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Coupled channels calculation of a π�N quasibound state
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We extend the study of a J P = 2+, I = 3/2, π�N quasibound state [Phys. Rev. D 78, 014013 (2008)] by
solving nonrelativistic Faddeev equations, using 3S1-3D1, �N -�N coupled channels chiral quark model local
interactions, and πN and coupled π�-π� separable interactions fitted to the position and decay parameters of the
�(1232) and �(1385) resonances, respectively. The results exhibit a strong sensitivity to the p-wave pion-hyperon
interaction, with a π�N quasibound state persisting over a wide range of acceptable parametrizations.
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I. INTRODUCTION

The success of the nonrelativistic quark model (QM)
during the 1970s in reproducing the SU(3) octet and decuplet
baryon masses in terms of 3q configurations was followed
by QM studies of 6q configurations that aimed particularly
at elucidating the baryon-baryon short-range dynamics and
making related predictions for dibaryon bound or quasibound
states. It is remarkable that decades of experimental searches
for dibaryons have so far yielded no unambiguous evidence
for a dibaryon state. In the nonstrange sector, where the quark
cluster calculations for L = 0 6q configurations [1] suggest
only a weakly bound �� dibaryon with (JP , I ) = (3+, 0),
there is a recent indication from np → dππ reactions at
CELSIUS-WASA for a resonance structure at MR ≈ 2.36 GeV
and �R ≈ 80 MeV that might suggest a �� dibaryon bound
by about 100 MeV, but still about 200 MeV above the dππ

threshold [2]. In the strange sector, Jaffe’s dibaryon H [3] with
strangeness S = −2 and quantum numbers (JP , I ) = (0+, 0),
which was predicted as a genuinely bound state well below
the �� threshold, perhaps the most cited ever prediction
made for any dibaryon, has not been confirmed experimentally
to date in spite of several extensive searches [4]. Another
equally ambitious early prediction was made by Goldman
et al. [5], also using a variant of the MIT bag model, for
(JP ; I ) = (1+, 2+; 1

2 ) S = −3 dibaryons dominated by �N

structure and lying below the �� threshold. More realistic
quark cluster calculations by Oka et al. [6], applying resonating
group techniques, did not confirm Jaffe’s deeply bound H ,
placing it just below the �N threshold as a resonance about
26 MeV above the �� threshold. The underlying binding
mechanism common to all of these orbital angular momentum
L = 0 configurations is the dominance of the color-magnetic
interaction for gluon exchange between quarks, a feature
emphasized by Oka [7], who systematically studied L = 0
dibaryon configurations that may benefit from a short-range
attraction. Following earlier quark cluster calculations [1,6],
these calculations resulted in no strange dibaryon bound states,
and for the �N -dominated S = −3 bound-state configurations

*humberto@esfm.ipn.mx
†avragal@vms.huji.ac.il

predicted in Ref. [5], in particular, only a (JP , I ) = (2+, 1
2 )

quasibound state resulted.
For strangeness S = −1, which is the focus of the present

work, no L = 0 dibaryons have been suggested for the lowest
energy I = 1

2 �N -�N coupled channels, where the long-
range pion exchange interaction is dominant, particularly for
the 3S1-3D1 system, through the tensor component. Although
old K−d → π−�p data [8] had suggested resonant �p struc-
tures at the �N threshold and 10 MeV above it, a (JP , I ) =
(1+, 1

2 ) �N quasibound state is not necessarily required in
order to reproduce the general shape of the �p spectrum, as
shown by multichannel Faddeev calculations [9,10]. Several
low-lying L = 1 �N resonances were predicted in singlet and
triplet configurations in a QM study by Mulders et al. [11], but
negative results, particularly for the singlet resonance, were
reported in dedicated K− initiated experiments [12,13] near
the �N threshold. At higher energies, Oka’s analysis [7] drew
attention to a (JP , I ) = (2+, 1

2 ) dibaryon predominantly of a
�(1385)N -��(1232) coupled channels structure, resonating
about the ��(1232) threshold, approximately 100 MeV above
the lower �(1385)N threshold. We note that these two
channels are substantially higher in mass, by about 300 MeV,
than the S = −1 thresholds of �N and �N .

In a recent paper [14] we studied within three-body Faddeev
calculations the possible existence of a π�N quasibound state,
driven by the two-body (2S+1LJ , I ) = (2P 3

2
, 3

2 ) πN resonance

�(1232) and the (2P 3
2
, 1) π� resonance �(1385), for a �N

(3S1,
1
2 ) configuration, all of which were represented by means

of single-channel separable potentials. The coupling to the
pionless �N channel, with threshold about 60 MeV below the
π�N threshold, was disregarded. It was felt that this coupling
was mostly responsible for the width of the π�N quasibound
state. The three-body channel (JP , I ) = (2+, 3

2 ) was selected
since all the angular momenta, spins, and isospins in this
channel have maximum values and, therefore, it is likely to
benefit from maximal attraction of both �(1232) and �(1385)
resonances. This opportunity is unique to strange and charmed
systems: a similar choice of (JP , I ) = (2+, 2) for πNN , with
each πN pair interacting in the ( 3

2
+
, 3

2 ) resonating channel,
implies a (1+, 1) Pauli-forbidden NN configuration. In terms
of dibaryons, the π�N (JP , I ) = (2+, 3

2 ) quasibound state
is a deeply bound �(1385)N -��(1232) L = 0 dibaryon, at
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energy considerably below the (JP , I ) = (2+, 1
2 ) �(1385)N -

��(1232) L = 0 dibaryon suggested by the quark cluster
model of Ref. [7].

Whereas the interactions in the pion-baryon resonating
channels in first approximation are adequately represented
by rank-1 attractive separable potentials, the baryon-baryon
interaction requires a rank-2 separable potential to simulate
both the attraction and repulsion that meson-exchange models
normally yield. Indeed, we found a strong dependence of
the calculated π�N binding energy on the balance between
repulsion and attraction in the 3S1 �N channel [14]. It
is therefore very suggestive to consider a more realistic
hyperon-nucleon interaction in the JP = 1+ channel. In the
present work we used the hyperon-nucleon (YN ) chiral quark
model (CQM) interaction described in Refs. [15,16] in terms
of 3S1-3D1,�N -�N coupled channels local potentials. For
consistency, we also generalized our previous single-channel
model of �(1385) as a π� resonance to a family of pion-
hyperon (πY ) interaction models, in terms of π�-π� coupled
channels separable interactions fitted to the position, width,
and decay branching ratios of �(1385). Furthermore, we
studied the dependence of the calculated π�N binding energy
on the πY interaction.

In our previous work [14], based on separable potentials, we
considered both a nonrelativistic and a relativistic three-body
formalism, from which we deduced that the nonrelativistic
results do not change much when the relativistic formalism is
used instead. This is relevant for the validity of the results of
the present work, which are based on the hyperon-nucleon
interaction derived from the CQM within a nonrelativistic
formalism. Therefore, in the present calculation, we consider
only a nonrelativistic framework. The results of the present
three-body Faddeev calculations leave wide room for the
existence of a (2+, 3

2 ) π�N quasibound state, indicating,
however, a strong dependence on the short-range behavior
of the least known πY and YN two-body subsystems.

The plan of the paper is as follows. In Sec. II, we describe
the two-body interactions in the pion-nucleon, pion-hyperon,
and hyperon-nucleon subsystems. In Sec. III, we derive
the Faddeev equations of the pion-nucleon-hyperon system.
Finally, we discuss our results in Sec. IV and summarize the
work in Sec. V.

II. THE TWO-BODY SUBSYSTEMS

We will denote the hyperon, nucleon, and pion as particles
1, 2, and 3, respectively, and refer to the two-body subsystems
by a subscript for the spectator particle. Thus, the pion-nucleon
is subsystem 1, the pion-hyperon is subsystem 2, and the
hyperon-nucleon is subsystem 3. The conventional reduced
masses are given by

ηα
i = mjmk

mj + mk

, να
i = mi(mj + mk)

mi + mj + mk

, (1)

where a superscript α = �,� has been added to indicate
whether particle 1 is a � or a � hyperon and, obviously,

η�
1 ≡ η�

1 ≡ η1 = mπmN

mπ + mN

. (2)

However, an average hyperon mass

mY = m� + m�

2
(3)

was used in the following reduced masses:

ν2 = mN (mπ + mY )

mN + mπ + mY

, ν3 = mπ (mN + mY )

mπ + mN + mY

. (4)

The πY and YN amplitudes are given by 2 × 2 matrices,
to account for the coupling between π� and π� and between
�N and �N , respectively. The πN amplitude in the three-
body system is also given by a 2 × 2 matrix, since the energy
dependence of the two-body subsystem depends on whether
the spectator particle is a � or a �.

A. The pion-nucleon subsystem

Since the πN subsystem is dominated by the �(1232)
resonance, a rank-1 separable interaction is considered
sufficient:

〈p1|V1|p′
1〉 = γ1g1(p1)g1(p′

1), (5)

so that the corresponding two-body t matrix is given by

〈p1|t1(E)|p′
1〉 = g1(p1)τ1(E)g1(p′

1), (6)

where E = p2
0/2η1 with p0 the correct relativistic πN center

of mass (c.m.) momentum and

τ−1
1 (E) = 1/γ1 −

∫ ∞

0
p2

1dp1
g2

1(p1)

E − p2
1

/
2η1 + iε

. (7)

The form factor g1(p1) was obtained from a very good fit of
the P33 phase shift [17] for 0 � Tlab � 250 MeV in the form

g1(p1) = p1
[
e−p2

1/β
2
1 + A1p

2
1e

−p2
1/α

2
1
]
, (8)

with γ1 = −0.033 17 fm4, A1 = 0.2 fm2, β1 = 1.31 fm−1, and
α1 = 3.2112 fm−1.

In the three-body calculation, when the πN subsystem is
embedded in the πYN system, the energy argument of the
isobar propagator τ1(E) depends on whether the spectator
hyperon is a � or a �, so that the separable πN ampitude
(6) takes the form

t1 = |g1〉
(

τ�(q1) 0

0 τ�(q1)

)
〈g1|, (9)

where

τα(q1) = τ1
(
E − δα��E − q2

1

/
2να

1

)
, α = �,�, (10)

with q1 the relative momentum between the hyperon and the
πN subsystem and

�E = m� − m�. (11)

B. The pion-hyperon subsystem

The πY subsystem is dominated by the �(1385)
p-wave resonance, which decays mainly into π� and

055205-2



COUPLED CHANNELS CALCULATION OF A π�N . . . PHYSICAL REVIEW C 81, 055205 (2010)

π� with branching ratios of (87.0 ± 1.5)% and (11.7 ±
1.5)%, respectively [18]. To account for the cou-
pling π�-π�, we assume a coupled channels separable
interaction:

〈p2|V αβ

2 |p′
2〉 = γ2g

α
2 (p2)gβ

2 (p′
2), α, β = �,�, (12)

so that the corresponding two-body t matrix is given by

〈p2|t2(E)|p′
2〉 = gα

2 (p2)τ2(E)gβ

2 (p′
2), α, β = �,�, (13)

with

τ−1
2 (E) = 1/γ2 −

∫ ∞

0
p2

2dp2

[
g�

2 (p2)
]2

E − p2
2

/
2η�

2 + iε

−
∫ ∞

0
p2

2dp2

[
g�

2 (p2)
]2

E − �E − p2
2

/
2η�

2 + iε
. (14)

Again, E = p2
0/2η�

2 , where p0 is the correct relativistic
π� c.m. momentum and �E is chosen such that the π�

momentum at the π� threshold has its correct value, that is,

�E = [(m� + mπ )2 − (m� + mπ )2][(m� + mπ )2 − (m� − mπ )2]

8η�
2 (m� + mπ )2

. (15)

The πY t matrix (13) in the πYN system may be written in
compact notation as a 2 × 2 matrix,

t2 =
( ∣∣g�

2

〉
∣∣g�

2

〉
)

τN (q2)
(〈
g�

2

∣∣〈g�
2

∣∣), (16)

where

τN (q2) = τ2
(
E − q2

2

/
2ν2

)
. (17)

The form factors gY
2 (p2) of the separable πY p-wave

potentials were taken in the form

g�
2 (p2) = p2

(
1 + A2p

2
2

)
e−p2

2/α
2
2 , g�

2 (p2) = c2g
�
2 (p2).

(18)

Solutions exist for all values of A2 between 0 and ∞.
Therefore, in order to fit the position, width, and decay
branching ratios of �(1385), we have at our disposal four
free parameters A2, α2, γ2, and c2, which provide for varying
one of these while adjusting the other three to the three pieces
of data. We thus constructed five models (models A–E) by
considering five values of the parameter A2, as shown in
Table I. We also constructed a sixth model (model F), which
shares the same range parameter α2 with model C but which
neglects the coupling to the π� channel (c2 = 0), as was done
in our previous calculation [14]. It is instructive to classify the

various πY interaction form factors gY
2 (p2) according to their

root-mean-square (r.m.s.) momentum, using the following
expression for the mean-square momentum 〈p2

2〉g2 :

〈
p2

2

〉
g2

=
∫ ∞

0 g2(p2)p2
2d

3p2∫ ∞
0 g2(p2)d3p2

= 3α2
2

A2α
2
2 + 1

3

A2α
2
2 + 1

2

≈ 3α2
2, (19)

where the approximationis because 2A2α
2
2 � 1. The resulting

values of the r.m.s. momentum, listed in the last column
of Table I, are close to

√
〈p2

2〉g2 ≈ 3.8 fm−1 ≈ 750 MeV/c.
For comparison,

√
〈p2

1〉g1 = 5.55 fm−1 ≈ 1100 MeV/c for the
πN form factor g1(p1) of Eq. (8).1

C. The hyperon-nucleon subsystem

The YN interaction derived from the chiral quark model
is a local potential obtained by application of the Born-
Oppenheimer approximation to the chiral quark-quark in-
teraction (consisting of confinement, one-gluon exchange,
pseudovector-meson exchange, and scalar-meson exchange)
with a fully antisymmetrized six-quark wave function

1This high-momentum value for g1 does not rule out a spatial size
of order 1 fm for �(1232). Indeed, if g̃1(r1) is the Fourier transform
of g1(p1), for � = 1, then

√
〈r2

1 〉g̃1 = 0.875 fm.

TABLE I. Five choices (A–E) of form factor parameters for the coupled channels πY subsystem, Eqs. (12) and (18). The last line lists a
single-channel π� sixth model (F) with c2 = 0. The last column lists values of the r.m.s. momentum [see Eq. (19)].

Model A2 (fm2) α2 (fm−1) γ2 (fm4) c2

√
〈p2

2〉g2 (fm−1)

A 0.8 2.41372 −0.00604931 0.890227 4.11
B 1.0 2.29039 −0.00552272 0.925591 3.91
C 1.2 2.20024 −0.00501334 0.956818 3.76
D 1.5 2.10192 −0.00433208 0.997300 3.60
E 1.8 2.03076 −0.00375829 1.03166 3.48
F 3.21 2.20024 −0.00149204 0 3.79
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[15,16,19]. In the case of the JP = 1+, I = 1
2 channel, it leads

to the following system of coupled equations:

t
αβ

��′′(p3, p
′′
3 ; E)

= V
αβ

��′′ (p3, p
′′
3 ) +

∑
γ=�,�

∑
�′=0,2

∫ ∞

0
p′

3
2
dp′

3V
αγ

��′ (p3, p
′
3)

× 1

E − δγ��E − p′
3

2
/2η

γ

3 + iε

× t
γβ

�′�′′(p′
3, p

′′
3 ; E), α, β = �,�, (20)

with α, β = �,�, �, �′′ = 0, 2, and E = p2
0/2η�

3 , where p0

is the correct relativistic �N c.m. momentum, and �E is
chosen such that the �N momentum at the �N threshold has
its correct value, that is,

�E = [(m� + mN )2 − (m� + mN )2][(m� + mN )2 − (m� − mN )2]

8η�
3 (m� + mN )2

. (21)

The YN t matrix (20) may be written in compact notation as
a 2 × 2 matrix,

t3 =
(

t�� t��

t�� t��

)
, (22)

where each YN t matrix tαβ includes, in addition, a coupling
between S (� = 0) and D (� = 2) waves.

III. THE THREE-BODY EQUATIONS

The Faddeev equations for the bound-state problem

Ti =
∑
j 
=i

tiG0Tj , i, j = 1, 2, 3, (23)

couple the amplitudes T1, T2, and T3 together. Eliminating the
amplitude T3 in favor of T1 and T2, one obtains

T1 = t1G0t3G0T1 + (t1 + t1G0t3)G0T2, (24)

T2 = t2G0t3G0T2 + (t2 + t2G0t3)G0T1, (25)

where, in order to allow for the Y = (�,�) specification, one
has

G0 =
(

G�
0 0

0 G�
0

)
. (26)

Since the two-body amplitudes t1 and t2 are separable [see
Eqs. (9) and (16)], the three-body amplitudes T1 and T2 are of
the form

T1 = |g1〉
(

X�

X�

)
, (27)

T2 =
( ∣∣g�

2

〉
∣∣g�

2

〉
)

XN, (28)

where the subscript of the amplitude X indicates which particle
is the spectator. Substitution of (27) and (28) into (24) and (25)
leads to(

X�

X�

)
=

(
τ� 0

0 τ�

)
〈g1|

(
G�

0 t��G�
0 G�

0 t��G�
0

G�
0 t��G�

0 G�
0 t��G�

0

)

× |g1〉
(

X�

X�

)
+

(
τ� 0

0 τ�

)

×〈g1|
(

G�
0 + G�

0 t��G�
0 G�

0 t��G�
0

G�
0 t��G�

0 G�
0 + G�

0 t��G�
0

)

×
( ∣∣g�

2

〉∣∣g�
2

〉
)

XN, (29)

XN = τN

(〈
g�

2

∣∣〈g�
2

∣∣)
×

(
G�

0 + G�
0 t��G�

0 G�
0 t��G�

0

G�
0 t��G�

0 G�
0 + G�

0 t��G�
0

)

× |g1〉
(

X�

X�

)
+ τN

(〈
g�

2

∣∣〈g�
2

∣∣)

×
(

G�
0 t��G�

0 G�
0 t��G�

0

G�
0 t��G�

0 G�
0 t��G�

0

) ( ∣∣g�
2

〉
∣∣g�

2

〉
)

XN,

(30)

which are integral equations in one continuous variable given
explicitly by

Xα(q1) = τα(q1)
∑

β=�,�

∫ ∞

0
q ′

1
2
dq ′

1K
αβ(q1, q

′
1)Xβ(q ′

1)

+ τα(q1)
∫ ∞

0
q2

2dq2K
αN (q1, q2)XN (q2), (31)

α = �,�,

XN (q2) = τN (q2)
∑

α=�,�

∫ ∞

0
q2

1dq1K
Nα(q2, q1)Xα(q1)

+ τN (q2)
∫ ∞

0
q ′

2
2
dq ′

2K
NN (q2, q

′
2)XN (q ′

2). (32)

The kernels of these integral equations are given in the
Appendix.

IV. RESULTS AND DISCUSSION

We applied the formalism of the previous section, using
six different versions of the YN interaction obtained from the
CQM, all of which reproduce equally well the experimental
low-energy YN data [15,16]. Results are listed in Table II, from
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TABLE II. Binding energy of π�N (in MeV) for five πY interaction models (A–E of Table I) and six CQM versions of the 3S1-3D1 YN

interaction fitted to given �N scattering length a and effective range r0 (both in fm). The momentum plab(δ = 0) is the � laboratory momentum
(in MeV/c) where the 3S1 �N phase shift changes sign. The last line corresponds to switching off the YN interaction.

a r0 plab (δ = 0) Model A Model B Model C Model D Model E

−1.35 3.39 987 147 99 65 30 6
−1.40 3.32 1011 147 99 66 30 6
−1.64 3.09 1146 150 102 68 32 8
−1.71 3.03 1198 150 102 68 33 9
−1.78 2.98 1272 151 103 69 33 9
−1.86 2.93 1446 152 104 69 34 10

170 120 84 47 21

where it is clear that the π�N binding energies are substantial
for πY models with A2 < 1 fm2. Generally, the higher the
r.m.s. momentum of the πY form factor g2, the stronger
is the binding, as demonstrated in the table. Irrespective
of which πY model is chosen, the YN interaction always
produces repulsion, thus lowering the calculated binding
energy, as demonstrated by the results listed in the last line,
which corresponds to switching off the YN interaction. This
repulsive YN effect owes its origin to the high-momentum
components of the πB form factors, which within the three-
body calculation highlight the short-range repulsive region of
the YN interaction.

To demonstrate the model dependence of the three-body
calculation within a given πY model, we assembled in Table III
several binding energy results based on model C and also
on its limitation to the π� channel (model F listed in
Table I). The YN models included in this table invariably give
a = −1.40 fm, whether limited to the �N 3S1 single channel
or extended to the 3S1-3D1 �N -�N coupled channels.
Comparing the first two entries to each other, we conclude
that the extension from a single �N channel to �N -�N

coupled channels has very little effect (about 3 MeV additional
attraction) within the π� model F. In contrast, for the full πY

model C, as in the last two entries, the extension from �N to
YN models has a somewhat larger effect (about 7 MeV repul-
sion) and in the opposite direction. Within the πY model C,
the full coupled channels YN interaction contributes 18 MeV
repulsion (third and fifth entries in Table III) to the three-body
binding energy. Similar results hold for all other πY models.

To discuss the model dependence of the three-body calcula-
tion within a given YN CQM, we follow Ref. [14] in singling
out plab(δ = 0), the momentum where the �N 3S1 phase shift
changes sign from attraction outside to repulsion inside, as
a measure of the repulsive YN effect. We notice in Table II
that the CQM values of plab(δ = 0) are considerably larger

TABLE III. Comparison of π�N binding energies (in MeV)
calculated within the πY model C and its π� limit model F (see
Table I) for YN coupled channels and �N single-channel models
with a = −1.40 fm, and for no YN interaction.

π�, �N π�, YN πY , no YN πY , �N πY , YN

93 96 84 73 66

than those obtained by other models [20–22], signifying less
repulsion in the CQM. In order to test whether the apparent
lack of repulsion in the CQM YN interaction is responsible
for the large binding energies obtained for A2 < 1 fm2, we
added to the CQM with a = −1.40 fm and r0 = 3.32 fm a
short-range potential in the 3S1 �N partial wave of the form

V (r) = γR

e−βRr

r
− γA

e−βAr

r
, (33)

with βR = 10 fm−1 and γR � 1000 MeV fm, while the
attractive term was adjusted to maintain the �N scattering
length a = −1.35 fm and the effective range r0 as close
as possible to 3.39 fm, so that the YN observables are not
changed noticeably. The overall effect of V (r) is repulsive,
as demonstrated in Table IV for the πY model A, with
A2 = 0.8 fm2, where it is clearly seen that increase in the
strength of the repulsive term lowers the value of plab(δ = 0)
as well as lowering the π�N binding energy.

V. SUMMARY

In this work, we have extended the Faddeev equation study
of a (JP , I ) = (2+, 3

2 ) quasibound π�N state [14] from a 3S1

�N single channel to 3S1-3D1,�N-�N coupled channels,
and from a π� single-channel description of �(1385) to

TABLE IV. Binding energy of π�N (in MeV) for the πY

model A (A2 = 0.8 fm2) and the CQM YN interaction plus a
short-range �N potential V (r), Eq. (33), with scattering length a =
−1.40 fm and effective range r0 = 3.32 fm. The strength parameters
γ are in units of MeV fm, the inverse range parameter βA is in
units of fm−1, βR = 10 fm−1, and plab (δ = 0) is the laboratory
momentum (in MeV/c) where the 3S1 �N phase shift changes
sign.

γR γA βA plab (δ = 0) B (A2 = 0.8)

1000 240 5.371 873 107
2000 530 5.811 846 88
3000 720 5.749 822 70
4000 990 5.928 810 59
5000 1260 6.056 802 51
6000 1360 5.921 788 39
7000 1670 6.086 775 34
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a π�-π� coupled channels description. Local interaction
potentials given by the CQM were used in the YN sector,
whereas one-rank separable potentials were used in the πB

sectors. We have shown within a nonrelativistic version of
the Faddeev equations, but using semirelativistic kinematics,
that the π�N system is bound under a wide choice of
parametrizations of the πY interaction form factor. The form
factors of the πB subsystems are sufficiently short ranged
such that the pion undergoes almost coherent attraction to
both baryons. The short-ranged repulsion between the two
baryons in the CQM is insufficient to overcome the attraction
gained by the pion unless the CQM is modified arbitrarily at
very short distances to do this job. Altogether, the acceptable
model dependence of the πY interaction form factor, and the
uncertainty of the short-range behavior of the YN interaction,
leave plenty of room, theoretically, for a quasibound S = −1,
(JP , I ) = (2+, 3

2 ), π�N dibaryon.
Before closing we list several production reactions, of

which the first two were already discussed in our previous
paper [14], in which to search for this S = −1 dibaryon, here
denoted D:

K− + d → D− + π+, π− + d → D− + K+, (34)

p + p → D+ + K+. (35)

Correlated with the missing mass spectrum of the D dibaryon,
for a forward outgoing meson, one should look for �N decays

that can be assigned to a �N resonance with invariant mass
MD. Total cross sections for the associated strangeness pro-
duction pp → �NK+ near the hyperon production threshold
have been reported from Jülich, for �0p by the COSY-11
Collaboration [23], for �+n, also by COSY-11 [24], and by the
ANKE Collaboration [25] and the HIRES Collaboration [26],
with conflicting results among all these �+n reports. Old
DISTO data for the reaction pp → �pK+ have been analyzed
to search for an intermediate K−pp quasibound state, with the
astounding report of a broad resonance at the π�N threshold
[27]. Of course, this I = 1

2 resonance cannot be assigned to a
I = 3

2 π�N quasibound state, but forthcoming data from the
FOPI Detector Collaboration at GSI [28] could be analyzed
also with respect to a �N rather than a �p final state.
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APPENDIX: EXPRESSIONS FOR THE KERNELS OF THE
INTEGRAL EQUATIONS EQS. (31) AND (32)

We provide here detailed expressions for the kernels
appearing in the integral equations Eqs. (31) and (32).

Kαβ(q1, q
′
1) = 1

4

∑
�,�′=0,2

∫ ∞

0
q2

3dq3

∫ 1

−1
d cosθ

∫ 1

−1
d cosθ ′g1

(
pα

1

)
Gα

0

(
pα

1 , q1
)
bα

13A
10�1
13,1α(q1, q3, cosθ )

× t
αβ

��′
(
pα

3 , p′β
3 ; E − q2

3

/
2ν3

)
b

β

31A
�′110
31,1β (q3, q

′
1, cosθ ′)Gβ

0

(
p′β

1 , q ′
1

)
g1

(
p′β

1

)
, (A1)

KαN (q1, q2) = 1

2

∫ 1

−1
d cosθg1

(
pα

1

)
Gα

0

(
pα

1 , q1
)
bα

12A
1010
12,1α(q1, q2, cosθ )gα

2

(
pα

2

)

+ 1

4

∑
�,�′=0,2

∑
β=�,�

∫ ∞

0
q2

3dq3

∫ 1

−1
d cosθ

∫ 1

−1
d cosθ ′g1

(
pα

1

)
Gα

0

(
pα

1 , q1
)
bα

13A
10�1
13,1α(q1, q3, cosθ )

× t
αβ

��′
(
pα

3 , p′β
3 ; E − q2

3

/
2ν3

)
b

β

32A
�′110
32,1β

(
q3, q2, cosθ ′)Gβ

0

(
p

β

2 , q2
)
g

β

2

(
p

β

2

)
, (A2)

KNα(q2, q1) = KαN (q1, q2), (A3)

KNN (q2, q
′
2) = 1

4

∑
�,�′=0,2

∑
α,β=�,�

∫ ∞

0
q2

3dq3

∫ 1

−1
d cosθ

∫ 1

−1
d cosθ ′gα

2

(
pα

2

)
Gα

0

(
pα

2 , q2
)
bα

23A
10�1
23,1α(q2, q3, cosθ )

× t
αβ

��′
(
pα

3 , p′β
3 ; E − q2

3

/
2ν3

)
b

β

32A
�′110
32,1β (q3, q

′
2, cosθ ′)Gβ

0

(
p′β

2 , q ′
2

)
g

β

2

(
p′β

2

)
, (A4)

with

Gα
0 (pi, qi) = 1

E − δα��E − p2
i

/
2ηα

i − q2
i

/
2να

i + iε
,

(A5)
α = �,�.

The orbital angular momentum recoupling coefficients
A

�iλi�j λj

ij,Lα (qi, qj , cosθ ) = A
�j λj �iλi

j i,Lα (qj , qi, cosθ ) and isospin
recoupling coefficients bα

ij = bα
ji are calculated by consider-

ation of a cyclic pair ij . (The spin recoupling coefficients are
all equal to 1.) For isospin we have

bα
ij = (−)ij +τj −I

√
(2ii + 1)(2ij + 1) W (τj τkIτi ; ii ij ), (A6)

where W is a Racah coefficient. If α = �, then τ1 = 0,
τ2 = 1

2 , τ3 = 1, i1 = 3
2 , i2 = 1, i3 = 1

2 , and I = 3
2 so that

b�
12 = b�

31 = b�
23 = 1. If α = �, we have instead τ1 = 1 so that

b�
12 = √

5/6, b�
31 = −√

5/3, and b�
23 = −1/

√
6.
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The orbital angular momentum recoupling coefficients are
given by

A
�iλi�j λj

ij,Lα (qi, qj , cosθ )

= 1

2L + 1

∑
Mmimj

C
�iλiL
mi,M−mi,M

C
�j λj L

mj ,M−mj ,M
��imi

�λiM−mi

×��j mj
�λj M−mj

cos
( − Mθ − miθ

α
i + mjθ

α
j

)
,

α = �,�, (A7)

where ��m = 0 for odd values of � − m, and

��m = (−1)(�+m)/2√(2� + 1)(� + m)!(� − m)!

2�[(� + m)/2]![(� − m)/2]!
(A8)

for even values of � − m. The angles θα
i and θα

j are obtained
from

cosθα
i = −qj cosθ + qia

α
ij

pα
i

, (A9)

cosθα
j = qicosθ + qja

α
ji

pα
j

, (A10)

pα
i =

√
q2

j + (
qia

α
ij

)2 + 2qiqja
α
ij cosθ, (A11)

pα
j =

√
q2

i + (
qja

α
ji

)2 + 2qiqja
α
jicosθ, (A12)

where

aα
ij = mj

mj + mk

, aα
ji = mi

mi + mk

, (A13)

with m1 = mα; α = �,�. Equations (A11) and
(A12) provide also the relative momenta appearing in
Eqs. (A1)–(A4).
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Prog. Phys. 68, 965 (2005).
[20] Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C

59, 21 (1999).
[21] Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008

(2006).
[22] H. Polinder, J. Haidenbauer, and U.-G. Meissner, Nucl. Phys. A

779, 244 (2006).
[23] P. Kowina et al., Eur. Phys. J. A 22, 293 (2004).
[24] T. Rozek et al., Phys. Lett. B 643, 251 (2006).
[25] Yu. Valdau et al., Phys. Lett. B 652, 245 (2007); Phys. Rev. C

81, 045208 (2010).
[26] A. Budzanowski et al. (HIRES Collaboration) (Phys. Lett. B,

submitted).
[27] T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010).
[28] K. Suzuki, Nucl. Phys. A 827, 312c (2009).

055205-7

http://dx.doi.org/10.1016/0370-2693(80)90046-5
http://dx.doi.org/10.1103/PhysRevLett.102.052301
http://dx.doi.org/10.1103/PhysRevLett.102.052301
http://dx.doi.org/10.1016/j.physletb.2009.07.012
http://dx.doi.org/10.1016/j.physletb.2009.07.012
http://dx.doi.org/10.1103/PhysRevLett.102.192301
http://dx.doi.org/10.1103/PhysRevLett.102.192301
http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1016/S0375-9474(98)00305-4
http://dx.doi.org/10.1016/S0375-9474(98)00306-6
http://dx.doi.org/10.1016/S0375-9474(98)00306-6
http://dx.doi.org/10.1016/S0375-9474(98)00307-8
http://dx.doi.org/10.1103/PhysRevLett.59.627
http://dx.doi.org/10.1016/0370-2693(83)91523-X
http://dx.doi.org/10.1016/0370-2693(83)91523-X
http://dx.doi.org/10.1103/PhysRevD.38.298
http://dx.doi.org/10.1103/PhysRevLett.23.395
http://dx.doi.org/10.1016/0370-2693(79)90455-6
http://dx.doi.org/10.1016/0370-2693(79)90455-6
http://dx.doi.org/10.1016/0375-9474(81)90502-9
http://dx.doi.org/10.1016/0370-2693(86)90744-6
http://dx.doi.org/10.1016/0370-2693(86)90744-6
http://dx.doi.org/10.1103/PhysRevD.21.2653
http://dx.doi.org/10.1103/PhysRevD.21.2653
http://dx.doi.org/10.1103/PhysRevC.46.R1573
http://dx.doi.org/10.1007/BF01591396
http://dx.doi.org/10.1007/BF01591396
http://dx.doi.org/10.1103/PhysRevD.78.014013
http://dx.doi.org/10.1103/PhysRevC.75.034002
http://dx.doi.org/10.1103/PhysRevC.75.034002
http://dx.doi.org/10.1103/PhysRevC.76.034001
http://dx.doi.org/10.1103/PhysRevC.76.034001
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1088/0034-4885/68/5/R01
http://dx.doi.org/10.1088/0034-4885/68/5/R01
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1103/PhysRevC.73.044008
http://dx.doi.org/10.1016/j.nuclphysa.2006.09.006
http://dx.doi.org/10.1016/j.nuclphysa.2006.09.006
http://dx.doi.org/10.1140/epja/i2003-10236-6
http://dx.doi.org/10.1016/j.physletb.2006.07.066
http://dx.doi.org/10.1016/j.physletb.2007.07.018
http://dx.doi.org/10.1103/PhysRevC.81.045208
http://dx.doi.org/10.1103/PhysRevC.81.045208
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1016/j.nuclphysa.2009.05.063

