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Radiative electron-proton scattering is studied in peripheral kinematics, where the scattered electron and
photon move close to the direction of the initial electron. Even in the case of an unpolarized initial electron,
the photon may have a definite polarization. The differential cross sections with longitudinally or transversity
polarized initial electrons are calculated. The relevant effective degrees of polarization are explicitly derived.
The same phenomena are considered for the production of an electron-positron pair by a photon, where the final
positron (electron) can be also polarized. Differential distributions for the case of a polarized initial photon are
given. We extend the results obtained for protons to atoms of any atomic number, including screening.
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I. INTRODUCTION

It was shown in the well-known articles of E. Haug [1,2]
that the main contribution to the differential cross section
for Bremsstrahlung induced by electrons and pair production
induced by photons, is given by peripheral kinematics, which
dominates starting from rather small energies of an initial
electron or photon in the laboratory frame. For photon energies
larger than 50 MeV, the contributions of kinematical regions
outside the peripheral region are below 5%.

Peripheral kinematics occurs in Bremsstrahlung when the
scattered electron and the photon, with small invariant mass (of
the order of electron mass m), move close to the direction of
the initial particle (hereafter we imply the laboratory reference
frame). The contribution from peripheral kinematics to the
cross section does not decrease when the energy of the initial
particle increases.

The differential (and total) cross section of peripheral
kinematics is of the order of α3/m2, whereas the contribution
of nonperipheral kinematics is ∼α3/s, s = 2Mω, or s =
2EM , with M being the target mass and ω of the order of
E initial photon or electron energies. Omitting nonperipheral
kinematics, the uncertainty (error) on the cross section is of
the order of 1 + O(m2/s). Even for energies ∼10 MeV, for the
scattering of electron on proton, this error does not exceed a
fraction of a percent.

Therefore, peripheral kinematics represents the domi-
nant contribution, starting almost from the threshold of the
process.
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Bremsstrahlung emission was the subject of intensive
theoretical work in the 1960s [3,4]. Accurate calculations were
done, including the radiative corrections owing to multiple
virtual photons exchange with the target. Results were derived
for the total cross section and single-parameter distributions.
In Refs. [5,6], detailed distributions for the photon in the
Bremsstrahlung processes was investigated. A more recent
work [7] and references therein contains detailed discussion
on these problems based on the formalism established in the
previous works.

In modern experiments, owing to the high luminosity and
the performances of the detector it is possible to achieve
precise measurements of the multidifferential cross section,
as function of the different observables that define completely
the kinematics.

The motivation of our article is to reformulate the matrix
element in the infinite momentum frame for Bremsstrahlung in
ep and for pair production in γp interaction. Analytical formu-
las for the cross section and for the polarization observables as
functions of the energy fraction and angle of the emitted photon
or electron are given. The effects of finite electron mass are
included. Explicit and transparent expressions are derived in
the framework of a light-cone formalism, similar to Weinberg
approach [8], which can be directly used as input for Monte
Carlo simulations and analysis programs. The multidifferential
cross section is integrated over the emission angle to compare
the numerical results with previous calculations.

The accuracy of the calculated cross section can be
estimated to be of the order

1 + O
(

α

π
,
m2

s

)
, (1)
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where the first term refers to radiative corrections that were
neglected and the second one is inherent to the method of
calculation.

Our article is organized as follows. We start from consider-
ations on the Bremsstrahlung process (Sec. II) in the collision
of electrons with the target. Even in the case of an unpolarized
initial electron, it is known that the emitted photon may
acquire a nonvanishing polarization [9]. The relevant Stokes
parameters related with its linear polarization are calculated.
Corresponding results are obtained when the initial electron
is longitudinally or transversely polarized with respect to the
beam direction. The analysis is performed at the lowest order
of perturbation theory.

Section III is devoted to the pair production by photons
on a target. A linear polarization of the positron (electron)
belonging to the the pair appears even in the case of the
unpolarized photon. The cases of the linearly polarized as
well as circularly polarized photons are considered. In Sec. IV
we consider the distributions integrated on the momentum
transferred to the target. Cases of both unscreened and
completely screened atom-target are considered. In Sec. V
the results of the numerical calculations for the relevant
quantities are presented. The Conclusions section contains a
short summary.

II. FORMALISM FOR A BREMSSTRAHLUNG PROCESS

Let us consider the process

e−(p) + T (P ) → γ (k, e) + e−(p′) + T (P ′), (2)

where T is a heavy target nucleus with electric charge Z. The
particle four-momenta are indicated in brackets. Let us define
e = e(k) as the polarization four-vector of the photon. The
relevant kinematical variables are

s = 2Pp, p2 = p′2 = m2, P 2 = P ′2 = M2,
(3)

k2 = 0, p + q = p′ + k, P ′ + q = P,

where q is the momentum transferred to the target. For
practical use, let us introduce dimensionless variables for the
photon, such as the energy fraction x̄ and the momentum
fraction κ , which is function of the emission angle θγ ,

κ = |�k|
m

= |�k|
Ex̄

Ex̄

m
= θγ · γ · x̄ = ηx̄, γ = E/m,

(4)
x̄ = ω

E
= 1 − x,

where γ is the γ factor of the initial electron.
Using the advantages of the infinite momentum technique

[10], the matrix element can be written as

M = (4πα)3/2Z

q2
· 2

s
[ū(P ′)p/ u(P )]

· [ū(p′)Oµνu(p)]eν(k)P̃ µ, (5)

Oµνe
ν(k)P̃ µ = ˜�P p/ − k/ + m

−2pk
ε/ + ε/

p′/ + k/ + m

2p′k
˜�P

(6)

(with p/ ≡ γµpµ), where P̃ = P − p M2

s
= (P0, Pz, Px, Py) =

M
2 (1,−1, 0, 0) and p̃ = p − P m2

s
= E(1, 1, 0, 0) are lightlike

vectors in the light-cone decomposition (Sudakov parametriza-
tion) of vectors [10,11],

p = m2

s
P̃ + p̃, q = αP̃ + βp̃ + q⊥,

p′ = α′P̃ + xp̃ + p′
⊥, k = αkP̃ + x̄p̃ + k⊥, (7)

x̄ = 1 − x, e = αeP̃ + e⊥,

where c⊥P = c⊥p = 0 for any vector c⊥ and P̃ 2 = p̃2 = 0.
We use the following notation:

q2
⊥ = −�q2, p′2

⊥ = − �p2, k2
⊥ = −�k2. (8)

The phase volume then reads

d� = 1

(2π )5
δ4(p + P − p′ − k − P ′)

d3k

2Ek

d3p′

2Ep′

d3P ′

2EP ′

= 1

(2π )5

1

4s

dx

xx̄
d2pd2q, d4q = s

2
dαdβd2q⊥. (9)

Using the on mass shell conditions αk = �k2/x̄; α′ = ( �p2 +
m2)/x, we obtain

2pk = D

x̄
, D = �k2 + m2x̄2, �k = �q − �p;

(10)

2p′k = 1

xx̄
D′, D′ = �r2 + m2x̄2, �r = x �q − �p.

Let us note the useful relations

D − D′ = x̄[�q2(1 + x) − 2( �p�q)],

D′ − xD = x̄( �p2 + m2x̄2 − �q2x).

Using the Dirac equation for the spinors of the initial and the
scattered electrons, one can write the expression for OµνP̃

µeν

as

OµνP̃
µeν = Ase/ + B ˜�Pq/ e/ + Ce/ q/ ˜�P ,

(11)

A = xx̄

(
1

D′ − 1

D

)
, B = x̄

D
, C = xx̄

D′ .

Note that in the products of three-vectors, only the transversal
component of q is relevant: q/ → q/⊥. It is easy to show that
omitting terms of the order m2/s the longitudinal components
cancel:

˜�Pq/ e/ = ˜�P (βp̃/ + q/⊥)e/⊥ ≈ ˜�Pq/⊥e/⊥.

From the gauge condition e(k)k = 0 we can express the light-
cone component of e as αe = 2�k�e/(sx̄). At this point let us
introduce the polarization density matrix of the photon:

eie
∗
j = 1

2

(
1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1 − ξ3

)
ij

, i, j = x, y. (12)

The case of a polarized initial electron can be considered
by introducing its density matrix:

u(p, a)ū(p, a) = (p/ + m)(1 − γ5a/ ), (13)

where, for longitudinal electron polarization, the Su-
dakov decomposition for the polarization vector gives
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a = λ[(m/s)P̃ − (1/m)p̃] and, in the case of transversal
electron polarization, a = a⊥.

The general expression for the cross section is

dσ eT →eγ T = dσ
eT →eγ T

0 Pe, (14)

Pe = 1 + λξ2pT + λξ2pa + τpp + τpq + τqq, (15)

which becomes, in the unpolarized case,

dσ
eT →eγ T

0 = 2α3Z2d2qd2pRp(1 − x)dx

π2(DD′)2(q2)2
, (16)

Rp = �q2(1 + x2)DD′ − 2xm2(D − D′)2. (17)

The effective degrees of polarization are

pT = 1

Rp

[−�q2DD′(1 − x2) + 2m2xx̄(D − D′)2],

pa = 2xm

Rp

[( �p�a)(D − D′)2 + (�q�a)(D − D′)(D′ − xD)],

τpp = �p2

Rp

2x(D − D′)2

x̄2
[ξ3 cos(2φp) + ξ1 sin(2φp)],

(18)

τqq = �q2

Rp

2x(xD − D′)2

x̄2
[ξ3 cos(2φq) + ξ1 sin(2φq)],

τpq = 1

Rp

4x(D − D′)(xD − D′)
x̄2

|�q|| �p|[ξ3 cos(φp + φq)

+ ξ1 sin(φp + φq)],

where φq and φp are the azimuthal angles of vectors �q and �p,
respectively.

The momentum transfer squared, q2, which enters in the
definition of the unpolarized Bremsstrahlung cross section,
must be understood as q2 = −(�q2 + q2

min) with q2
min = ( �p2 +

m2x̄2)2/[4E2(xx̄)2].

III. PAIR PRODUCTION

Let us consider the process

γ (k, e) + T (P ) → e+(q+) + e−(q−) + T (P ′), (19)

where T is a heavy target with electric charge Z. The
kinematics is defined as

s = 2Pk, q2
± = m2, P 2 = P ′2 = M2,

(20)
k2 = 0, k + q = q+ + q−, P ′ + q = P,

where q is the four-momentum transferred to the target, and
e = e(k) is the polarization vector of the initial photon. The
matrix element is written as

M = (4πα)3/2Z

q2
· 2

s
[ū(P ′)k/ u(P )]

· [ū(q−)Oµνv(q+)]eν(k)P̃ µ, (21)

with

Oµνe
ν(k)P̃ µ = ˜�P −q/+ + k/ + m

2(kq+)
e/ + e/

q/− − k/ + m

2(kq−)
˜�P ,

(22)

where we used again the light-cone decomposition of vectors

P̃ = P − k
M2

2 (pk)
, q± = α±P̃ + x±k + q±⊥,

(23)
x+ + x− = 1, q = αP̃ + βk + q⊥, e = e⊥.

Similarly, the polarization vector a of the positron can be
written in the form

a = αaP̃ + a⊥, αa = 2�a�q+
sx+

, (24)

where the condition aq+ = 0 was applied, to find the expres-
sion for αa . One finds

2kq± = 1

x±
D±, D± = �q2

± + m2,

(q+ + q−)2 = 1

x+x−
[ �ρ2 + m2], �q = �q+ + �q−, (25)

�ρ = x−�q+ − x+�q−.

The phase volume then reads

d� = 1

(2π )5
δ4(k + P − q+ − q− − P ′)

d3q+
2E+

d3q−
2E−

d3P ′

2EP ′

= 1

(2π )5

1

4s

dx−
x−x+

d2q+d2q−. (26)

The expression Oµνε
ν(k)P̃ µ, applying the momentum conser-

vation law k + q = q+ + q−, can be written in the form

Oµνe
ν(k)P̃ µ = se/ Aγ + Bγ e/ q/ ˜�P + Cγ ˜�Pq/ e/ ,

Aγ = x+x−

(
1

D−
− 1

D+

)
; Bγ = − x−

D−
; (27)

Cγ = x+
D+

.

The cross section becomes

dσγT →e+e−T = dσ
γT →e+e−T

0 Pγ ,

dσ
γT →e+e−T

0 = 2α3Z2d2q−d2q+dx−
π2(q2)2

Rγ

(D+D−)2
, (28)

Pγ = 1 + ξ2pT + ξ2pa + τq+q+ + τq+q + τqq,

with

Rγ = �q2(x2
+ + x2

−)D+D− + 2m2x+x−(D+ − D−)2 (29)

and

pT = (x2
− − x2

+)

Rγ

D+D−�q2,

pa = 2x−m

Rγ

[(�a�q)D+(D− − D+) + (�q+�a)(D− − D+)2],

τq+q+ = −2x+x−
Rγ

(D+ − D−)2 �q2
+[ξ3 cos(2φ+) + ξ1 sin(2φ+)],

τq+q = 4x+x−
Rγ

(D+ − D−)D+|�q+||�q|[ξ3 cos(φ+ + φq)

+ ξ1 sin(φ+ + φq)],

τqq = −2x+x−
Rγ

D2
+�q2[ξ3 cos(2φq) + ξ1 sin(2φq)],
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where φq and φ+ are the azimuthal angles of vectors �q and �q+
and ξ1,2,3 are the Stokes polarization parameters of the initial
photon. The final positron acquires the polarization a in the
case when the initial photon is circularly polarized.

The square of the transferred momentum to the target, q2,
entering in the definition of the unpolarized photoproduction
cross section must be understood as q2 = −(�q2 + q2

min,γ ), with
q2

min,γ = D2
+/[4ω2(x+x−)2].

IV. DISTRIBUTIONS WITH AND WITHOUT SCREENING

In an inclusive experimental setup, tagging one of the
produced particles (a photon in the Bremsstrahlung process
or a positron in the photoproduction process), the distributions
obtained by integration on the momentum transferred to the
target become important.

Performing the integration on the transversal component
of the produced particles, we obtain the distributions on
the energy fraction of one of them and on the momentum
transferred to the target �q2 = 4m2t :

dσ eT →eγ T

dxdt
= α3Z2

2m2x̄t2
�e; t 
 m2x̄2

16E2x2
,

(30)
dσγT →e+e−T

dx+dt
= α3Z2

2m2t2
�γ , t 
 m2

16ω2(x+x−)2
,

with

�e = 2[t(1 + x2) + x]√
t(t + 1)

L − 4x;

�γ = 2[t(x2
+ + x2

−) − x+x−]√
t(t + 1)

L + 4x+x−; (31)

L = ln

√
t + 1 + √

t√
t + 1 − √

t
.

In the absence of screening, performing the integration on
the transferred momentum and the transversal component of
the produced particles, one obtains the spectral distributions
for the unpolarized case [12]:

dσ
eT →eT γ

0

dx
= 2α3

m2x̄

[
4

3
x + x̄2

] [
2 ln

s

m2
+ 2 ln

x

x̄
− 1

]
;

x̄ = 1 − x = ω

E
, (32)

dσ
γT →e+e−T

0

dx+
= 2α3

m2

[
1 − 4

3
x+x̄+

] [
2 ln

sx+x̄+
m2

− 1

]
.

The spectra show a logarithmic enhancement (Weizsacker-
Williams (WW) enhancement [13]). The different distributions
for these processes, calculated within the Born approximation,
can be found in Ref. [10].

The effect of complete screening can be taken into account
in frame of the Molière model [14] by replacing

4πα

−q2
→ 4πα[1 − F (−q2)]

−q2
, (33)

with

1 − F (�q2)

�q2
=

3∑
i=1

αi

�q2 + m2βi

= 1

4m2

3∑
i=1

αi

t + βi/4
,

α1 = 0.1, α2 = 0.55, α3 = 0.35;

βi =
(
Z1/3

121

)
bi, b1 = 6.0; b2 = 1.2; b3 = 0.3.

(34)

The resulting spectral distributions have been derived in
the preceding case without screening (30). For complete
screening, we find, respectively,

dσ
eT →eT γ

0scr

dx
= α3Z2

2m2x̄

∫ ∞

0

(
3∑

i=1

αi

t + βi/4

)2

�edt ;

dσ
γT →e+e−T

0scr

dx
= α3Z2

2m2

∫ ∞

0

(
3∑

i=1

αi

t + βi/4

)2

�γ dt.

The expressions for differential cross sections obey explicitly
the gauge invariance requirement

(�q2)2 dσ

d2q

∣∣∣∣
�q→0

= 0. (35)

Keeping in mind the relation
∫ 2π

0 F (cos φ) sin φdφ = 0
and introducing ψ = φp − φq , the differential distributions
integrated on final-particle transversal momenta become

dσ eT →eγ T

dtdxdφ
= α3Z2

2πm2

∫ ∞

0

dy

(t + tmin)2
Fe(t, y, x),

(36)

tmin = m2

4E2(xx̄)2

(
y + x̄2

4

)2

,

where we used the notation φq = φ, for simplicity. The result
is

Fe = Fe
unp + λξ2

(
Fe

L + �n�aF e
a

) + [ξ3 cos(2φ) + ξ1 sin(2φ)]Fe
τ ,

(37)

with �n = �q/ |�q| and

Fe
unp = 1

ρ
[t(1 + x2) + x]

[
I

(0)
1 − xJ

(0)
1

] − x

2

[
I

(0)
2 + J

(0)
2

]
,

F e
L = − 1

ρ
[t(1 − x2) + xx̄]

[
I

(0)
1 − xJ

(0)
1

] + xx̄

2

[
I

(0)
2 + J

(0)
2

]
,

F e
a =

{
− 2

ρ

[
I

(1)
1 − xJ

(1)
1

] + I
(1)
2 + J

(1)
2

} √
y

+
{

1 + x

ρ

[
I

(1)
1 − xJ

(1)
1

] − I
(1)
2 − xJ

(1)
2

}√
t, (38)

Fe
τ = 2x

x̄2

(
y

{
2I

(2)
2 − I

(0)
2 + 2J

(2)
2 − J

(0)
2 − 2

ρ

[
I

(2)
1 − xJ

(2)
1

]}

+ t

{
I

(0)
2 + x2J

(0)
2 − 2x

ρ

[
I

(0)
1 − xJ

(0)
1

]}

+ 2
√

yt

{
I

(1)
2 + xJ

(1)
2 − 1 + x

ρ

[
I

(1)
1 − xJ

(1)
1

]})
,
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with ρ = x̄[y − tx + x̄2

4 ]. The quantities I
(i)
k and J

(i)
k are

derived in the Appendix.
Similar calculations for the photoproduction process lead

to

dσγT →e+e−T

dtdxdφ
= α3Z2

2πm2

∫ ∞

0

dy

(t + tmin,γ )2
Fγ (t, y, x),

(39)

tmin,γ = m2

4ω2(x+x−)2
d2

+, d+ = y + 1

4
,

with (see Appendix)

Fγ = 1

2
x+x−

[
K

(0)
2 − 2

d+
K

(0)
1 + 1

d2+

]
+ t(x2

+ + x2
−)

1

d+
K

(0)
1

+ λξ2x−�a�n
{√

t

[
1

d+
K

(0)
1 − K

(0)
2

]

+√
y

[
− 2

d+
K

(1)
1 + K

(1)
2

]}
+ 2x+x−[ξ3 cos(2φ)

+ ξ1 sin(2φ)]

(
− tK

(0)
2 − y

{
2K

(2)
2 − K

(0)
2

− 2

d+

[
2K

(2)
1 − K

(0)
1

] + 2
√

ty

[
K

(1)
2 − 1

d+
K

(1)
1

]})
.

(40)

To take into account the screening effects, one must replace

1

(t + tmin)2
→

(
3∑

i=1

αi

t + βi/4

)2

, (41)

following Eq. (33).

V. DISCUSSION AND RESULTS

In frame of the WW approximation one obtains the
following from the differential distributions given previously.

(i) For the Bremsstrahlung process,

dσ eT →eγ T

dp2dxdφp

= α3Z2

πd4
{(1 + x2)d2 − 4m2p2x̄2

+ λξ2[−d2(1 − x2) + 4m2p2xx̄3

+ 2xx̄2m �p�a(2p2 − d)]

+ 4xp2[ξ3 cos(2φp) + ξ1 sin(2φp)]

× [p2 + d]} ln
4E2(xx̄)2

d
, (42)

with d = p2 + m2x̄2.
(ii) For the pair production process,

dσγT →e+e−T

dq2+dx+dφ+
= α3Z2

πc4
{(x2

+ + x2
−)c2 + 4m2q2

+x+x−

+ λξ2mx−�q+�a(2q2
+ − c) + 4x+x−q2

+
× [ξ3 cos(2φ+) + ξ1 sin(2φ+)]

× [−q2
+ + c]} ln

4ω2(x+x−)2

c
, (43)

with c = q2
+ + m2.

Let us consider first the Bremsstrahlung process and
calculate the differential distribution on the energy fraction
of the photon. We integrate the multidifferential distributions
[Eq. (42)] and obtain

dσ unp

dxdη2
= 4α3Z2x̄3

m2d2

∫ ∞

0

qdq(
q2 + q2

m

)2

∫ 2π

0

dφ

2π (d ′)2

× [q2(1 + x2)dd ′ − 2x(d − d ′)2]

= 4α3Z2x̄3

m2d2
Iunp; (44)

(dσ pol)circ
long

dxdη2
= 4α3Z2x̄3

m2d2

∫ ∞

0

qdq(
q2 + q2

m

)2

∫ 2π

0

dφ

2π (d ′)2

× [−q2(1 − x2)dd ′ + 2xx̄(d − d ′)2]

= 4α3Z2x̄3

m2d2
Ipol. (45)

The degree of transverse polarization is calculated as the
ratio

PT = Ipol

Iunp
. (46)

We use the parametrization

d = κ2 + x̄2 = x̄2(η2 + 1), d ′ = α + β cos φ,

α = κ2 + x̄2 + x̄2q2, β = −2κqx̄, (47)

α > β, d − d ′ = −x̄q[x̄q − 2qκ cos φ].

The angular integration is analytically performed as explained
in the Appendix. The remaining integration on the transverse
momentum q, keeping in mind that

q2
m = (κ2 + x̄2)2

4γ 2(xx̄)2
 1, (48)

can be performed, in case of slow convergence, using an
auxiliary numerically small parameter σ , which cancels in
the final expression:

I =
∫ ∞

0

q3dq(
q2 + q2

m

)2 f

= lim
σ→0

[∫ σ

0

q3dq(
q2 + q2

m

)2 f (0) +
∫ ∞

σ

dq

q
f (q2)

]
,

γ −2  σ  1. (49)

In case of Bremsstrahlung, the explicit expressions for funp,
fpol are

funp = d(1 + x2)

R
− 2xx̄2

R3
T ; fpol = −d(1 − x2)

R
+ 2xx̄3

R3
T ;

T = x̄2q2α + 4x̄κqβ + 4κ2

β2
(R3 − α3 + 2αβ2); (50)

R =
√

α2 − β2.
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For the case of pair production, we have

I pair
unp =

∫ ∞

0

q3dq[
q2 + (

q
pair
m

)2]2

{
d−(x2

+ + x2
−)

R
+ 2

x+x−
R3

×
[
q2α + 4qκ−β + 4κ2

−
β2

(R3 − α3 + 2αβ2)

]}
;

(51)

I
pair
pol =

∫ ∞

0

q3dq[
q2 + (

q
pair
m

)2]2

(x2
− − x2

+)d−
R

; (52)

α = 1 + q2 + κ2
−, β = −2qκ−, R =

√
α2 − β2,

d− = κ2
− + 1, κ− = θe−γ x−, (53)

(
qpair

m

)2 = d2
−

4γ 2(x+x−)2
, x+ + x− = 1.

The relevant degree of longitudinal electron polarization is

P
pair
L = I

pair
pol

I
pair
unp

. (54)

The case of complete screening can be obtained using similar
calculations with the replacement [see Eq. (33)]

1(
q2 + q2

m

)2 →
(

3∑
i=1

αi

q2 + βi

)2

. (55)

Performing the integration over �p in Eq. (16), we can obtain
the inclusive cross section over photon momenta �k previously
obtained in Ref. [15]:

dσ

d2kdx
= 2α3(1 − x)

πm4c2

{
2

[
1 + x2 − 4x(1 − x)2

c

+ 4x(1 − x)4

c2

]
ln

[
sx

m2(1 − x)

]
− (1 + x)2

+ 16x(1 − x)2

c
− 16x(1 − x)4

c2

}
, (56)

where c = (1 − x)2 + �k2/m2. Performing the integration over
�k in Eq. (16), we can obtain the cross section inclusive over
scattered electron momenta �p in agreement with Ref. [16]:

dσ

d2pdx
= 4αr2

0 (1 − x)m2

πa2

{ [
1 + x2 − 4x(1 − x)2 �p2m2

a2

]

× ln
(sx

m2

)
+ x ln x

1 − x

[
1 + x2 + 4x2(3 − x)m2 �p2

a2

]

− (1 + x2)2

2(1 − x)2
+ 8x(1 − x + x2)m2 �p2

a2

− xa
(
1 + x2 + 4x2m2

a

)
(1 − x)2rm2

ln
x
[
2(1 − x) − a

m2 + r
]

2x(1 − x) + a
m2 + r

}
,

(57)

where r =
√

a/m2
√

a/m2 + 4x, a = �p2 + m2(1 − x)2, and
r0 = α/m.

For large values of Z, Coulomb corrections owing to an
arbitrary number of photons interacting with the charged
leptons and with the nuclei have to be taken into account. This

has been previously derived in the literature. For completeness,
let us recall the results from Ref. [12], for the total cross
sections of pair photoproduction in case of absence of
screening,

σ pair = 28

9

Z2α3

m2

[
ln

(
2ω

m

)
− 109

42
− f (Z)

]
, (58)

and in case of complete screening,

σ pair = 28

9

Z2α3

m2

[
ln(183Z−1/3) − 1

42
− f (Z)

]
, (59)

where f (Z) is the Bethe-Maximon-Olsen function

f (Z) = (Zα)2
∞∑

n=1

1

n[n2 + (Zα)2]
. (60)

The first term in brackets corresponds to WW approximation,
the second one arises from terms beyond WW approximation,
whereas the function f (Z) contains higher-order corrections.
They can be found in Ref. [12]. In frame of our formalism,
they require accurate integration on the energy fraction x, as
in Eq. (32).

The photon spectrum of the Bremsstrahlung process in case
of complete screening has the form

dσ = 4Z2α3

m2

dx

1 − x

[(
1 + x2 − 2

3
x

)
ln(183Z−1/3) + x

9

]
,

(61)

while in case of absence of screening, we have

dσ = 4Z2α3

m2

dx

1 − x

[(
1 + x2 − 2

3
x

)
ln

(
2ω

m

)
− 1

2
− f (Z)

]
.

(62)
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FIG. 1. (Color online) Unpolarized reduced cross section Iunp [see
Eq. (44)] for the Bremsstrahlung process at Ee− = 3 MeV (solid black
line), Ee− = 10 MeV (dashed red line), Ee− = 100 MeV (dotted
green line), and in the case of the fully screened process, at Ee− =
3 MeV (dash-dotted blue line), Ee− = 10 MeV (dash-double-dotted
yellow line), Ee− = 100 MeV (dash-triple-dotted magenta line). The
fully screened distributions are essentially independent on energy.
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FIG. 2. (Color online) Polarized reduced cross section Ipol [see
Eq. (45)], for the Bremsstrahlung process. Notations as in Fig. 1.

The relevant formula for pair photoproduction in the case
of complete screening is

dσ pair

dx+
= 4Z2α3

m2

{[
1 − 4

3
x+(1 − x+)

]
ln(183Z−1/3)

− 1

9
x+(1 − x+) − 7

9
f (Z)

}
. (63)

The effects of Coulomb interaction for light nuclei (Z < 10)
are of the order of 1%. They correspond to radiative corrections
related to the lepton vertex, which are not discussed here.

In the case where the target (T) is a nucleon, the factor
D(�q2) = F 2

1 (−�q2) + �q2

4M2 F
2
2 (−�q2) has to be taken into ac-

count. Such factor parametrizes the internal structure of the
nucleon in terms of the Dirac and Pauli form factors F1, F2.

The distribution on the momentum transferred to the nuclei
is equivalent to the distribution on the square of the three-
momentum of the recoil proton �p:

�p2 = �q2

(
1 + �q2

4M2

)
;

dσ

d �q2
= dσ

2MdE′ , (64)

−e/EγE
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u
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p
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I
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0.4

0.6

0.8

1

FIG. 3. (Color online) Degree of transverse polarization PT =
Ipol/Iunp [see Eq. (46)] as a function of x = Eγ /Ee− . The polarization
is nearly independent on the energy, in all cases. Notations as in Fig. 1.
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FIG. 4. (Color online) Unpolarized reduced cross section Iunp

[see Eq. (51)] for the pair production process. Notations as in
Fig. 1.

where E′ =
√

p2 + M2 is the energy of the recoil proton and
M is its mass. It is useful to recall the relation between the
recoil proton momentum p with the emission angle θp relative
to the initial beam direction:

p

2M
= cos θp

sin2 θp

. (65)

In practice, the ratio p/(2M) ranges from 1 to 2, θp � 60◦.
Therefore, approximate formulas for the emission angles of
the produced particles can be used, as these angles are small
compared with θp. For the Bremsstrahlung process, one has

θe = | �pe|
Ex

; θγ = |�k|
E(1 − x)

; θe ∼ θγ  1, (66)

and for the pair production process,

θ+ = |�q+|
ωx+

; θ− = |�q−|
ωx−

; θ+ ∼ θ−  1. (67)

The results are shown in Figs. 1–6. Three energies have
been considered for the numerical applications, E = 3, 10,
100 MeV, in the cases of both no screening and complete
screening. For the screening effect, the target is Au and the

γ/E−e=E−x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIG. 5. (Color online) Polarized reduced cross section Ipol [see
Eq. (52)], for the pair production process. Notations as in Fig. 1.
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FIG. 6. (Color online) Degree of linear polarization PL =
I

pair
pol /I

pair
unp [see Eq. (54)], as a function of x− = Ee−/Eγ , for the pair

production process. Notations as in Fig. 1.

angle of the produced particles θ or of the electron in the pair
is taken as 0.41 mrad.

For the Bremsstrahlung process, the functions Iunp and
Ipol, which correspond to the unpolarized and polarized
cross sections omitting kinematical coefficients as defined in
Eqs. (44) and (45), are shown in Figs. 1 and 2, as functions
of the fraction of incident energy carried by the photon. The
transverse polarization, P pair [Eq. (46)], is built as their ratio
and is shown in Fig. 3.

The comparison with the results of Ref. [3] show complete
agreement. For example, Fig. 1 of Ref. [3] should be compared
with Fig. 1 of the present work, in the same kinematics, after
multiplying the quantity I by a factor of four, to match the
definitions.

Similarly, in the case of pair production, the unpolarized
and polarized functions from Eqs. (51) and (52) are shown in
Figs. 4 and 5 as functions of the electron energy fraction, for
the case of longitudinal electron polarization, when the initial
photon is circularly polarized. The degree of polarization P

pair
L

is shown in Fig. 6 [Eq. (54)].
In all cases, fully screened distributions are independent

of energy. When screening is switched off, the polarized as
well as the unpolarized distributions increase with energy (in
absolute value). Also for pair production, the present results
are fully consistent with the corresponding numerical results
reported in Ref. [3].

VI. CONCLUSIONS

Multidifferential cross section for Bremsstrahlung
and pair creation processes in electron proton scattering
have been calculated using first-order perturbation theory.

Considerations taking into account higher-order processes
can be found in Ref. [17].

The calculation is done in frame of the light-cone
parametrization of four-vectors, which is well suited to small-
angle scattering.

General expressions for different observables have been
given for unpolarized and polarized scattering in case of
unscreened and fully screened atomic targets. The screened
distributions are essentially independent of the energy.

For numerical applications, two cases have been illustrated:
the transverse polarization of the photon, when the electron is
longitudinally polarized in the Bremsstrahlung process and the
longitudinal polarization of the electron, created using a pair
production process by a circularly polarized photon.
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APPENDIX: THE QUANTITIES I (i)
k , J (i)

k

The quantities I
(i)
k and J

(i)
k are defined as

Im
k = 1

2π

∫ 2π

0
dφ

(cos φ)m

(a − b cos φ)k
. (A1)

Their explicit expressions are (see tables in Gradshetyn and
Ryzik [18])

I
(0)
1 = 1

d
, d =

√
a2 − b2; I

(1)
1 = 1

b

[a

d
− 1

]
;

I
(2)
1 = a

b2

[a

d
− 1

]
; I

(0)
2 = a

d3
; I

(1)
2 = b

d3
;

(A2)

I
(2)
2 = 1

b2

[
1 + a(2b2 − a2)

d3

]
,

I
(3)
2 = a

b3

[
2 − 3a

d
+ a3

d3

]
.

The relations with the other functions used in Sec. IV are

J
(i)
j = I

(i)
j (a → a1, b → b1);

(A3)
K

(i)
j = I

(i)
j (a → a−, b → b−),

with

a = y + t + x̄2

4
; b = 2

√
yt ;

a1 = y + tx2 + x̄2

4
; b1 = 2x

√
yt ; (A4)

a− = t + y + 1

4
; b− = 2

√
ty.
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