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Optical potential approach to K+d scattering at low energies
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I study K+d scattering at low energies using optical potential. My optical potential consists of the first- and
second-order terms. The total, integrated elastic, and elastic differential cross sections at incident kaon momenta
below 800 MeV/c are calculated using my optical potential. I found that my results are consistent with the
Faddeev calculation as well as the data and especially that the second-order optical potential is essential for
reproducing them at low energies. I also discuss the multiple scattering effects in this process.
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I. INTRODUCTION

One of the important purposes for studying K+d scattering
is to understand the K+N interaction because the isospin zero-
K+N amplitude or K+-neutron amplitude can be obtained
only through K+d scattering. Recently, some experimental
studies [1,2] have suggested that the pentaquark resonance
�(1540) with a narrow width might be excited in this isospin
channel, although its existence has not been confirmed yet.
Because the K+ meson is built from a us quark state, it cannot
form the conventional three-quark resonance with a nucleon.
So the pentaquark resonance must have an exotic structure
such as a uudds quark state, and the coupling with the K+N

system is expected to be weak. In fact, the width of the �(1540)
has been found to be less than 1 MeV [3–5] through the
analysis of the K+d reaction. Therefore, the K+N system is a
weaker interacting system than other meson-nucleon systems
such as π±N and K−N , which have the strong couplings
with resonant particles. K+d scattering at low energies is
much simpler than π±d and K−d scatterings because the
pion absorption in π±d scattering and the conversion to πN�

and πN� in K−d scattering occur even at the threshold. At
incident kaon momenta below 600 MeV/c, where the pion
production does not occur, the K+d system has only three
reactions: the elastic scattering K+d → K+d, the breakup
reaction K+d → K+pn, and the charge exchange reaction
K+d → K0pp. Thus, the analysis of the K+d scattering at
low energies is suited to examining rigorously the validity of
various theoretical models [5–9]. One of them is the three-body
calculation using the Faddeev method [8,9], where the multiple
scattering effects have been estimated accurately.

Because of the weak K+N interaction, the single scattering
impulse approximation, where one nucleon in the deuteron
is regarded as a spectator, is able to describe successfully
the total cross sections at incident momenta (Plab) above
∼500 MeV/c [6,8]. Furthermore, the elastic differential cross
sections at the low-momentum transfer can be explained even
at lower energies. However, the single scattering impulse
approximation explicitly violates the unitarity at incident
momenta below ∼200 MeV/c; that is, the integrated elastic
cross section is larger than the total cross section that is
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obtained via the optical theorem [8] and fails to describe the
suppression of the breakup differential cross section at the
forward kaon scattering angles [9]. This means that additional
mechanisms are needed to remedy such situations.

It was pointed out in Ref. [4] that the effect of the kaon
rescattering can resolve the discrepancy owing to the violation
of the unitarity. Actually, its effect increases the total cross
section significantly at incident momenta below ∼400 MeV/c.
In this calculation, however, the static nucleon approximation
was used. The large mass of the kaon suggests that the nucleon
recoil effect is important. So the nonstatic treatment may be
necessary to get a reliable result. Then it was found [9] that the
discrepancy about the breakup differential cross section can be
resolved by the nucleon-nucleon (NN ) interaction effect and
specifically the suppression is attributable to the orthogonality
between the NN final-state continuum wave function and the
deuteron wave function. A recent article [7] has shown that
the NN final-state interaction (FSI) plays an essential role
in the reduction of the integrated breakup cross sections and
decreases the total cross sections largely in the momentum
range from 50 to 800 MeV/c. As a result, their calculations
with FSI on the total cross sections are consistent with the
data. However, their results are in conflict with those of other
works [6,8], which show that the total cross sections above
∼500 MeV/c can be reproduced with the single scattering
impulse approximation as already mentioned. These facts
indicate that the effects of both kaon rescattering and NN

interaction should be included in a theory and also that a more
careful treatment is necessary to describe the K+d scattering
consistently at low energies.

In this article I investigate the K+d scattering using the
optical potential defined in the multiple scattering theory of
Watson [10]. My optical potential consists of the first-order
and second-order terms. The second-order optical potential
is constructed to include multiple scattering corrections such
as the kaon rescattering, the Pauli correction and the NN

interaction. One of the features of this approach is that
it does not violate the unitarity. Furthermore, because this
formulation has a simple structure, the calculation is more
easily performed than the Faddeev calculation. I examine
how my optical potential works for the K+d scattering and
demonstrate the importance of the multiple scattering effects.
To do so, I calculate the energy dependence of the total cross
sections, integrated reaction cross sections, and elastic cross
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sections and then compare my calculations with the data.
I show that my approach predicts the data as well as the
Faddeev method and especially that the second-order optical
potential is needed to describe both the data and the Faddeev
calculation at low energies. Indeed, the cross section calculated
with only the first-order optical potential is not consistent
with the Faddeev calculation at low energies despite the weak
K+N interaction. The present work is the first application of
the optical potential including the second-order term to the
K+d scattering. The optical potential up to second order is
also obtained from the Kerman-McManus-Thaler (KMT) [11]
theory. I will discuss the relation between my approach and
the KMT one. In the analysis of the meson-nucleus scattering,
the first-order optical potential has been usually used. The
results of this work could provide useful information about the
role of the second-order optical potential in the K+-nucleus
scattering.

The article is organized as follows: I present my formalism
in Sec. II. In Sec. III I show my calculations for the total,
elastic, and inelastic cross sections and compare them with the
data and the Faddeev calculation. In Sec. IV I summarize my
work.

II. FORMALISM

A. Outline of the optical potential approach

To calculate the cross sections of the K+d scattering, I
use the optical potential derived from the multiple scattering
theory. There are two formulations for the multiple scattering
theory, that is, the Watson [10] and the KMT [11] theories.
Although they have different forms, they are identical in
content. In this work, I employ the Watson theory because
the physical interpretation of the optical potential is clear. My
optical potential will be constructed to incorporate the multiple
scattering corrections such as the rescattering, the Pauli effect,
and the NN interaction. To do so, the second-order optical
potential is considered in addition to the usual first-order
optical potential. I start by briefly reviewing the Watson
formulation.

For the scattering of a positive kaon from A identical
nucleons, the transition amplitude T is a solution of the
Lippmann-Schwinger equation,

T =
A∑

i=1

vi +
A∑

i=1

vi

A
e

T , (1)

where

e = E − K0 − HA + iε. (2)

Here E is the total energy, K0 is the kaon kinetic energy, and
HA is the Hamiltonian of the target nucleus. The two-body
potential vi describes the interaction between the kaon and
ith nucleon. A is a projection operator onto the antisymmetric
subspace of the Hilbert space. As far as one works in the
antisymmetric subspace, the operator A is not necessary in
Eq. (1) because T and

∑A
i=1 vi are symmetric operators. For

later convenience, however, it is inserted explicitly in Eq. (1).

Now I introduce a projection operator P , which projects
onto the nuclear ground state, and Q is defined by

Q = A − P. (3)

Using these operators, Eq. (1) is rewritten in terms of the
optical potential U as

T = U + U
P

e
T , (4)

where U is given by

U =
A∑

i=1

Ui, (5)

with

Ui = t̂i + t̂i
Q

e

∑
j �=i

Uj . (6)

The kaon-nucleon T matrix t̂i in Eq. (6) is defined by

t̂i = vi + vi

Q

e
t̂i . (7)

To evaluate the optical potential U , I define another kaon-
nucleon T matrix ti such that

ti = vi + vi

1

e
ti, (8)

where the kaon propagates in the space of both antisymmetric
and non-antisymmetric states of the nucleus. The relation
between many-body operators t̂i and ti is

t̂i = ti − ti
1 − A + P

e
t̂i . (9)

Here the operator 1 − A projects onto the Pauli-violating
states. The second term of Eq. (9) appears to remove the
contribution of the transition to the Pauli-violating states
and the ground state from ti . If the term proportional to P

is neglected, the coherent rescattering is overcounted in the
calculation of Eq. (4).

Before constructing my model, let us discuss the relation
between the Watson and KMT formulations. In the KMT
theory (see the Appendix), the following many-body operator
τi is used to define the optical potential,

τi = ti − ti
1 − A

e
τi, (10)

where the projection operator P does not appear because the
coherent rescattering is counted in a different way. The relation
between the operators t̂i and τi is given by

t̂i = τi − τi

P

e
t̂i . (11)

The first-order optical potentials are given by
∑A

i=1 t̂i for the
Watson approach and A−1

A

∑A
i=1 τi for the KMT approach,

respectively. Within this first-order expansion, the two ap-
proaches give identical transition amplitude, as pointed out
in Ref. [12]. Even if further approximations are assumed,
this is still correct as far as the relation (11) holds. In the
actual calculations, however, one usually uses the impulse
approximation where t̂i and τi are replaced by the free
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two-body T matrix t free
i . In this case, the relation (11) does not

hold and therefore the two approaches give different transition
amplitudes. In fact, it has been shown in the studies [13,14] of
the pion-deuteron scattering that the KMT first-order optical
potential is superior to the Watson one. So it is necessary
to go beyond the first-order optical potential in the impulse
approximation and take into account the second term of Eq. (9)
to get the reliable results within the Watson formulation. There
are several models taking account of this term. In the delta-hole
model [15], the second term of Eq. (9) is incorporated by
adding a Fock term to the delta-hole propagator. In the model
of Ref. [12], the channel-coupled equations are derived from
Eq. (9) and are solved to get the first-order optical potential.
In this work, I expand the T matrix t̂i of Eq. (9) in terms of ti
and consider it to second order.

Now I construct the optical potential which will be used
in my calculations. By substituting Eq. (9) into Eq. (6), the
optical potential U can be given in terms of ti by

U =
∑

i

ti −
∑

i

ti
1 − A + P

e
ti +

∑
i �=j

ti
Q

e
tj + · · · (12)

=
∑

i

ti +
∑
i �=j

ti
1

e
tj −

∑
i,j

ti
P

e
tj −

∑
i,j

ti
1 − A

e
tj + · · · ,

(13)

which is explicitly written up to second order in ti . Note that
the fourth term of Eq. (13), describing the transition to the
Pauli-violating states, are omitted hereafter because the matrix
element of this term between the nuclear antisymmetric ground
state vanishes.

I now consider the deuteron as the target nucleus and
introduce additional approximations to derive the optical
potential in my approach. In the impulse approximation, ti
(i = 1, 2) is replaced with the free two-body T matrix t free

i

defined by

t free
i = vi + vi

1

e0
t free
i , (14)

with

e0 = E − K0 − K1 − K2 + iε, (15)

where Ki (i = 1, 2) is the kinetic energy of ith nucleon and
E − Kj (j �= i) is the collision energy for the kaon-ith nucleon
subsystem. In my approach, the effect of the NN interaction is
taken into account because it is important at low energies and,
particularly, it leads to the non-negligible FSI in the breakup
reaction. Because HA in Eq. (2) is equal to K1 + K2 + v12,
where v12 is the NN interaction, the many-body Green
function 1/e can be expressed in terms of the two-nucleon
T matrix tNN as

1

e
= 1

e0
+ 1

e0
tNN

1

e0
, (16)

with

tNN = v12 + v12
1

e0
tNN , (17)

where the collision energy of the two-nucleon subsystem is
E − K0. Thus the many-body operator ti is expressed as

ti = t free
i + t free

i

1

e0
tNN

1

e0
ti . (18)

Substituting Eqs. (16) and (18) into Eq. (13) yields

U = U (1) + U (2) + · · · , (19)

where

U (1) =
2∑

i=1

t free
i , (20)

U (2) =
∑
i �=j

t free
i

1

e0
t free
j +

∑
i,j

t free
i

(
1

e0
tNN

1

e0
− P

e

)
t free
j .

(21)

Here U (1) and U (2) are the first- and second-order optical po-
tentials, respectively. The higher-order potentials are neglected
in my calculation. The second-order potential consists of three
terms as

U (2) = U
(2)
d + U (2)

n − U (2)
c . (22)

Here U
(2)
d corresponds to the first term on the right-hand side

of Eq. (21) describing the double scattering, that is, the kaon
rescattering. The second term on the right-hand side of Eq. (21)
is divided into two terms, that is, U (2)

n and U (2)
c , which describe

the effects of the NN scattering and the coherent rescattering,
respectively. The quantity U (2)

n − U (2)
c is called the modified

NN scattering term in this article. The two-nucleon T matrix
tNN in U (2)

n is a function of the variable EN , where EN =
E − K0 − Kc.m. and Kc.m. is the kinetic energy of the center of
mass of two nucleons, and has a bound state pole at EN = −EB

where EB is the binding energy of the deuteron. Note that the
propagators of U (2)

n and U (2)
c are almost identical in the vicinity

of the pole at EN = −EB , that is,

1

e0
tNN

1

e0

∼= |0〉〈0|
EN + EB + iε

= P

e
, (23)

where |0〉 is the bound-state wave function [16].
Here I consider the relation between the Watson and KMT

transition amplitudes, that is, T and TKMT. Let us assume
that the corresponding optical potentials are U ∼= U (1) + U (2)

and UKMT
∼= U

(1)
KMT + U

(2)
KMT (see the Appendix), respectively.

These transition amplitudes are expanded in powers of U or
UKMT as

T = U + U
P

e
U + · · · , (24)

TKMT = 2

(
UKMT + UKMT

P

e
UKMT + · · ·

)
. (25)

Using the preceding equations, the amplitudes T and TKMT can
be rewritten in powers of t free

i . Then one finds the following
relation:

T = TKMT + O[(t free)3]. (26)

T is equal to TKMT up to second order in t free. If the second
term on the right-hand side of Eq. (26) would be small, the two
approaches would give approximately the identical transition
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amplitude. I have numerically checked that this is true for the
K+d scattering. Note that T ∼= TKMT

∼= U (1) at kaon momenta
above ∼500 MeV/c, where the single scattering impulse
approximation works well.

The purpose of this work is to evaluate the total and
integrated elastic cross sections of the K+d scattering. These
are obtained by solving Eq. (4), where the optical potential
U is given by Eqs. (20) and (21). The total cross section is
calculated via the optical theorem as

σtot = 4π

k
ImfKd (k, k), (27)

where the scattering amplitude fKd is given by

fKd (k′, k) = −2ωEd

4πW
〈k′d|T |kd〉. (28)

Here k (k′) is the initial (final) kaon momentum, ω and Ed are
the total energies of the kaon and the deuteron in the kaon-
deuteron center of mass (c.m.) frame, and W (= ω + Ed ) is the
total energy of the kaon-deuteron system. The spin quantum
numbers are implicitly included. The integrated elastic cross
section for the unpolarized deuteron is obtained by integrating
the differential cross section over the angle as

σel =
∫

dσ

d	
d	 =

∫ (
1

3

∑
spin

|fKd (k′, k)|2
)

d	, (29)

where |fKd |2 is summed over the initial and final spin
orientations.

B. The method of calculation

My numerical calculations will be performed in the
momentum space representation. The Lippmann-Schwinger
equation (4) in the kaon-deuteron center-of-mass frame is
expressed as

〈k′d|T |kd〉 = 〈k′d|U |kd〉 +
∫

d3k′′

(2π )3
〈k′d|U |k′′d〉

×Gp(W, k′′)〈k′′d|T |kd〉 (30)

Gp(W, k′′) = 1

W − ω′′ − Ed (k′′) + iε
. (31)

Here the spin and isospin are omitted for simplicity. This
equation is solved by decomposing into the partial waves. To
calculate the optical potential 〈k′d|U |kd〉 given by Eqs. (20)
and (21), one needs the off-shell kaon-nucleon T matrix t free

and the off-shell nucleon-nucleon T matrix tNN . They are taken
to be of separable form.

The kaon-nucleon T matrix in the general frame is

〈k′p′|t free|kp〉 = m√
4ω′ωEp′Ep

M(s, κ ′, κ), (32)

M(s, κ ′, κ) = −4π
√

s

m
fKN (s, κ ′, κ), (33)

where fKN is the scattering amplitude consisting of the
non-spin-flip and spin-flip terms, and k, k′, p, and p′ are the
momenta of the initial kaon, the final kaon, the initial nucleon,
and the final nucleon, respectively. Furthermore, ω, ω′, Ep, and
Ep′ are the energies of the initial kaon, the final kaon, the initial

nucleon and the final nucleon, respectively, and m and s are
the nucleon mass and the invariant mass squared of the kaon-
nucleon system, respectively, and κ and κ ′ are the momenta
of the initial and final kaons in the kaon-nucleon c.m. frame,
respectively. The partial-wave amplitude Mlj is given as

Mlj (s, κ ′, κ) = gl(κ
′)Glj (s)gl(κ), (34)

Glj (s) = −4π
√

s

m

flj (s)

[gl(κ0)]2
, (35)

flj (s) = e2iδlj (s) − 1

2iκ0
, (36)

where l and j are the orbital and total angular momentum,
respectively, κ0 is the on-shell momentum evaluated from s,
and δlj (s) is the phase shift. For the kaon-deuteron scattering,
the quantity s in Eq. (34) is taken as

s = (W − EpR
)2 − p2

R, (37)

where pR and EpR
is the momentum and energy of the

spectator nucleon. Here the spectator nucleon is assumed to be
on-shell. I employ the same off-shell amplitude Mlj used by
Garcilazo [8], which is described in what follows. The form
of Eq. (35) is used for the physical region s � (mK + m)2,
where mK is the kaon mass. For the unphysical region
s < (mK + M)2, however, Glj is assumed as

Glj (s) = Glj [(mK + m)2]
1

[2 − s/(mK + m)2]2
. (38)

The form factor gl is taken as

gl(κ) = κl

(β2 + κ2)n
, (39)

with β = 1 GeV/c. Here n = 1 is used for l = 0 and 1, and
n = 2 is used for l = 2 and 3.

For the nucleon-nucleon T matrix, I use the separable form
made by means of the Ernst-Shakin-Thaler (EST) method [16].
Because I am mainly interested in the total cross section and
integrated elastic cross section at low energies, I take into
account only the S-wave contribution in the nucleon-nucleon
interaction and disregard the coupling to the D wave. In
this work, I employ the separable S-wave NN potential
constructed in Ref. [17]. This was obtained by applying the
EST method to the Paris potential where the 3S1 state is
considered as uncoupled. In this approximation, the nucleon-
nucleon T matrix is given as

〈p′|tNN (EN )|p〉 = gN (p′)τNN (EN )gN (p), (40)

[τNN (EN )]−1 = −1 + µ

π2

∫ ∞

0

q2[gN (q)]2

q2 − k2
N − iε

dq, (41)

where µ = m/2, k2
N = 2µEN , and p (p′) is the initial (final)

relative momentum of the nucleon-nucleon system. The spin
and isospin are again omitted. Here the form factor gN is
defined by gN (p) =

√
2π2g(p) in which g is given in Ref. [17].

In this method, the form factor for the 3S1 channel is related
to the deuteron wave function as

ψd (p) = 2µNgN (p)

k2
B + p2

, (42)

where k2
B = 2µEB . Here N is a normalization constant.
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Now I discuss how the optical potential is evaluated. The
first-order optical potential in the kaon-deuteron c.m. frame is
written as

〈k′d|U (1)|kd〉 = 〈k′d|
2∑

i=1

t free
i |kd〉

=
∫

d3κd

(2π )3
ψd (κ ′

d )〈k′p′
1|

[
t free
p (s1) + t free

n (s1)
]

× |kp1〉ψd (κd ), (43)

where κd (κ ′
d ) is the relative momentum of the two-nucleon,

p1 (p′
1) is the momentum of the struck nucleon and the spin of

the deuteron is omitted for simplicity. The free kaon-nucleon
T matrices t free

p and t free
n describe the processes K+p −→ K+p

and K+n −→ K+n, respectively, and are evaluated at the
invariant mass squared s1. Here s1 = (W − Ep2 )2 − p2

2 and
p2 is the momentum of the spectator nucleon. The momenta
in the integrand are defined in a nonrelativistic way. All of
them are given in terms of κd, k, and k′ if the momentum
conservation law is used. The numerical calculation of Eq. (43)
is performed without any factorization. In the energy region
I study, the non-spin-flip contributions dominate over the
spin-flip contributions in the kaon-nucleon T matrix. Taking
account of this fact, the first-order potential with only the
S-wave and the non-spin-flip P -wave term is used to solve
Eq. (30), while for the spin-flip P -wave term and the D-wave
term, the single scattering impulse approximation is used.
For the on-shell kaon-nucleon scattering amplitude, I use the
phase shifts of Martin [18] or Hyslop et al. [19]. Note that
the T matrix t free

p (s1) + t free
n (s1) in Eq. (43) is expressed as

1/2t free
I=0(s1) + 3/2t free

I=1(s1), where t free
I=0 and t free

I=1 are I = 0 and
I = 1 isospin T matrices, respectively. This relation indicates
that the I = 1 KN interaction plays a more important role
than the I = 0 KN interaction in the K+d elastic scattering.

The second-order optical potential is constructed with the
S-wave kaon-nucleon interaction and the S-wave nucleon-
nucleon interaction, because these contributions are expected
to be dominant at low energies. In this approximation, thus,
the second-order potential is spin-independent. So the spin of
the deuteron is suppressed in the following expressions. The
double scattering term U

(2)
d is written as

〈k′d|U (2)
d |kd〉

= 〈k′d|
∑
i �=j

t free
i

1

e0
t free
j |kd〉

=
∫

d3k′′

(2π )3

d3pr

(2π )3
ψd (κ ′

d )G0(k′′, pr , k)

×{〈k′p′
2|t free

p (s2)|k′′p2〉〈k′′p′
1|t free

n (s1)|kp1〉
+ 〈k′p′

2|t free
n (s2)|k′′p2〉〈k′′p′

1|t free
p (s1)|kp1〉

− 〈k′p′
2|t free

ex (s2)|k′′p2〉〈k′′p′
1|t free

ex (s1)|kp1〉
}
ψd (κd ),

(44)

where

G−1
0 (k′′, pr , k) = ω + k2

4m
− EB − ω′′ − k′′2

4m
− p2

r

m
+ iε.

(45)

Here pr is the relative momentum of two nucleons, and
s1 = (W − Ep2 )2 − p2

2 and s2 = (W − Ep′
1
)2 − p′2

1 , where p2

and p′
1 are the momenta of the spectator nucleon. The free

kaon-nucleon T matrix t free
ex describes the charge exchange

process K+n −→ K0p (K0p −→ K+n). The NN scattering
term U (2)

n is written as

〈k′d|U (2)
n |kd〉

= 〈k′d|
∑
i,j

t free
i

A
e0

tNN

A
e0

t free
j |kd〉

=
∫

d3k′′

(2π )3
τNN [EN (k′′)]

∫
d3p′

r

(2π )3
ψd (κ ′

d )〈k′p′
2|

× [
t free
p (s2) + t free

n (s2)
]|k′′p′′

2〉G0(k′′, p′
r , k)gN (p′

r )

×
∫

d3pr

(2π )3
gN (pr )G0(k′′, pr , k)〈k′′p′′

1|

× [
t free
p (s1) + t free

n (s1)
]|kp1〉ψd (κd ), (46)

where

EN (k′′) = ω + k2

4m
− EB − ω′′ − k′′2

4m
, (47)

and the coherent rescattering term U (2)
c is

〈k′d|U (2)
c |kd〉 = 〈k′d|

∑
i,j

t free
i

P

e
t free
j |kd〉

=
∫

d3k′′

(2π )3
Gc(k′′, k)

∫
d3p′

r

(2π )3
ψd (κ ′

d )〈k′p′
2|

× [
t free
p (s2) + t free

n (s2)
]|k′′p′′

2〉ψd (p′
r )

×
∫

d3pr

(2π )3
ψd (pr )〈k′′p′′

1|

× [
t free
p (s1) + t free

n (s1)
]|kp1〉ψd (κd ), (48)

where

G−1
c (k′′, k) = ω + k2

4m
− ω′′ − k′′2

4m
+ iε. (49)

III. RESULTS

In this section, I discuss the results calculated with the
optical potential consisting of the first- and second-order terms.
The optical potential is evaluated by taking into account a
three-body kinematics fully and without any factorization in
the momentum integration. To treat the singularity properly,
the usual subtraction procedure is used. As the second-order
potential is expected to be important only at low energies, I
take into account only the S-wave kaon-nucleon and nucleon-
nucleon interactions for it. As the S-wave kaon-nucleon
interaction is described by the non spin-flip amplitude, only
the NN interaction for the 3S1 channel is included in the
calculation of U (2)

n . In my calculation, the D-wave NN

interaction is ignored for the bound state as well as the
intermediate state. This D-wave contribution is important
only at the large momentum transfer, as was demonstrated in
the calculation of the elastic differential cross sections [6].
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FIG. 1. Total and integrated elastic K+d cross sections. The solid
lines are the results of the full calculation. The dashed and dash-
dotted lines are the results of the first-order optical potential and
the single scattering impulse approximation, respectively, and the
dotted line is the result of Eq. (51). Phase shifts of Martin [18] are
used in these calculations. The data of total cross sections are from
Refs. [9,20–25] (circles). The data of integrated elastic cross sections
are from Refs. [9,26,27] (triangles).

Because the scattering amplitude fKd at zero- or low-
momentum transfer contributes to the total and integrated
K+d elastic cross sections, the D-wave interaction has little
effect on them.

Now I show the calculations of the total and integrated
elastic cross sections for the K+d scattering with the ex-
perimental data in Fig. 1. Note that some data plotted in
Fig. 1 are taken from Table II of Ref. [9], in which the
elastic and breakup cross sections are obtained by using both
the experimental data [28] and the theoretical values [9].
The cross sections are plotted at incident momenta up to
800 MeV/c. In my calculations, the Coulomb interaction is not
included and the K+N phase shifts of Martin [18] are used.
The solid lines correspond to the full calculations including
the first- and second-order optical potentials. The agreement
with the data is satisfactory for both the total and elastic cross
sections. For the total cross section, the theory seems to be
small compared with several data at higher energies, but one
cannot say that there is a discrepancy between the theory and
the data because the data are scattered. The dashed lines are
the calculations including only the first-order optical potential.
The difference between these two lines shows the size of the
second-order potential effect. This effect is most important at
lower energies, especially near the threshold. For the total cross
section, we find that the second-order potential effect decreases
its magnitude slightly at Plab � 150 MeV/c, but it increases at
Plab � 150 MeV/c. For the integrated elastic cross section, this
effect increases it and such tendency becomes stronger as the
energy is lower. Generally speaking, the second-order potential
effect is more important for the elastic cross section than the
total one but it is small at Plab � 500 MeV/c for both cases.
The dash-dotted lines correspond to the calculations of the
single scattering impulse approximation where the transition

amplitude TIA is given as

TIA = 〈k′d|U (1)|kd〉. (50)

In this approximation, the unitarity is explicitly violated at
low momenta, where the elastic cross section is larger than the
total cross section, as shown in Fig. 1. By comparing the dash-
dotted and dashed lines, we find that the coherent rescattering
effect has a significant contribution for both the total and the
elastic cross sections at momenta below ∼500 MeV/c and
drastically changes the size of cross sections at low energies
so as to recover the unitarity. I consider further approximation
to the total cross section. I calculate it by factorizing the kaon-
nucleon T matrix t free

i out of the integral of Eq. (43). Here the
T matrix is evaluated at p1 = −k/2 and its form factor is taken
to be gl = 1. Using the optical theorem, one gets

σ tot
K+d = K

(
σ tot

K+p + σ tot
K+n

)
, (51)

with

K = k0
√

s0Ed

kEk/2W
, (52)

k2
0 =

(
s0 − m2

K − m2
)2 − 4m2

Km2

4s0
, (53)

where s0 = (W − Ek/2)2 − k2/4 and the kinematical factor
K approaches unity at higher energies. The dotted line is
plotted using Eq. (51) and is in good agreement with the
data. The difference between this line and the dash-dotted line
shows the size of the Fermi motion effect which comes from
the energy dependence of the kaon-nucleon amplitude. This
effect decreases the magnitude of the cross section. Thus, the
single scattering impulse approximation underestimates the
total cross section at momenta below ∼500 MeV/c. However,
because the data of the total cross sections are rather scattered,
all calculations including the full calculation are consistent
with the data at momenta above ∼500 MeV/c.

To examine the validity of my approach, I compare my
full calculation with the Faddeev calculation by Garcilazo [8].
Because there are no data at momenta below 342 MeV/c,
I regard the results of the Faddeev calculation as the data.
I use the same kaon-nucleon T matrix used in Ref. [8]
but consider only the isospin I = 0 S-wave nucleon-nucleon
interaction as already mentioned. As the incident momentum
gets smaller, the Coulomb effect becomes non-negligible.
However, it is meaningful to make a comparison between
my calculation and the Faddeev calculation [8] because
the Coulomb interaction is neglected in both calculations
and the two-body interactions used are almost the same.
The results are shown in Fig. 2. The solid, dashed, and
dash-dotted lines correspond to my full calculations for the
total, integrated elastic, and integrated inelastic cross sections,
respectively. The integrated inelastic cross section σinel is given
by σinel = σtot − σel. The open circles, open triangles, and open
squares correspond to the Faddeev calculations [8,9] for the
total, integrated elastic, and integrated inelastic cross sections,
respectively. The open symbols at the threshold are taken from
Fig. 1 of Ref. [8]. The solid symbols are the corresponding
data given in Table II of Ref. [9]. My calculations are in good
agreement with the Faddeev calculations as well as the data.
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FIG. 2. Total (solid line), integrated elastic (dashed line), and
integrated inelastic (dash-dotted line) K+d cross sections given by
my full calculations. The open symbols correspond to the Faddeev
calculation [8,9]. The data are from Ref. [9] (solid symbols). The
circles, triangles, and squares denote the total, integrated elasic, and
integrated inelastic cross sections, respectively.

The maximum discrepancy between my calculation and the
Faddeev calculation is 6% at 252 MeV/c for the total cross
section and 8% at 587 MeV/c for the elastic cross section.
These results demonstrate that my model, where the optical
potential contains both the first- and second-order terms, is
good enough to describe these cross sections.

To see how my method predicts the elastic differential
cross sections, the calculations at three incident momenta
are presented with the data in Fig. 3. The solid, dashed,
and dash-dotted lines correspond to the full calculation, the
calculation with the first-order optical potential, and the single
scattering impulse approximation, respectively. Because the
D-wave contribution in the NN interaction is disregarded, all
calculations at the backward angles are naturally underesti-
mated. We find that the second-order optical potential makes
the cross section increase and brings it close to the data at
backward angles. For the forward angles, however, my full
calculation is roughly consistent with the measurement as well
as the Faddeev calculation shown in Figs. 2–4 of Ref. [8]. The
Coulomb interaction is again ignored in these calculations
because its effect is expected to be small except for the very
forward angles where there are no measurements. However, it
will be necessary to take into account the Coulomb interaction
when one calculates the cross sections at the lower momentum
transfer or at the lower incident momentum or for the heavier
nucleus. The theoretical treatment of the Coulomb force is not
difficult in my approach because the optical potential necessary
is obtained by simply adding the Coulomb potential to the
strong optical potential [12].

To see the effects of the multiple scattering, I have calcu-
lated the total and integrated elastic cross sections using several
different types of the optical potential. The results are shown
in Fig. 4. The solid and dashed lines correspond to the results
evaluated with U (1) + U (2) and U (1), respectively. These lines
are the same as in Fig. 1. The dash-dot-dotted and dotted lines
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FIG. 3. K+d elastic differential cross sections at three incident
momenta. The solid line is the result of the full calculation. The
dashed and dash-dotted line are the results of the first-order potential
and the single scattering impulse approximation, respectively. The
data are from Ref. [28].

are the calculations with U (1) + U
(2)
d and U (1) + U (2)

n − U (2)
c ,

respectively. The quantities U
(2)
d and U (2)

n − U (2)
c represent

the effects of the double scattering and the modified NN

scattering, respectively. From the comparison of the dashed
line with the dash-dot-dotted line or the dotted line, we can see
the size of the multiple scattering effects. Although the effects
of the double scattering and the modified NN scattering are
negligible at higher momenta than 600 MeV/c, they become

055204-7



TAKASHI TAKAKI PHYSICAL REVIEW C 81, 055204 (2010)

0 200 400 600 800
0

10

20

30

40

σ(
m

b)

σ
tot

0 200 400 600 800
P

lab
(MeV/c)

0

10

20

30

40

σ(
m

b)

σ
el

FIG. 4. Total (top) and integrated elastic (bottom) K+d cross
sections. The solid and dashed lines are the results of the full
calculation and the first-order optical potential, respectively. The
dash-dot-dotted and dotted lines are the results of the calculation
with the the double scattering effect and the modified NN scattering
effect, respectively. See the details in the text. The data are the same
as Fig. 1.

important with the decreasing of momentum. In the case of
the total cross section shown in the top diagram of Fig. 4, the
double scattering term increases the cross section shown by the
dashed line and the modified NN scattering term decreases it,
but at momenta lower than ∼100 MeV/c, the effect of the two
terms is completely opposite. Near the threshold, furthermore,
all lines agree with the corresponding lines in the bottom
diagram of Fig. 4. In the case of the elastic cross section,
however, the double scattering term decreases the cross section
shown by the dashed line and the modified NN scattering term
increases it. We also find that the effect of the modified NN

scattering term is larger than that of the double scattering term.
So far I have used the K+N phase shifts of Martin [18]

to compare my calculation with the Faddeev calculation by
Garcilazo [8] and check the validity of my method. Here I
examine the dependence of the one-shell K+N amplitude.
In Fig. 5, I show the cross sections calculated by using the
phase shifts of Hyslop et al. [19]. At Plab > 500 MeV/c,
the calculation is in good agreement with the data. However,

0 200 400 600 800
P

lab
(MeV/c)

0

10

20

30

40

σ(
m

b)

σ
tot

σ
el

FIG. 5. The same as Fig. 1, except that the theoretical curves are
calculated using the phase shifts of Hyslop et al. [19].

at Plab ≈ 400 MeV/c, the full calculation for the total cross
section does not agree with the data. Such discrepancy can
be understood from the comparison of the total cross sections
given by Eq. (51) (see the dotted lines in Figs. 1 and 5).
The total cross section represented by the dotted line in
Fig. 5 is slightly larger than that in Fig. 1, although both
of the lines almost agree with the data. Once the effects of
the multiple scattering and the Fermi motion are included in
the calculation, however, this tendency leads to a significant
difference between the two calculations of the total cross
sections shown in Figs. 1 and 5.

IV. CONCLUSIONS

The single scattering impulse approximation is able to de-
scribe the K+d data at incident momenta above ∼500 MeV/c

but explicitly violates the unitarity below 200 MeV/c and
furthermore fails to explain the breakup reaction cross section
at the forward kaon scattering angles. Accordingly, the
single scattering impulse approximation is not satisfactory for
explaining the K+d scattering. My purpose was to examine
how consistently the optical potential describes the K+d

scattering. This approach does not violate the unitarity unless
an unphysical potential is used. Another advantage of the
optical potential is that the calculation is straightforward
compared with the Faddeev method.

I constructed the optical potential consisting of the first-
and second-order terms. The second-order optical potential
includes the double scattering term and the modified NN

scattering term. The first- and second-order potentials were
evaluated without any factorization in the momentum integra-
tion. This potential was used to calculate the total, integrated
elastic, and elastic differential cross sections at incident
momenta below 800 MeV/c. I found that my optical potential
approach is able to explain both the Faddeev calculation and
the data consistently and especially that the second-order
optical potential plays an essential role at low energies.

It was demonstrated in my calculations that the multiple
scattering effects such as the coherent rescattering, the double
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scattering and the modified NN scattering have an important
contribution to the cross sections at low energies despite the
weak K+N interaction. This importance may be related to the
fact that the wavelength of K+ is comparable to the distance
between two nucleons in the deuteron. At low energies,
therefore, the multiple scattering effects should be taken into
account when one extracts the on-shell K+N amplitudes from
the K+d data. This was confirmed through the comparison of
the calculations obtained using two kinds of K+N phase shifts.

It is interesting to examine whether my approach is appli-
cable for other reactions arising from the strong elementary
interaction such as a πd scattering and a K−d scattering.
Furthermore, my optical potential approach could be used to
study the effect of the pentaquark resonance �(1540) in the
K+d scattering and especially to learn how the effects of the
multiple scattering affect the suppression of the resonance peak
in the K+d cross sections.

My optical potential has been derived from the Watson
multiple scattering theory. Similarly, the optical potential
up to second order can be formulated based on the KMT
multiple scattering theory, as shown in the Appendix. We have
numerically tested the difference between two approaches.
Within the first-order optical potential approach, the result
using the Watson formulation does not agree with that using
the KMT formulation. In the latter calculation, the integrated
elastic cross section becomes larger than the total cross section
at low momenta. This does not mean that the imaginary
part of the KMT first-order optical potential is positive at
low energies, but this is attributable to the factor A−1

A
in the

KMT formulation. When the second-order optical potential is
taken into account, however, the two approaches give almost
identical cross sections. It was found from my numerical
estimate that the difference was a few percent or less except
near the threshold. Therefore, my conclusions in this article
are not changed by which formulation is chosen.
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APPENDIX

I derive the optical potential from the KMT multiple
scattering theory. The transition amplitude T of Eq. (1) is
rewritten as

T =
A∑

i=1

Ti, (A1)

where

Ti = τi + τi

A
e

∑
j �=i

Tj , (A2)

τi = vi + vi

A
e

τi . (A3)

To get the KMT optical potential UKMT, I introduce the
operator Ũi defined by

Ti = Ũi + Ũi

P

e

∑
j �=i

Tj . (A4)

In the KMT formulation, all equations are derived in the
antisymmetric subspace of the Hilbert space. Consequently,
the operators of τi , Ũi , and Ti are independent of i. With
the help of the relation

∑
j �=i Tj = A−1

A
T , Eq. (A4) can be

expressed as

T
′ = UKMT + UKMT

P

e
T

′
, (A5)

where

T
′ = A − 1

A
T, (A6)

UKMT = A − 1

A

A∑
i=1

Ũi . (A7)

Similarly, Eq. (A2) is written as

T
′ = τKMT + τKMT

A
e

T
′
, (A8)

where

τKMT = A − 1

A

A∑
i=1

τi . (A9)

The scattering operator T is obtained by solving Eq. (A5), if
the optical potential UKMT is given. With the help of Eqs. (A5)
and (A8), the operator UKMT can be written in terms of τi as

UKMT = τKMT + τKMT
Q

e
UKMT (A10)

= A − 1

A

A∑
i=1

τi + A − 1

A

A∑
i=1

τi

Q

e
UKMT. (A11)

Now I build the first-order and second-order optical
potentials using Eq. (A11). The operator τi can be written
in terms of ti as Eq. (10) in Sec. II. Here the operator ti is
defined by Eq. (8). By substituting Eq. (10) into Eq. (A11), the
operator UKMT can be expressed in terms of ti as

UKMT = A − 1

A

⎛⎝∑
i

ti +
∑
i �=j

ti
1

e
tj −

∑
i �=j

ti
P

e
tj + · · ·

⎞⎠ .

(A12)

Note that an intermediate state in the operators UKMT and ti
is either an antisymmetric state or a non-antisymmetric state.
Equation (A12) displays the KMT optical potential to second
order in ti , which corresponds to the Watson optical potential of
Eq. (13). Now I consider the optical potential UKMT used in the
calculation of the K+d scattering. Using the same procedure
mentioned in Sec. II, we obtain the final expression,

UKMT = U
(1)
KMT + U

(2)
KMT + · · · , (A13)

with

U
(1)
KMT = 1

2
U (1), (A14)

U
(2)
KMT = 1

2

[
U (2) +

∑
i

t free
i

P

e
t free
i

]
, (A15)

where the operators U (1), U (2), and t free
i are defined in Sec. II.
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