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The pseudorapidity density of charged particles produced at collisions at energies available at the CERN
Large Hadron Collider (LHC) are predicted by using two complementary production mechanisms with a set of
consistent integrated and unintegrated parton distributions. We discuss the limiting fragmentation hypothesis and
its possible violation, and we compare our model with other partonic models.
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I. INTRODUCTION

Particle multiplicity distribution is one of the first mea-
surements to be taken at the CERN Large Hadron Collider
(LHC). The upcoming data on its energy, centrality, and
rapidity dependence are expected to discriminate various
(integrated and unintegrated) parton distributions, which are
basic qualities analyzing high-energy reactions on the parton
level. The Bjorken variable x of gluons may reach very small
values at LHC energies. Therefore, the nonlinear corrections
of the initial gluon correlations to the QCD evolution equations
should be considered in any available parton distributions of
the LHC physics [1].

One of the striking predictions of nonlinear QCD evolution
equations is the saturation solution of the Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK)
equation [2], where the unintegrated gluon distribution is
absolutely flat in kt space at kt < Qs ; Qs is the saturation
scale and the relating phenomenon is called the color glass
condensate (CGC). The above saturation solution was proved
in the numerical solutions of the JIMWLK equation [3].
Instead of the complicated JIMWLK equation, which is
equivalent to an infinite, coupled hierarchy of evolution
equations (the Balitsky hierarchies), much of the physics
content has been studied with the help of approximations,
such as the Balitsky-Kovchegov (BK) equation [4], or outright
models that capture the main features as they affect specific
phenomena, such as the Kharzeev-Levin (KL) model [5] does
for the present context.

The KL model mimics a possible saturation solution of
the JIMWK equation, and it assumes that the scale Q2

s (x) ≡
Q2

0(x0/x)λ. Under some additional assumptions, Kharzeev,
Levin, and Nardi (KLN) use this model successfully to
explain some of the climactical data probed at the BNL
Relativistic Heavy Ion Collider (RHIC) and to predict LHC
physics [6]. The BK equation is regarded as the leading-order
approximation of the JIMWLK equation and preserves the
saturation and scaling features. Albacete uses the BK equation
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to predict the pseudorapidity density of charged particles
produced in central Pb-Pb collisions at LHC [7].

However, both the KL model and BK equation work at
a very small x range (for say, x < x0, x0 � 10−1), where
the saturation begins to work. The x dependence of the
gluon density at x > x0 in these works [6,7] are simply fixed
to be (1 − x)4, which is un-evolution. As we have pointed
out, the parton distributions at intermediate and larger x

influence the shape of the rapidity spectrum [8]. In fact,
Szczurek uses the same KL model but with different factors
∼ (1 − x)5−7 and obtains a narrower pseudorapidity distribu-
tion [9]. Anyway, a fixed form ∼ (1 − x)4 for an available
gluon distribution is too rough. Obviously, as a complement
to the above-mentioned saturation models, it is necessary to
consider the parton distributions, which are well defined in a
broad kinematic range.

Besides, some works [6,7] have used a single produc-
tion mechanism, i.e., gluon-gluon fusion gg → g, which
is proposed by Gribov, Levin, and Ryskin (GLR) [10]
to predict particle production. However, the single-particle
inclusive spectrum shows that its rapidity distribution has
three distinct regions: a central region with two (project and
target) fragmentation regions [11]. The GLR model is expected
to dominate the processes at the central region. Therefore,
other collision dynamics in the fragmentation regions should
be considered. There are several two-component models for
hadron collisions. For example, the HIJING model [12] is such
a two-component model. This model uses the parametrized
integrated parton distributions to compute multiple minijet
production and incorporates the Lund string model [13] to
model soft beam jet fragmentation. However, the production
of minijets at the central region should be described by the
unintegrated gluon distribution rather than the integrated gluon
density [9]. Moreover, the string model is irrelevant to the
parton distributions. In the same model, the hard and soft
components based on different basic physical parameters may
lose some interesting information about heavy-ion collisions.

In this work, we use a two-component model and a
set of consistent parton distributions to improve the above-
mentioned situation of the present models. Basically, we
use two complementary production mechanisms: the hard
gluon-gluon fusion [10] and the soft quark recombination [14].
Our picture is as follows. At sufficiently high-energy hadron-
hadron collisions, particles produced in hard gluon-gluon
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fusions are distributed in a region around midrapidity, and
these initial gluons are described by the unintegrated gluon
distribution in both colliding hadrons. On the other hand, the
valence quarks tend to fly through with their original integrated
distributions and they are hadronized by recombining with
additional low-x sea quarks from the central region. The
resulting soft recombined particles dominate the fragmentation
region. We shall present the related formula of two production
mechanisms in Sec. II. Because gluon fusion and quark recom-
bination use unintegrated and integrated parton distributions,
respectively, a set of these parton distributions, which are
defined in a broad kinematic range are necessary. In our
previous work [8], we proposed such distributions in protons
and heavy nuclei by using a modified Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (MD-DGLAP) equation [15], which
incorporates the shadowing and antishadowing corrections.
Unlike the JIMWLK and BK equations, MD-DGLAP equation
works in a broad presaturation range. We shall use these parton
distributions to explain the particle multiplicity distributions
in UA5 and RHIC data, then we will predict the particle
multiplicity distributions at LHC in Secs. III and IV. Unfortu-
nately, we cannot theoretically predict the energy dependence
of the normalization of the hadronic distributions, which is
fixed using the entirely phenomenological parametrization of
existing data in this work. This simple method may need
modification after we obtain the LHC data at midrapidity.

In Sec. V, we discuss some interesting properties of
rapidity distributions. Limiting fragmentation [16] and rapidity
plateau [17] are characteristics of two components of particle
production. We find that the limiting fragmentation hypothesis,
which generally appears in present data of hadron collisions,
is partly violated if the observations are over a wide range
between the RHIC and LHC energies. An explanation of
limiting fragmentation and its violation in partonic picture is
given. On the other hand, we propose that a possible quark
gluon plasma (QGP) effect may deform the shape of the
central plateau. We also discuss the nuclear shadowing effects
in heavy-ion collisions. The comparisons of our predictions
with those of saturation models are given in this section.
The above-mentioned properties of particle multiplicity dis-
tributions in the partonic models of hadron collisions, except
for their height at midrapidity, are dominated by the parton
distributions. Therefore, the results potentially tell us how
parton distributions evolve at high energies. The last section is
a short summary of this study.

II. TWO-COMPONENT MODEL

The single-particle inclusive spectrum shows a rapidity
distribution with three distinct regions: a central region and
two (project and target) fragmentation regions. We assume
that the hadrons produced in the central region (small x

and large kt ) are produced from the hadronization of the
gluons in the gg → g mechanism [10], while the particles
in the fragmentation region are formed by the valence quarks
according to the quark recombination model [14]. The related
formulas are summarized as follows.

Component I. The cross section for inclusive gluon produc-
tion in pp → g through the gluonic mechanism gg → g at

sufficiently high energy reads [10]

dσ I
p−p(y, pt,g)

dy d2pt,g

= 4Nc

N2
c − 1

1

p2
t,g

∫
d2qt,gαs(�)

×Fp
g

(
x1,

(
pt,g + qt,g

2

)2

, p2
t,g

)

×Fp
g

(
x2,

(
pt,g − qt,g

2

)2

, p2
t,g

)
, (1)

where � = max(k2
1t , k

2
2t , p

2
t,g), k2

1,t = 1
4 (pt,g + qt,g)2 and

k2
2,t = 1

4 (pt,g − qt,g)2. The rapidity y of the produced gluon
in the center-of-mass frame of p-p collisions is defined by

x1/2 = pt,g√
s

exp(±y), (2)

and F
p
g (x, k2

t , p
2
t ) is the two-scale unintegrated gluon distribu-

tion in the proton. A general relation between integrated and
unintegrated parton distributions is

∫ µ2

0
dk2

t F
p
a

(
x, k2

t , µ
2) = xap(x, µ2), (3)

where ap(x, µ2) = vp(x, µ2), sp(x, µ2), and gp(x, µ2) imply
the integrated valence quark, sea quark, and gluon distributions
in the proton.

In experiments, a good identification of particles is to
measure pseudorapidity. The relation between the rapidity y

and pseudorapidity η for massive particles is

y = 1

2
ln

⎡
⎢⎢⎣

√
m2

eff+p2
t

p2
t

+ sinh2 η + sinh η√
m2

eff+p2
t

p2
t

+ sinh2 η − sinh η

⎤
⎥⎥⎦ , (4)

where meff is the typical invariant mass of the gluon minijet.
For avoiding the complicate hadronization dynamics, sim-

ilar to Ref. [9], we use local parton-hadron duality, i.e., the
rapidity distribution of particles is identical to the rapidity
distribution of gluons: ηg = ηh ≡ η. Thus, the pseudorapidity
density of produced charged particles in p-p collisions is given
by

dNI
p−p

dη
= 1

σin

∫
d2pt,h

dσ I
p−p(η, pt,h)

dη d2pt,h

= 1

σin
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× δ2(pt,h − zpt,g)
dσ I
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dy d2pt,g
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√
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∫
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y→η

, (5)
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where the Jacobian is

J1(η; pt ; meff) = cosh η√
m2

eff+p2
t

p2
t

+ sinh2 η

, (6)

and we neglect the fragmentation function D(z, pt,h). Cor-
rections to the kinematics due to the hadron mass are
considered by replacing p2

t → p2
t + m2

eff in the evaluation of
x1/2. Assuming pions in p-p collisions are produced via ρ

resonance, we take meff = 770 MeV.
Component II. According to the quark recombination model

[14], the valence quarks of incident protons tend to fly through
the central region with their original momentum fraction.
These valence quarks recombine with lower pt antiquarks
and produce the outgoing hadrons in the fragmentation region.
The quark recombination model has explained successfully the
meson inclusive distributions and the leading particle effects
in the fragmentation region below RHIC energies [18].

The cross section for inclusive pion production in p-p
collisions in the quark recombination model is

1

σin

dσ II
p−p

dx dp2
t

= 6
1 − x

x

∫ x

0
dx1x1vp

(
x1, p

2
t

)
× 1

2
(1 + δ)(x − x1)sp

(
x − x1, p

2
t

)
, (7)

where δsp(x, p2
t ) is the distribution of additional sea quarks

in the central region and we assume that it has the form like
sp(x, p2

t ).
We introduce the rapidity for pions in the recombination

processes as

y = ln x − ln

√
m2

π + p2
t√

s
. (8)

Thus, we have

1

σin
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1
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,
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with a new Jacobian

JII (y; pt ; mπ ) = ∂x

∂y
=

√
p2
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π√

s
ey, (10)

and they lead to

dNII
p−p

dη
= 1

σin

∫
dp2

t

dσ II
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dη dp2
t

= 1

σin

∫
dp2

t JII (η; pt ; mπ )
dσ II
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dy dp2
t
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,

(11)

where we integrate over transverse momenta in Eq. (11) at
pt < 1 GeV, since the recombination model works at lower pt

range.

Summing the contributions of two components, we have
the total distribution

dNp−p

dη
= dNI

p−p

dη
+ dNII

p−p

dη
. (12)

The production mechanisms (I) and (II) use unintegrated and
integrated parton distributions, respectively. In particularly,
the gluon momentum fraction in Eqs. (1) and (7) contain both
smaller and larger x regions. Therefore, a set of consistent
integrated and unintegrated parton distributions in protons
and heavy nuclei, which are defined in a broad kinematic
region, are necessary. Fortunately, such parton distributions are
proposed in Ref. [8], where the integrated parton distributions
are evolved by using a modified DGLAP equation [15] in
a whole presaturation region; while the unintegrated parton
distributions are obtained directly from these integrated parton
distributions using the Kimber, Martin, and Ryskin (KMR)
scheme [19]. We shall use these parton distributions to predict
the particle multiplicity distributions.

III. PROTON-PROTON COLLISIONS

We calculate the pion distributions in p-p collisions using
the two-component model and compare the results with the
data. We need the values of the total inelastic cross section
σin, which is included by the coefficient c(

√
s) of Eq. (5).

This is rather complicated at the parton level since it contains
the nonperturbative information. In this work, we use the
midrapidity density for p-p(p) collisions to estimate the values
of c(

√
s). The former has been parametrized by the UA5 [20]

and CDF [21] collaborations as

dNp−p

dη

∣∣∣∣
η=0

= 2.5 − 0.25 ln s + 0.023 ln2 s. (13)

This purely empirical parametrization is fitted in a broad range
from

√
s = 15 GeV to 1.8 TeV and we extend it to the LHC

energies. The resulting c(
√

s) is shown in Fig. 1.
Figure 2 shows our results for dNp−p/dη below LHC

energies with meff = 770 MeV (solid curves). The data are
taken from Ref. [20]. For comparison, we also draw the
distributions with meff = 0. We find that the shape of the
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FIG. 1. Coefficient c(
√

s) in Eq. (5) plotted as a function of energy√
s using Eq. (13).
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FIG. 2. Computed pseudorapidity distribution of charged parti-
cles in p-p(p) collisions at various energies with meff = 770 MeV
and δ = 0.7 (solid curves). The dashed curves take meff = 0. The data
are taken from Ref. [20].

central rapidity plateau relates sensitively to the value of
parameter meff . As shown in Fig. 2, corresponding to meff =
770 MeV, the full rapidity plateau has two peaks. During the
reduction of the meff value, the rapidity plateau is flattened at
|η| < 2 and even disappears.

To illustrate the contributions from two production compo-
nents in our model, in Figs. 3 and 4 we use dashed and dotted
curves to indicate the contributions from the gluon fusion
and quark recombination models, respectively. Although the
saturation models [6,7] have used a single gluon fusion
mechanism to reproduce these data, they both take a fixed
gluon distribution ∼ (1 − x)4 at the presaturation range. Now
we use a reasonable gluon distribution instead of (1 − x)4. One
can find that the resulting dashed curves are narrower than the
solid curves (which are consistent with the data in Fig. 2) in
Figs. 3 and 4, and this implies that an additional contribution
from the fragmentation regions is necessary.

We predict the pion distributions in p-p collisions at LHC
energies in Figs. 5–9. Although the contributions of the quark
recombination model (dotted curves) are generally smaller
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FIG. 3. Solid curve in Fig. 2 at
√

s = 130 GeV, where dashed and
dotted curves are the contributions of gluon fusion mechanism I and
quark recombination mechanism II.
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FIG. 4. Similar to Fig. 3 but at
√

s = 200 GeV.

than that of the gluon-gluon fusion model (dashed curves),
the contributions of the quark recombination still cannot be
neglected in the fragmentation region.

Several partonic models have predicted the pion
distributions in p-p collisions at LHC energies. It is
interest to compare our results with them. Figure 10 resents
the predictions of KLN work [6] (dashed curve) and the
comparison with our result (solid curve). Figure 11 compares
our prediction with those of the PYTHIA model, which
is based on string fragmentation mechanism [22], and the
PHOJET model, which uses a Pomeron exchange [23].
Figure 12 is a similar comparison with the ultrarelativistic
quantum molecular dynamics (UrQMD) model [24]. We
think that the comparisons with different models can provide
useful knowledge about the unintegrated gluon distribution in
the proton and a correct picture of hadron collisions.

IV. NUCLEUS-NUCLEUS COLLISIONS

The nucleus-nucleus collisions are much more complicated
than p-p collisions. The high multiplicities in heavy-ion
collisions typically arise from the large number of nucleon-
nucleon collisions. In the analysis of heavy-ion collision
data at highly relativistic energies, two parameters which
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FIG. 5. Predicted pseudorapidity distribution of charged particles
in p-p collisions at

√
s = 1.8 TeV. Dashed and dotted curves are the

contributions of the gluon fusion model (I) and quark recombination
model (II).
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FIG. 6. Similar to Fig. 5 but at
√

s = 5.5 TeV.

characterize the influence of nuclear geometry are used [25]:
(1) the number of participating nucleons Npart, which depends
on the collision geometry, and (2) the number of binary
nucleon-nucleon collisions Ncoll, or the average struck number
of each participating nucleon as it passes through the oncoming
nucleus, ν = Ncoll/(0.5Npart). In nuclear collisions, the soft (or
hard) component is proportional to the number of participants
Npart (or the number of binary collisions Ncoll) [26]. Essentially,
we write

2

〈Npart〉
dNA−A

dη
= 〈ν〉c(

√
s)

∫
d2pt

dσ I
A−A(η, pt )

dη dp2
t

+ 1

σin

∫
d2pt

dσ II
A−A(η, pt )

dη dp2
t

, (14)

where 〈· · ·〉 is an average value in a giving central cut, and
we only consider 0–6% cut in this work; dσA−A implies that
the parton distributions are the nuclear parton distributions.
According to the geometric approach in Ref. [27], we take the
mean number of participants Npart = 339 in Au-Au collisions
at

√
s = 130 and 200 GeV, and Npart = 369 in Pb-Pb collisions

at
√

s = 5.5 TeV.
The value of ν contains the knowledge about the interaction

between two collided nuclei. Glauber modeling in high-energy
nuclear collisions [28] has pointed out that the number of
collisions roughly is

〈Ncoll〉 ∝ 〈
N

4/3
part

〉 ≡ λ
〈
N

4/3
part

〉
. (15)
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FIG. 7. Similar to Fig. 5 but at
√

s = 7 TeV.
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FIG. 8. Similar to Fig. 5 but at
√

s = 10 TeV.

On the other hand, the RHIC data [29] present a slow increase
of the coefficient λ with energy

√
s. Using these data about

dNAu−Au/dη|η=0 at
√

s = 130–200 GeV, we take a best fitting:
λ = 29 ln

√
s.

Now we can “predict” the whole distributions in Au-Au
collisions at

√
s = 130 and 200 GeV. The results are shown

in Figs. 13 and 14. Where we keep temporarily the value of
parameter meff = 770 MeV. The dashed and dotted curves are
the contributions of the gluon-gluon fusion model and quark
recombination model, respectively. There is a small deviation
from the data at |η| > 5, since the Fermi motion contributions
[30] are neglected in our considerations.

Considering the experimental errors, the inconsistency
between the theoretical curves and the RHIC data is still
visible, and it suggests that some factors failed in our above
considerations. In Figs. 15 and 16, we reduce the value of
meff . A best fit (solid curves) requests the parameters meff =
400 MeV. Compared with our previous result of meff =
770 MeV for p-p collisions in Sec. III, we find that the
reduction of meff at RHIC Au-Au collisions is possible.

Finally, we calculate the pseudorapidity distributions in Pb-
Pb collisions at

√
s = 5.5 TeV. The differences between lead

and gold are neglected. Our results are shown by the solid
curve in Fig. 17, where we take meff = 400 GeV; the dashed
and dotted curves correspond to the contributions from gluon-
gluon fusion and quark recombination, respectively.
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FIG. 9. Similar to Fig. 5 but at
√

s = 14 TeV.
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FIG. 10. Comparisons of our predictions (solid curve) for pseu-
dorapidity distribution of charged particles in p-p collisions at√

s = 14 TeV with that of KLN predictions (dashed curve) [6].

V. DISCUSSIONS

1. Limiting fragmentation: Is it universal?

To separate the trivial kinematic broadening of the dN/dη

distribution from more interesting dynamics, the collision
data at different energies are viewed in the rest frame
of one of the colliding targets. Such distributions lead to
a striking universality of multiparticle production-limiting
fragmentation. This hypothesis states that at high enough
collision energy, when effectively viewed in the target rest
frame, dN/dη′ exhibits longitudinal scaling and becomes
independent of energy in a region around η′ ∼ 0, where η′ =
η − ybeam, [ybeam = ln(

√
s/mN )]. The hypothesis of limiting

fragmentation in high-energy hadron-hadron collisions was
first suggested in Ref. [16]. From a phenomenological view,
the projectile hadron, when seen in the frame of the target,
is Lorentz-contracted into a very narrow strongly interacting
pancake which passes through the target, assuming that the
total hadronic cross sections would become constant at large
center-of-mass energy. If this occurred, the excitation and
breakup of a hadron would be independent of the center-of-
mass energy, and distributions in the fragmentation region
would approach a limiting curve. We know that the total
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FIG. 11. Comparisons of our predictions (solid curve) for pseu-
dorapidity distribution of charged particles in p-p collisions at√

s = 14 TeV with that of PYTHIA [22] and PHOJET models [23].
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FIG. 12. Comparisons of our predictions (solid curve) for pseu-
dorapidity distribution of charged particles in p-p collisions at√

s = 14 TeV with that of the UrQMD model (dashed curve) [24].

hadronic cross sections are not constant at high energies;
therefore, limiting fragmentation should fail. However, lim-
iting fragmentation has been observed in a wider region, even
extending nearly to midrapidity, and it is referred to as extended
longitudinal scaling [25].

From the partonic point of view, longitudinal scaling in
hadron collisions relates to Bjorken scaling of the parton
distributions and the production dynamics. An interesting
question is whether two-component models can keep the
limiting fragmentation curve. To answer this question, we plot
the shifted pseudorapidity distributions in central Au-Au col-
lisions at

√
s = 130 and 200 GeV in Fig. 18. The distributions

are scaled by Npart/2 to remove the effect of the different
number of nucleons participating in the collisions. We find
longitudinal scaling (energy independence) over more than
three units of rapidity, extending nearly to midrapidity, and it
is consistent with the RHIC data [31]. In Fig. 19, we present the
contributions only from the gluon fusion mechanism, where
limiting fragmentation still holds at η′ > −1.
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FIG. 13. Pseudorapidity density of charged particles produced in
Au-Au collisions with 0–6% central cut at

√
s = 130 GeV. Data are

taken from Ref. [29]. The solid curve corresponds to meff = 770 MeV.
Dashed and dotted curves are the contributions of the gluon-gluon
fusion and quark recombination, respectively.
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FIG. 14. Same as Fig. 13 but for
√

s = 200 GeV.

However, we compare the similar distributions including
Pb-Pb collisions at

√
s = 5.5 TeV (dotted curve) in Fig. 20.

We find a smaller deviation from the limiting fragmentation
limit at η′ < 0, although the distributions at η′ > 0 still keep
longitudinal scaling, where it is dominated by the quark
recombination mechanism. Figure 21 shows the comparisons
of the contributions from the gluon-gluon fusions. The results
indicate the deviation from limiting fragmentation origins from
the gluon-gluon fusion mechanism.

Back to the p-p collisions. In Fig. 22, we plot our predicted
curves in p-p collisions from

√
s = 130 GeV to 14 TeV with

η′. We find that a similar deviation from limiting fragmentation
exists at −2 < η′ < 0 if the energies cross over a big range
between RHIC and LHC.

We noted that a different deviation from limiting fragmen-
tation at the LHC energy is also predicted by using another
kind of parton distribution, i.e., the McLerran-Venugopalan
distribution in Ref. [32], where the same gluon-gluon fusion
mechanism is used. Therefore, investigation of a possible
deviation from the limiting curve will provide insight into
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FIG. 15. Pseudorapidity density of charged particles produced
in Au-Au collisions with 0–6% central cut at

√
s = 130 GeV with

different parameters meff = 770 MeV (solid curve), 400 MeV (dashed
curve), and 0 (dotted curve). Data with errors are taken from Ref. [29].
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FIG. 16. Same as Fig. 15 but at
√

s = 200 GeV.

the evolution equations for high-energy QCD, although the
possible larger systematic errors in experiments may hide the
deviation.

We try to understand limiting fragmentation and its vio-
lation from the partonic picture. The gluon distributions in
Eq. (1) are really irrelevant to the interaction energy

√
s in

the parton model [17]. A possible relation of Eq. (1) with
the interaction energy is that the kinematic ranges of Bjorken
variables x1/2 are

√
s dependent. To illustrate that, we draw

the kinematic ranges of two multiplying distributions at three
different energies using Eq. (2) in Fig. 23. For example, we
fix pt = 0.5 GeV in Eq. (2) and take meff = 0, thus we have
η = y. We can find that at y = ybim (or y ′ = y − ybim = 0),
an extremely small x1 = x1,small (or x2 = x2,small) always
combines with a larger x2 = x2,large (or x1,large). Besides,

x1,large = x2,large = pt

mN

(16)

is independent of
√

s, and

x1,small = x2,small = ptmN

s
. (17)
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FIG. 17. Predictions of pseudorapidity density of charged parti-
cles produced in Pb-Pb collisions with 0–6% central cut at

√
s =

5.5 TeV. Dashed and dotted curves are the contributions of the
gluon-gluon fusion and quark recombination, respectively.
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FIG. 18. Shifted and scaled pseudorapidity distribution of
charged particles produced in Au-Au collisions with 0–6% central
cut at

√
s = 130 GeV (dashed curve) and 200 GeV (solid curve).

Results exhibit limiting fragmentation at η′ > −1.5.

Thus, we have

Fg(x1,large, qt , pt )Fg(x2,small, qt , pt )|y ′=0,
√

s=200 GeV


 Fg(x1,large, qt , pt )Fg(x2,small, qt , pt )|y ′=0,
√

s=130 GeV,

(18)

since x2,small(W = 130 GeV) 
 x2,small(
√

s = 200 GeV). On
the other hand, the difference between the parameters c(

√
s)

at
√

s = 130 and 200 GeV is small. Consequently, we have
limiting fragmentation near y ′ = 0 in the gluon-gluon fusion
processes in Fig. 20.

However, an obvious difference exists near y ′ = 0 if we
compare the results at the RHIC and LHC energies, i.e.,

Fg(x1,large, qt , pt )Fg(x2,small, qt , pt )|y ′=0,
√

s=200 GeV

�= Fg(x1,large, qt , pt )Fg(x2,small, qt , pt )|y ′=0,
√

s=5.5 TeV,

(19)

since x2,small(
√

s = 5.5 TeV) � x2,small(
√

s = 200 GeV). Al-
though the decreasing c(

√
s) with increasing

√
s almost
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FIG. 19. Similar to Fig. 18 but with contributions from gluon-
gluon fusion mechanism. The same limiting fragmentation appears.
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FIG. 20. Comparisons of shifted and scaled pseudorapidity dis-
tribution of charged particles produced in Pb-Pb collisions with 0–6%
central cut at

√
s = 5.5 TeV (dotted curve) with the curves of Fig. 18.

Results exhibit deviations from limiting fragmentation at η′ < 0.

compensates for the difference in Eq. (19), σin ∼ √
s and

Fg ∼ √
s belong to really different dynamics; therefore,

the results in Fig. 21 show a deviation from limiting
fragmentation.

It is different from the gluon-gluon fusion mechanism;
the quark recombination model naturally satisfies limiting
fragmentation. The reason is as follows. For a given y ′ =
ln x + ln(mN/

√
m2

π + p2
t ), the kinematic ranges of Eq. (7)

are x1 ∈ [x, 0] and x2 ∈ [0, x], which are irrelevant to the
energy

√
s. Therefore, the resulting rapidity distributions have

limiting fragmentation, as we have shown in Fig. 20.

2. Possible deformation of central rapidity plateau

A general picture of two components of particle production
in hadron-hadron collisions predicts two types of ranges for
the distributions of final-state particles: except for limiting
fragmentation at the fragmentation ranges, particles near
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FIG. 21. Similar to Fig. 20 but with contributions from the gluon-
gluon fusion mechanism. Similar violations of limiting fragmentation
appear.
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FIG. 22. Predicted dNN−N/dη′ at 0–6% central vs the shifted
pseudorapidity η′ = η − ybeam in a range of energies corresponding
to Figs. 3–9 (

√
s = 130 GeV–14 TeV from bottom to top). The results

exhibit longitudinal scaling and a small violation as in Fig. 21.

midrapidity in the center-of-mass frame were expected to
form a rapidity plateau [17]. A narrow plateau appears in
our distributions, its height (but not the width) grows with
energy. We point out that the structure of the central plateau
relates to the value of parameter meff rather than the parton
distributions: a larger value of meff may structure a plateau
with double peaks, while it is flattened with decreasing meff ,
and the plateau even disappears when meff → 0.

Comparing a best fitting meff = 770 MeV in p-p collisions
at

√
s = 200 GeV (see Fig. 2) with that of meff = 400 MeV in

Au-Au collisions at the same energy (see Fig. 16), the reduction
of meff is possible in ultrarelativistic heavy-ion collisions. An
interesting question is whether this is a QGP effect in the RHIC
data.

One of the most exciting research areas in RHIC collisions
is to find a new matter, i.e., the QGP, in which quarks
and gluons are no longer confined to volumes of hadronic
dimensions and hadron masses are reduced under the QCD
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FIG. 23. Kinematical ranges of x1/2 with different energies
√

s

and pt = 0.5 GeV in Eq. (2). Solid curves:
√

s = 5.5 TeV; dashed-
dotted curves:

√
s = 200 GeV; and dotted curves:

√
s = 130 GeV.

Vertical dashed curves correspond to (from left to right) y ′ = 0 at√
s = 130 GeV, 200 GeV, and 5.5 TeV.
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FIG. 24. Deformation of central rapidity plateau with decreasing
parameter meff in Pb-Pb collisions at

√
s = 5.5 TeV. Solid, dashed,

and dotted curves correspond to meff = 400 MeV, 200 MeV and 0.

phase transition. One of the conditions in forming the QGP
is that a sizable fraction of the initial kinetic energy creates
many thousands of particles in a limited volume. Therefore,
we consider that the QGP is formed after gluon-gluon collision
in the central region in ultrarelativistic heavy-ion collisions.
The effective mass meff in Eq. (4) will be lowered if part of the
minijets go through the QGP region, since that is where chiral
symmetry is restored. We regard this decreasing value of meff

as a QGP effect partly due to the restoration of chiral symmetry.
Of course, since large errors occur with the RHIC data in the
region η < 3 [31], more accurate data are necessary. However,
if the above-mentioned QGP corrections to the RHIC data are
true, one can expect a more obvious effect in Pb-Pb collisions
at LHC. In Fig. 24, we plot such effects in the central plateau
of Pb-Pb collisions at

√
s = 5.5 TeV where the values meff are

reduced from 400 MeV to 0.

3. How large are the nuclear shadowing effects?

It has been observed [33] that the quark distributions in
a nucleus are depleted in the low region of x, and this
is called nuclear shadowing. Our parton distributions [8]
include nuclear shadowing corrections through the QCD
evolution equations. To illustrate the shadowing effects in
the multiplicity productions, we use the following scaled
distributions by 〈Ncoll〉 = 〈0.5Npart〉〈ν〉 to define the nuclear
shadowing factor:

R =
1

〈Ncoll〉
dNI

A−A

dη

dNI
p−p

dη

=
∫

d2pt
dσ I

A−A(η,pt )

dη dp2
t∫

d2pt
dσ I

p−p(η,pt )

dη dp2
t

. (20)

The results in Au-Au collisions at
√

s = 200 GeV (solid curve)
and

√
s = 5.5 TeV (dashed curve) are presented in Fig. 25. The

calculations are stopped at larger η, where the quark recom-
bination mechanism and Fermi motion effects [30] become
important. The η dependence of the nuclear shadowing factor
R presents a strong energy dependence. We find that the shad-
owing corrections to the initial unintegrated gluon distribution
cannot be negligible in any studies of the nuclear effects.
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FIG. 25. Nuclear shadowing factor R in Eq. (20) at different
energies

√
s, where the pseudorapidity distributions in Au-Au

collisions are scaled by Ncoll.

4. Two-component model or single-component model?

The early two-component picture of hadron-hadron col-
lisions assumes that a broad boost-invariant central plateau
is separated by two energy-independent fragmentation regions
[17]. However, the following experiments indicate that limiting
fragmentation can be extended to beyond fragmentation
ranges, and no evidence shows a boost-invariant central plateau
[25]. It seems that a single-component mechanism dominates
the hadron production. The KLN [6] and Albacete [7] are
such single-component models. However, the dashed curves
in Figs. 3 and 4, which are determined by the evolved
unintegrated gluon distributions, are lower than the data,
and it shows that the contributions from two components of
production are necessary.

5. Saturation: It comes or not?

Saturation is a limiting form of the shadowing modified
gluon distribution. In this work, we do not consider the
corrections of saturation, although shadowing is included. We
compare our predictions with those of two saturation models.
Kharzeeva, Levin, and Nardi [6] use a single production
mechanism [i.e., the component I in Eqs. (12) and (14)] to
predict the heavy-ion collisions at LHC. Instead of the two
scale unintegrated gluon distribution in Eq. (1), KLN use a
saturated integrated gluon distribution

xG
(
x, p2

t

) =
{ κ

αs (Q2
s )Sp2

t (1 − x)4 pt < Qs(x),
κ

αs (Q2
s )SQ2

s (x)(1 − x)4 pt > Qs(x),
(21)

to calculate the rapidity distributions. S is the inelastic cross
section for the minimum bias multiplicity and κ is a nor-
malization coefficient. A free parameter is dN/dη|η=0, which
contains nonperturbative information. In the KLN model, it is
fixed by the value of dNAu−Au/dη|η=0 at

√
s = 130 GeV and

the assumption

〈ν(
√

s)〉c(
√

s) = const. (22)

Figure 26 compares our results in Fig. 17 with the KLN
predictions [6].
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FIG. 26. Comparison of our predictions in Fig. 17 with the results
of the KLN model [6] (dotted curve), where meff = 500 MeV in the
KLN model.

Albacete [7] uses the same single production mechanism
but with a different gluon distribution, which is the solution
of the BK equation in the form of single scale distribution.
Albacete assumes

〈Npart(
√

s)〉〈ν(
√

s)〉c(
√

s) = const., (23)

and uses the value dNAu-Au/dη|η=0 at
√

s = 200 GeV to fix
this constant. Figure 27 compares our results with the Albacete
predictions [7].

Except for the contributions of quark recombination and
different values of meff , the differences among three models
originate from the different parton distributions, which obey
different QCD evolution dynamics. Therefore, the observa-
tions of the multiplicity distributions are useful in identifying
a true QCD evolution dynamics in the upcoming LHC data.

6. Validity of the factorization formula of Eq. (1)

We noted that the works in Ref. [34] presented a covariant
gauge calculation, where the transverse momentum spectrum
of the gluon is perturbatively determined by the final-state
interactions of the gluon with the nucleons in the nucleus. In
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FIG. 27. Comparison of our predictions in Fig. 17 with the results
of the Albacete model [7] (dotted curve), where meff = 250 MeV in
the Albacete model.
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this case, the application of the kt factorization formula (1) is
unsatisfied. However, these works neglect the QCD evolution
of gluons. Our aim is to test the predictions of the MD-DGLAP
evolution equation in the LHC physics, where a physical
gauge is used for the factorization of the evolution kernel. The
above-mentioned final-state interactions are absent, and these
effects are absorbed into the phenomenological fragmentation
functions. Therefore, the application of Eq. (1) is reasonable
in this work.

VI. SUMMARY

We use two complementary production mechanisms—hard
gluon-gluon fusion in the central rapidity region and soft
quark recombination in the fragmentation region—to study the
particle multiplicity distributions in hadron-hadron collisions
at high energies. We emphasize that a set of consistent
integrated and unintegrated parton distributions, which are
well defined in a broad kinematic range, are necessary in such
a partonic model. For this reason, our parton distributions
proposed in Ref. [8] are used. Based on the explanations of
the present data, we predict the pseudorapidity densities of
charged particles produced in p-p and central Pb-Pb collisions

at LHC energies. We find that the limiting fragmentation
hypothesis, which generally appears in the present data of
hadron collisions, is partly violated if the observations are
across a wide range between the RHIC and LHC energies. An
explanation about limiting fragmentation and its violation in
partonic picture are given. We propose that a possible QGP
effect may deform the shape of the central plateau. In this
work, we use an entirely phenomenological parametrization
of existing data to fix the energy dependence of normalization
factors of the hadronic distributions. This simple method may
need modification after we obtain the LHC data at midrapidity.
However, once this normalization is fixed, whole particle
multiplicity distributions are completely determined by our
parton distributions. The comparisons between our model
and other partonic models are given. The differences in the
predicted distributions in various models can help us to identify
the true QCD dynamics in hadron collisions.
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