from
hadron spectroscopy or from lattice QCD calculations. The
baryon density is given by

ρB = 1

3

γQ

(2π )3

∫
d3k [n�k − n̄�k], (11)

where

n�k ≡ n�k(T ) = 1

1 + e(k− 1
3 µ)/T

, (12)

and

n̄�k ≡ n̄�k(T ) = 1

1 + e(k+ 1
3 µ)/T

, (13)

where from now on µ is the baryon chemical potential. At zero
temperature the expression for the baryon density reduces to

ρB = 2

3π2
kF

3, (14)

where kF is the highest occupied level. The energy density and
the pressure are given by

ε = B + γG

(2π )3

∫
d3k k (ek/T − 1)−1

+ γQ

(2π )3

∫
d3k k [n�k + n̄�k], (15)
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and

p = −B + 1

3

{
γG

(2π )3

∫
d3k k (ek/T − 1)−1

+ γQ

(2π )3

∫
d3k k[n�k + n̄�k]

}
. (16)

The statistical factors are γG = 2(polarizations) × 8(colors) =
16 for gluons and γQ = 2(spins) × 2(flavors) × 3(colors) =
12 for quarks. From the above expressions we derive the useful
formulas:

3(p + B) = ε − B = 8π2

15
T 4 + 6

π2

∫ ∞

0
dk k3[n�k + n̄�k],

(17)

and

p = 1
3ε − 4

3B. (18)

The speed of sound, cs , is given by

cs
2 = ∂p

∂ε
= 1

3
. (19)

IV. WAVE EQUATION AT ZERO TEMPERATURE

In the core of a dense star the temperature is close to zero
and the baryon density is very high. The quark distribution
function becomes the step function. Using (14) in (15) and
(16) we find

ε(ρB) = (
3
2

)7/3
π2/3ρB

4/3 + B, (20)

and

p(ρB) = 1
3

(
3
2

)7/3
π2/3ρB

4/3 − B. (21)

From (18) we have �∇p = 1
3
�∇ε and also ∂p

∂t
= 1

3
∂ε
∂t

. Combining
these expressions with (20) and (21) we find

�∇p = 4
9

(
3
2

)7/3
π2/3ρB

1/3 �∇ρB, (22)

and

∂p

∂t
= 4

9

(
3

2

)7/3

π2/3ρB
1/3 ∂ρB

∂t
. (23)

Finally, substituting (20), (21), (22), and (23) into (3) we obtain

ρB

[
∂ �v
∂t

+ (�v · �∇)�v
]

= (v2 − 1)

3

[
�∇ρB + �v ∂ρB

∂t

]
, (24)

which is the relativistic version of the Euler equation for the
QGP at T = 0.

Following the same formalism already used for nuclear
matter in Refs. [17–20] we will now expand both (5) and
(24) in powers of a small parameter σ and combine these
two equations to find one single differential equation which
governs the space-time evolution of the perturbation in the
baryon density. We write (5) and (24) in one Cartesian
dimension (x) in terms of the dimensionless variables:

ρ̂ = ρB

ρ0
, v̂ = v

cs

, (25)

where ρ0 is an equilibrium (or reference) density, upon which
perturbations may be generated. Next, we introduce the ξ and

τ “stretched” coordinates [23–25]:

ξ = σ 1/2 (x − cst)

R
, τ = σ 3/2 cst

R
. (26)

After this change of variables we expand (25) as

ρ̂ = 1 + σρ1 + σ 2ρ2 + · · · (27)

v̂ = σv1 + σ 2v2 + · · · (28)

Neglecting terms proportional to σn for n � 3 and organizing
the equations as a series in powers of σ , (5) and (24) acquire
the form:

σ

{
∂ρ1

∂ξ
− ∂v1

∂ξ

}
+ σ 2

{
∂v2

∂ξ
− ∂ρ2

∂ξ
+ ∂ρ1

∂τ
+ ρ1

∂v1

∂ξ

+ v1
∂ρ1

∂ξ
− cs

2v1
∂v1

∂ξ

}
= 0,

and

σ

{
1

3cs
2

∂ρ1

∂ξ
− ∂v1

∂ξ

}
+ σ 2

{
−∂v2

∂ξ
+ 1

3cs
2

∂ρ2

∂ξ
+ ∂v1

∂τ

+ v1
∂v1

∂ξ
− 2ρ1

∂v1

∂ξ
− v1

3

∂ρ1

∂ξ
+ ρ1

3cs
2

∂ρ1

∂ξ

}
= 0,

respectively. In these equations each bracket must vanish
independently, that is, {· · ·} = 0. From the terms proportional
to σ we obtain cs

2 = 1/3 and ρ1 = v1, which are then inserted
into the terms proportional to σ 2 giving after some algebra:

∂ρ1

∂τ
+ 2

3
ρ1

∂ρ1

∂ξ
= 0. (29)

Returning to the x − t space the above equation reads

∂ρ̂1

∂t
+ cs

∂ρ̂1

∂x
+ 2

3
csρ̂1

∂ρ̂1

∂x
= 0, (30)

where we have used the notation ρ̂1 ≡ σρ1, which is a small
perturbation in the baryon density. Equation (30) is the so-
called breaking wave equation for ρ̂1 at zero temperature in
the QGP.

V. WAVE EQUATION AT FINITE TEMPERATURE

In the central rapidity region of a typical heavy-ion collision
at RHIC we have a vanishing net baryon number (i.e., ρB = 0).
The energy is mostly stored in the gluon field, which forms the
hot and dense medium. We will now apply hydrodynamics
to study this medium and focus on perturbations in the
energy density and their propagation. Following the formalism
developed in the previous section we will expand and combine
the Euler equation given by (3) and the continuity equation for
the entropy density given by (10).

As ρB = 0, the baryon chemical potential is zero (µ = 0)
and so the distribution functions given by (12) and (13) are the
same [i.e., n�k = n̄�k = 1/(1 + ek/T )]. In this case the integral
in (17) can be easily performed and we obtain

3(p + B) = ε − B = 37
30π2T 4. (31)

Solving the first identity for the pressure and recalling [36]
that s = (∂p/∂T )V we arrive at

s = ∂

∂T

(
−B + 37

90
π2T 4

)
= 4

37

90
π2T 3. (32)
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The “bag constant” parameter, B, is chosen to be B1/4 =
170 MeV, which was used in Ref. [37], in the context of dense
star physics. For simplicity of notation, we will rewrite B as

B = 37
30π2(TB)4, (33)

where TB is the appropriate number to reproduce the chosen
value of B. Inserting (33) into the second identity of (31) we
have the following expression for ε(T ):

ε = 37
30π2

(
T 4 + TB

4
)
. (34)

Solving the second identity of (31) for the temperature we
obtain

T =
[

30

37π2
(ε − B)

]1/4

, (35)

which, inserted into (32) yields

s = s(ε) = 4
37

90
π2

[
30

37π2
(ε − B)

]3/4

. (36)

Substituting, then, (36) in (10) in the one-dimensional case
and using (31) to write (ε − B) in terms of the temperature we
have finally

(1 − v2)

[(
90

148π2T 4

)
∂ε

∂t
+ ∂v

∂x
+

(
90v

148π2T 4

)
∂ε

∂x

]

+ v

(
∂v

∂t
+ v

∂v

∂x

)
= 0. (37)

Also, from (31) we have

ε + p = 148
90 π2T 4. (38)

Inserting the above equation into (3) and using �∇p = 1
3
�∇ε and

also ∂p

∂t
= 1

3
∂ε
∂t

we find

148

30
π2T 4

(
∂v

∂t
+ v

∂v

∂x

)
= (v2 − 1)

(
∂ε

∂x
+ v

∂ε

∂t

)
. (39)

We now rewrite (37) and (39) in dimensionless variables:

ε̂ = ε

ε0
, v̂ = v

cs

, (40)

where ε0 is the reference energy density. Expanding (40) in
powers of σ we have

ε̂ = 1 + σε1 + σ 2ε2 + · · · (41)

and

v̂ = σv1 + σ 2v2 + · · · (42)

Neglecting higher-order terms in σ and changing variables to
the (ξ − τ ) space, Eqs. (37) and (39) become

σ

{
− 90 ε0

148π2T 4

∂ε1

∂ξ
+ ∂v1

∂ξ

}

+ σ 2

{
90 ε0

148π2T 4

(
−∂ε2

∂ξ
+ ∂ε1

∂τ
+ v1

∂ε1

∂ξ

)

+ ∂v2

∂ξ
− cs

2v1
∂v1

∂ξ

}
= 0, (43)

and

σ

{
−148π2T 4cs

30

∂v1

∂ξ
+ ε0

cs

∂ε1

∂ξ

}

+ σ 2

{
148π2T 4cs

30

(
−∂v2

∂ξ
+ ∂v1

∂τ
+ v1

∂v1

∂ξ

)

+ ε0

cs

∂ε2

∂ξ
− ε0csv1

∂ε1

∂ξ

}
= 0. (44)

As before, in the above equations, each bracket must vanish
independently. From the first bracket of (43) we have

v1 = 90ε0

148π2T 4
ε1, (45)

which, inserted into the terms proportional to σ 2, yields

∂ε1

∂τ
+

(
90ε0

148π2T 4

)
2

3
ε1

∂ε1

∂ξ
= 0. (46)

Coming back to the x − t space the above equation becomes

∂ε̂1

∂t
+ cs

∂ε̂1

∂x
+

(
90ε0

148π2T 4

)
2

3
cs ε̂1

∂ε̂1

∂x
= 0, (47)

where ε̂1 ≡ σε1 is a small perturbation in the energy density.
Equation (47) is the breaking wave equation for ε̂1 in a QGP
at finite temperature. In this equation T is the temperature of
the background (i.e., T = T0) and it is related to the energy
density through (34). Using (34) and the relations deduced in
the previous section, Eq. (47) becomes, finally,

∂ε̂1

∂t
+ cs

∂ε̂1

∂x
+

[
1 +

(
TB

T0

)4
]

cs

2
ε̂1

∂ε̂1

∂x
= 0, (48)

where T0 > TB .

VI. NUMERICAL ANALYSIS AND DISCUSSION

Equations (30) and (48) have the form,

∂f

∂t
+ cs

∂f

∂x
+ αf

∂f

∂x
= 0, (49)

which is a particular case of the equation:

∂f

∂t
+ cs

∂f

∂x
+ αf

∂f

∂x
+ C

∂3f

∂x3
= 0, (50)

when C = 0. The last equation is the famous Korteweg-de
Vries equation, which has an analytical soliton solution given
[38]:

f (x, t) = 3(u − cs)

α
sech2

[√
(u − cs)

4B
(x − ut)

]
, (51)

where u is an arbitrary supersonic velocity.
A soliton is a localized pulse that propagates without

change in shape. On the other hand, the solutions of (30)
and (48) will break, that is, they will acquire an oscillating
behavior and will be spread out, losing localization. Whether
or not a given physical system will support soliton propagation
depends ultimately on its equation of state [in our case, on the
function ε = ε(ρB) or ε = ε(p)]. If the EOS takes into account
the inhomogeneities in the system, the energy density will, in
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general, be a function of gradients and/or Laplacians. When
used as input in hydrodynamical equations, these higher-order
derivatives will lead to the KdV equation. In a hadronic phase,
where the degrees of freedom are baryons and mesons, we
have shown [17–20] that the hydrodynamical equations will
indeed give origin to the KdV equation. In the present case,
for this simple model of the quark gluon plasma, this was not
the case and we could only obtain the breaking wave equation.

A. Zero temperature

Although the main focus of this work are the perturbations
in a hot QGP formed in heavy-ion collisions, for completeness,
we discuss in this subsection the zero temperature case, which
might be relevant for astrophysics.

We will present numerical solutions of (30) with the
following initial condition, inspired by (51)

ρ̂1(x, t0) = A sech2
[ x

B

]
, (52)

where A and B represent the amplitude and width (of the
initial baryon density pulse), respectively. In Fig. 2 we show
the numerical solution of (30) for A = 0.075 and B = 1 fm
for different times. We can observe the evolution of the initial
Gaussian-like pulse and the formation of a “wall” on the right
side. Figure 3 shows the numerical solution of (30) for A =
0.35 and B = 1 fm. The time evolution of the pulse is similar to
the one found in Fig. 2 but the “wall” formation and dispersion
occurs much earlier. In Fig. 4 we present another solution
of (30) for A = 0.075 and B = 0.5 fm. We can see that the
initial pulse starts to develop small secondary peaks, which
are called “radiation” in the literature. Further time evolution
would increase the strength of these peaks until the complete
loss of localization.

From these figures we learn how the solution depends on
the initial amplitude and width: It lives longer as a compact
pulse for smaller amplitudes and larger widths. Changes in one
quantity may compensate the changes in the other, creating a

FIG. 2. Time evolution of a baryon density pulse at zero temper-
ature.

FIG. 3. The same as Fig. 2 for a larger amplitude.

very stable moving object. In fact, the most striking conclusion
to be drawn here is that for a wide variety of choices in the
initial conditions the solution remains stable and localized for
distances much larger than the nuclear size.

B. Finite temperature

We now turn to the study of the solutions of (48) for initial
conditions given by (52) (replacing ρ̂1 by ε̂1). Now, beside
the amplitude and width, the solution will depend also on the
temperature. When T0 = TB , Eq. (48) reduces to

∂ε̂1

∂t
+ cs

∂ε̂1

∂x
+ cs ε̂1

∂ε̂1

∂x
= 0. (53)

When T0 � TB , Eq. (48) reduces to

∂ε̂1

∂t
+ cs

∂ε̂1

∂x
+ cs

2
ε̂1

∂ε̂1

∂x
= 0. (54)

Observing these two formulas we can see that, because
cs = 1/3 is fixed, the only change in the differential equation

FIG. 4. The same as Fig. 2 for a smaller width.
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FIG. 5. Time evolution of an energy density pulse at T =
300 MeV.

with temperature happens in the numerical coefficient of
the last term which goes from 0.5 to 1. Therefore, our
results depend very weakly on the temperature. A stronger
dependence on T would appear if cs was allowed to change
with temperature. This would correspond to having a different
and more complicated equation of state for the quark gluon
plasma.

In Fig. 5 we show the solution of (48) with the initial
condition given by (52) with A = 0.01, B = 1 fm, and
T = 300 MeV. Figure 6 shows the same as Fig. 5 but with
A = 0.1 and B = 1 fm. As in the zero-temperature case,
we observe that increasing the initial amplitude the breaking
process develops earlier. In Fig. 7 we show the same as Fig. 5
but with A = 0.01 and B = 0.2 fm. Figures 8 and 9 show
the time evolution of a pulse with the same initial amplitude
(A = 0.5) and width (B = 1 fm) but different temperatures.
Even though one temperature is T = 150 MeV (Fig. 8) and
the other is T = 300 MeV (Fig. 9) we can hardly notice any
difference.

FIG. 6. The same as Fig. 5 for a larger amplitude.

FIG. 7. The same as Fig. 5 for a smaller width.

We would like to emphasize that our calculation is still
preliminary. However, any calculation of a new or unexplored
effect has to start from some simplified study, which is
later refined. The realistic solution of the three-dimensional
relativistic hydrodynamics equations is a formidable numerical
task. Before embarking in such heavy numerical calculations
it is interesting to make exploratory studies. Their outcome
might be completely disappointing or, on the contrary, might
encourage us to proceed further with more involved calcu-
lations. This strategy is common and a recent example is
the study of Mach cone formation. The preliminary studies
considered a fast parton crossing a static medium and loosing
energy to this medium, which was subsequently propagated
in the form of conical waves. This static approximation was
performed in Ref. [4]. In subsequent articles, such as Ref. [13]
the expansion of the medium was introduced. In the present
work, we find that the localized pulses stay localized for several
tens of fm. This means that they last longer than the plasma,
they survive, they may exist in the final hadronic later stage
of the collisions and be observed. This is very interesting and

FIG. 8. Evolution of the energy density pulse at T = 150 MeV.
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FIG. 9. The same as Fig. 8 for T = 300 MeV.

encourages us to include the expansion of the medium and
check if the localization of these pulses persists even in the
presence of expansion. The long timescale found by us is, in
fact, the most interesting and promising result of the article. A
very negative and discouraging result would have been to find
out that our pulses break and lose localization in less than the
typical QGP lifetime (i.e., less than 10 fm).

VII. CONCLUSIONS

We have proposed an alternative explanation for the
observed broadening of the away-side peak. It is based on
the hydrodynamical treatment of energy perturbations. In
contrast to other approaches we went beyond linearization
of the fundamental equations and did not neglect the nonlinear
terms. We used a simple equation of state for the QGP and
expanded the hydrodynamic equations around equilibrium
configurations. The resulting differential equations describe
the propagation of perturbations in the energy density. We
solved them numerically and found that localized perturbations
can propagate for long distances in the plasma. Under certain
conditions our solutions mimic the propagation of Korteweg-
de Vries solitons. However, as said before, from this finding
to a realistic calculation and a serious attempt to describe the
data there is still a long way. The main result found in this
work, namely, the persistence of soliton-like configurations, is
very promising and encourages us to extend our formalism to
two spatial dimensions. This project is in progress.
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