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The thermodynamics and critical exponents and amplitudes of high temperature and dense matter near the
chiral critical point are studied. The parameterized equation of state matches that calculated with lattice QCD at
zero chemical potential and to the known properties of nuclear matter at zero temperature. The extent to which
finite size effects wash out the phase separation near the critical point is determined.
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I. INTRODUCTION

The up and down quark masses are very small but not
zero. Consequently, the conventional wisdom is that there
is no true thermodynamic chiral phase transition at finite
temperature T and zero baryon chemical potential µ. Instead,
there is expected to be a curve of first-order phase transition
in the µ-T plane that terminates in a second-order phase
transition at some critical point (µc, Tc). The location of
the critical point is obviously of quite some interest. This
topic has been under intense theoretical study using various
effective field theory models, such as the Namu Jona-Lasinio
model [1–3], a composite operator model [4], a random matrix
model [5], a linear σ model [3], an effective potential model
[6], and a hadronic bootstrap model [7], as well as various
implementations of lattice QCD [8–11]. Reviews of this
subject were presented by Stephanov [12] and Mohanty [13].

This subject is also of great interest because collisions
between heavy nuclei at medium to high energy, such as at
the future Facility for Antiproton and Ion Research (FAIR),
or possible low energy runs at the Relativistic Heavy Ion
Collider (RHIC), may provide experimental information on
the phase diagram in the vicinity of a critical point. One
characteristic signature would be large fluctuations in phase
space of conserved quantities, such as charge, baryon, or
strangeness, on an event-by-event basis [14,15]. The variance
of the distributions is proportional to the spatial size of the
correlated region, which could be rather small due to the
finite size and lifetime in heavy-ion collisions [16]. This led
to the suggestion to measure higher moments to search for
non-Gaussian behavior [17]. In order to study these effects
quantitatively, not only are measurements needed but also
dynamical simulations of phase separation and fluctuations
in heavy-ion collisions [18].

The goal of this article is to understand the basic features
of the equation of state near the QCD chiral critical point
and the magnitude of phase fluctuations in its vicinity. The
essential requirements are to incorporate the critical exponents
and amplitudes, and to match to lattice QCD results at µ = 0
and to nuclear matter at T = 0. We will accomplish this by
parameterizing the Helmholtz free energy as a function of
temperature and baryon density so as to incorporate the above
requirements.

This work is similar to the study of the nuclear liquid-gas
phase transition in [19]. An obvious difference is that the latter

studied a transition between nuclear liquid and gas, whereas
the present study concerns the transition between quark matter
and hadronic matter. Apart from that, this article will develop
a description of the equation of state that has the correct
critical exponents that are not integers or simple fractions;
in other words, it is not a mean-field theory. It will also
include the critical amplitudes, which are universal. The chiral
phase transition is in the same universality class as the 3D
Ising model and liquid gas phase transition. Finally, the
parametrization will incorporate knowledge about the zero
baryon density equation of state, computed by lattice QCD,
as well as knowledge about the high density behavior of
nuclear matter at zero temperature. Perhaps the closest work
that addressed these issues is Ref. [20], which blended a
parametrization of the three-dimensional (3D) Ising model
equation of state into quark and hadron equations of state.
In that work, there was an ambiguity as to how to relate the
magnetization to the baryon chemical potential. In this study,
there is no such issue. These two parametrizations can perhaps
be viewed as alternatives that provide some idea as to the range
of uncertainty in how to describe matter near the chiral critical
point.

The outline of the article is as follows. In Sec. 2, we
summarize some thermodynamic relations and definitions
of the relevant critical exponents. In Sec. 3, we develop a
relatively general parametrization of the equation of state
in the vicinity of the critical point whose motivation comes
from mean-field theory. In Sec. 4, we fix the parameters to
best match onto what is known about the equation of state
at finite temperature but zero baryon density, and at finite
baryon density but zero temperature. In Sec. 5, we show the
numerical results obtained with the developed parametrization
and parameters. In Sec. 6, we apply the Landau theory of
fluctuations away from the stable thermodynamic phases to
estimate the magnitude of density fluctuations, which turn out
to be surprisingly large. Concluding comments are made in
Sec. 7. Those wishing to know only the results should read
Sec. 5 and the Appendix which summarizes the parameterized
equation of state.

II. THERMODYNAMIC RELATIONS

Consider the equation of state of matter in the vicinity
of a critical point which is in the same universality class
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as the liquid-gas phase transition and the 3D Ising model.
It is advantageous to work with the Helmholtz free energy
density f , which is a function of the temperature T and baryon
density n. Some useful thermodynamic relations involving the
pressure P , baryon chemical potential µ, entropy density s,
and energy density ε follow:

f = f (n, T ), (1)

P = n2 ∂

∂n

[
f (n, T )

n

]
, (2)

µ = ∂f (n, T )

∂n
, (3)

s = −∂f (n, T )

∂T
, (4)

ε = f (n, T ) + T s(n, T ). (5)

Clearly, these satisfy the thermodynamic identity ε = −P +
T s + µn. The heat capacity per unit volume cV and isothermal
compressibility are

cV = T
∂s(n, T )

∂T
, (6)

κ−1
T = n

∂P (n, T )

∂n
. (7)

The baryon number susceptibility is χB = n2κT . In what
follows, we shall focus on κT rather than χB since they are
so directly related to each other.

When discussing a critical point with critical temperature
Tc and baryon density nc, it is useful to define

t = T − Tc

Tc

, (8)

η = n − nc

nc

. (9)

The critical exponents α, β, γ , and δ are defined as follows.
When t � |η| and t > 0,

cV ∼ t−α, (10)

κT ∼ t−γ . (11)

Along the coexistence curve

nl − ng ∼ (−t)β. (12)

Along the critical isotherm

P − Pc ∼ |η|δsgn(η). (13)

Mean-field theories normally give α = 0, β = 1/2, γ = 1, and
δ = 3, as we shall see. Typical fluids are measured to have α �
1, β ≈ 1/3, 1.2 < γ < 1.3, and 4 < δ < 5. For experimental
measurements and results see Ref. [21] and references therein.
The 3D Ising model has α = 0.11, β = 0.325, γ = 1.24, and
δ = 4.815. A good general reference is Ref. [22]. We will now
proceed to parametrize the equation of state near the chiral
critical point of QCD at increasing levels of sophistication.

III. PARAMETERIZING THE EQUATION OF STATE

As mentioned earlier, there are certain properties near a
critical point that are identical for all theories within the

same universality class. Away from the critical point, the
equation of state depends on the details of the degrees of
freedom and the interactions among them. To proceed, we
will first briefly review generic descriptions that arise from
most, if not all, mean-fields theories. The results will be used
to motivate a more sophisticated parametrization relevant for
QCD.

A. Mean-field theories

By mean-field theories it is meant that although interactions
are included, correlations among the particles are not. This
usually results in thermodynamic variables scaling as rational
powers of η and t . This can be represented by expanding f in
a Taylor series in η about η = 0:

f =
∑
k=0

fk(t)ηk. (14)

The coefficient functions fk(t) themselves may be expanded in
a Taylor series about t = 0 and they all have energy dimension
4. The resulting pressure is

P =
∑
k=0

Pk(t)ηk,

(15)
Pk = (k + 1)fk+1(t) + (k − 1)fk(t).

At the critical point, both ∂P (n, T )/∂n = 0 and ∂2P (n, T )/
∂n2 = 0. This implies that P1(0) = 0 and P2(0) = 0 or,
equivalently, f2(0) = 0 and f3(0) = 0. Similarly, the other
thermodynamic variables may be obtained, such as

µ = 1

nc

∑
k=0

(k + 1)fk+1(t)ηk (16)

and

s = − 1

Tc

∑
k=0

f ′
k(t)ηk, (17)

where the prime denotes differentiation with respect to t .
The simplest model is to set fk(t) = 0 for all k > 4.

A quartic polynomial for the free energy is typical in
particle and condensed matter physics. This means that P

is quartic and µ is cubic in η, which allows for the usual
S-shaped curves. Phase coexistence requires that the pressures
and chemical potentials of the two phases be equal for
t < 0:

P (ηl, t) = P (ηg, t), (18)

µ(ηl, t) = µ(ηg, t). (19)

The subscripts l and g stand for the liquid high-density
phase and the gaseous low-density phase, respectively. This
determines ηl(t) > 0 and ηg(t) < 0 along the coexistence
curve. For this model,

2f2(ηl − ηg) + (3f3 + f2)
(
η2

l − η2
g

)
+ (4f4 + 2f3)

(
η3

l − η3
g

) + 3f4
(
η4

l − η4
g

) = 0 (20)

and

2f2(ηl − ηg) + 3f3
(
η2

l − η2
g

) + 4f4
(
η3

l − η3
g

) = 0. (21)
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Since both f2 and f3 vanish at the critical point, f4 should not
in order that ηl and ηg go to zero as t → 0. These equations
apparently do not have any simple solution. Therefore, we
assume that f3(t) = 0, which is certainly not the most general
case but it does allow us to gain valuable insight. Then the
solution to these equations is

ηl(t) = −ηg(t) =
√

−f2(t)

2f4(t)
. (22)

So the function f2(t) should be negative for t < 0 and positive
for t > 0. The simplest choice, usually obtained in mean-field
approximations, is that f2(t) ∼ t . This gives β = 1/2. The
resulting coexistence curve in the T -n plane is symmetric
about nc. Real fluids oftentimes have an asymmetric curve.

Along the coexistence curve, the chemical potential is

ncµx(T ) = f1(t). (23)

If, for example, the coexistence curve T versus µ is parame-
terized as an ellipse then the function f1(t) is determined. The
coexistence pressure is

Px(T ) = P0(t) + f 2
2 (t)

4f4(t)
= −f0(t) + f1(t) + f 2

2 (t)

4f4(t)
. (24)

Along the critical isotherm

P (n, Tc) − P (nc, Tc) = 4f4(0)η3 + 3f4(0)η4, (25)

so that the critical exponent δ = 3. The thermal compressibility
is

κ−1
T = n

nc

[P1(t) + 2P2(t)η + 3P3(t)η2 + 4P4(t)η3]. (26)

When t � |η| → 0 and t > 0,

κT → 1

2f2(t)
, (27)

so that if f2(t) vanishes linearly then the critical exponent
γ = 1. In the same limit,

cV = − 1

Tc

f ′′
0 (t). (28)

If f0(t) is a regular function then the critical exponent α = 0.
The limit of metastability is the isothermal spinodal. It is

determined by the condition ∂P (n, T )/∂n = 0. In this model
one finds, with f3(t) = 0, that the lower limit is η1 = ηg/

√
3 <

0 and the upper limit is η2 = ηl/
√

3 > 0. For ηg < η < η1 the
system is in a metastable gas phase, and for η2 < η < ηl the
system is in a metastable liquid phase.

B. A realistic parameterization

Now we construct a model that has the correct critical
exponents. The most important consideration is to obtain the
correct value of δ, which is an irrational number. Motivated
by the mean-field theories, we parametrize the free energy as

f = f0(t) + f1(t)η + f2(t)η2 + fσ (t)|η|σ . (29)

The pressure, chemical potential, and entropy density are

P = −f0 + f1 + 2f2η + f2η
2 + σfσ |η|σ−1sgn(η)

+ (σ − 1)fσ |η|σ , (30)

ncµ = f1 + 2f2η + σfσ |η|σ−1sgn(η), (31)

Tcs = −f ′
0 − f ′

1η − f ′
2η

2 − f ′
σ |η|σ . (32)

Phase coexistence is determined by equal pressures and
chemical potentials at the same temperature but different
densities:

2f2(ηl − ηg) + σfσ (|ηl|σ−1 + |ηg|σ−1) = 0, (33)

f2
(
η2

l − η2
g

) + (σ − 1)fσ (|ηl|σ − |ηg|σ ) = 0. (34)

The second of these has an obvious solution for ηg = −ηl .
When substituted into the first equation, we find

ηl(t) =
[−2f2(t)

σfσ (t)

] 1
σ−2

. (35)

Since f2(0) = 0 the pressure along the critical isotherm is

P (n, Tc) − P (nc, Tc)

= σfσ (0)|η|σ−1sgn(η) + (σ − 1)fσ (0)|η|σ , (36)

so the critical exponent δ = σ − 1.
The limit of metastability is the isothermal spinodal. It is

determined by the condition ∂P (n, T )/∂n = 0, as mentioned
earlier. Now one finds that the lower limit is η1 = ηg/δ

1/(δ−1) <

0 and the upper limit is η2 = ηl/δ
1/(δ−1) > 0. For ηg < η < η1

the system is in a metastable gas phase, and for η2 < η < ηl

the system is in a metastable liquid phase. In the range η1 <

η < η2 the system is unstable against isothermal fluctuations.
The density difference goes to zero as

ηl − ηg ∼ (−t)β. (37)

In the 3D Ising model and in real liquid-gas transitions, it turns
out that the thermal compressibility κT diverges as κ+t−γ when
t → 0+. Since

κT → 1

2f2(t)
(38)

when η → 0 first, it follows that f2(t) ∼ tγ for t → 0+.
Putting these together and assuming that f2(t) has the same
critical exponent for both positive and negative t yields

γ = β(δ − 1), (39)

which is a well-known relationship. To allow for the possibility
of asymmetry about t = 0, we write f2(t) = ±b±(±t)γ , where
the sign is chosen according to whether t is positive or negative,
and the b± are both positive numbers.

The heat capacity at η → 0

cV → − 1

Tc

f ′′
0 (t) (40)

diverges as t−α when t → 0+. Therefore we should write

f0(t) = f̄0(t) − a+t2−α (41)

as t → 0+ where f̄0(t) is a smooth function. Hence, the
singular part of cV is c+t−α with Tc c+ = (2 − α)(1 − α)a+.
Another relationship among the critical exponents is

α + 2β + γ = 2. (42)
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Once again we allow for asymmetry about t = 0 and write

f0(t) =
{

f̄0(t) − a−(−t)2−α if t < 0

f̄0(t) − a+t2−α if t > 0.
(43)

Using the best values arising from the 3D Ising model [23]
and from data on real liquid-gas phase transitions, one has
β = 0.325 and γ = 1.24. The above relationships then imply
δ = 4.815 and α = 0.11. Note that the mean-field model
considered previously respects both of these relationships
among critical exponents, too.

Along the coexistence curve the chemical potential is

ncµx(T ) = f1(t) (44)

and the pressure is

Px(T ) = P0(t) + σ − 2

2
fσ (t)

[−2f2(t)

σfσ (t)

] σ
σ−2

= −f0(t) + f1(t) + σ − 2

2
fσ (t)

[−2f2(t)

σfσ (t)

] σ
σ−2

. (45)

The formula for the isothermal compressibility along the
coexistence curve is

κ−1
T = (1 + η)2[2f2 + σ (σ − 1)fσ |η|σ−2]

= −2(δ − 1)f2(t)(1 ± ηl)
2, (46)

where the upper sign is for the liquid side and the lower sign
is for the gas side (ηg = −ηl). This indicates that f2 must of
course be negative for t < 0. The formula for the heat capacity
along the coexistence curve is

cV = −1 + t

Tc

[f ′′
0 (t) + f ′′

1 (t)η + f ′′
2 (t)η2 + f ′′

σ (t)|η|σ ].

(47)

The singular part comes from the terms which are zero and
second order in η. This leads to cV → c−(−t)−α where

Tcc− = (2 − α)(1 − α)a− + γ (γ − 1)

[
2b−

σfσ (0)

] 2
δ−1

b−.

(48)

According to Ref. [23], the thermal compressibility κT

diverges as κ+t−γ when t → 0+ and as κ−(−t)−γ when
t → 0−, with κ+/κ− ≈ 5 a universal ratio. Also, the heat
capacity at η → 0 diverges as c+t−α when t → 0+ and as
c−(−t)−α when t → 0−, with c+/c− ≈ 0.5 another universal
ratio. The former leads to the constraint

b+ = (δ − 1)b−
5

, (49)

while the latter leads to

2a+ = a− + γ (γ − 1)

(2 − α)(1 − α)

[
2b−

σfσ (0)

] 2
δ−1

b−. (50)

If we are not too far from the critical point, we can use the
following parametrizations. We can take fσ to be a constant.
The function

f2(t) =
{

f̄2(t) − b−(−t)γ if t < 0

f̄2(t) + b+tγ if t > 0,
(51)

where f̄2(t) is a smooth function that vanishes at t = 0 as
a power bigger than γ . The function f1(t) is the chemical
potential along the critical curve, which may be parametrized
like this. Assume a quadratic relationship between T
and µx : (

T

T0

)2

+
(

µx

µ0

)2

= 1. (52)

The curve hits the µ axis at T = 0 when µ = µ0. The chemical
potential at the critical point is

µc = µ0

√
1 − T 2

c

T 2
0

, (53)

hence

f1(t) = ncµ0

√
1 − T 2

c

T 2
0

(1 + t)2. (54)

It is apparent from the above expression for f1(t) that this
whole parametrization is only good when T < T0, otherwise
f1(t) would become imaginary.

Knowing this, it is straightforward to derive a simple
formula for the latent heat per unit volume. Making use of
phase equilibrium, �P = 0, T = Tx , µ = µx , and ηg = −ηl ,
one finds

�ε(t) = 2ncµ
2
0ηl(t)

µx(t)
, (55)

which of course is valid only for t < 0.
The independent constants may be taken as: a−, b−,

fσ , µ0, µc, Tc, and nc, plus the functions f̄0(t) and f̄2(t).
This parametrization captures the critical exponents and
amplitudes, which are universal. To proceed further we require
more information on the equation of state of QCD away from
the critical point.

For future reference it may be noted that one could add more
terms to the free energy without changing the basic picture. For
example, one could add f4(t)η4 and f8(t)η8. However, f4(t)
must vanish at t = 0 so as not to affect the critical behavior.
The coefficient f8(t) need not vanish at t = 0 but it becomes
irrelevant compared to the dominant term fσ |η|σ as η → 0, as
do all powers of η greater than σ .

IV. FIXING THE PARAMETERS

In this section, we narrow in on a phenomenological
equation of state with input from various disparate sources.
These include the results of lattice gauge theory calculations
at zero baryon density, and models and extrapolations of the
equation of state of cold dense nuclear matter.

Concerning the function f̄0(t), what we know from the
thermodynamic relations is that f̄0(0) = µcnc − Pc = εc −
Tcsc and f̄ ′

0(0) = −Tcsc. Hence, for small t it starts out as
f̄0(t) = εc − Tcsc(1 + t) + · · ·.

Suppose we wanted to extend this equation of state to
T = 0. The minimum requirement is that the entropy density
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must vanish. This means that f ′
0(−1) = f ′

1(−1) = f ′
2(−1) =

f ′
σ (−1) = 0. This is satisfied by the above parametrizations of

f1 and fσ , but f0 and f2 must be modified. The simplest way
to make f ′

2(−1) vanish, which does not upset the critical point
properties, is to choose

f̄2(t) = 1
2b−γ t2 (56)

following the idea that the function be smooth with the smallest
integer power. Note that with this choice f2(t) is negative
for all t < 0 and positive for all t > 0. The simplest way to
make f ′

0(−1) vanish, which does not upset the critical point
properties, is to choose

a− = Tcsc/(2 − α). (57)

If we then are so bold as to extrapolate our formula for
the coexistence curve to T = 0, we can input more physical
information.

For example, suppose we know that phase coexistence at
T = 0 occurs between a liquid phase with density nl(T = 0)
and a gas phase with density ng(T = 0). Denoting normal
nuclear density as n0, we have n0 < ng(T = 0) < nc <

nl(T = 0) and ng(T = 0) + nl(T = 0) = 2nc. In that case,
we can solve for b− in terms of the density difference
�n = nl(T = 0) − ng(T = 0):

b− = σfσ

2 − γ

(
�n

2nc

)δ−1

. (58)

Then µ0 = µ(T = 0) could be estimated by using the value
calculated for nuclear matter at the density ng(T = 0). Now
all the noncritical parameters would be determined apart
from fσ .

Consider some common parametrizations of the cold
nuclear matter equation of state [24]. The energy density,
pressure, and chemical potential are

ε = n [mN + E0(n)] , (59)

P = n2 dE0(n)

dn
, (60)

µ = dε

dn
. (61)

Case I:

E0(n) = K

18

(
n

n0
− 1

)2

+ E0(n0),

(62)

µ(n) = mN + E0(n0) + K

18

(
n

n0
− 1

) (
3

n

n0
− 1

)
.

Case II:

E0(n) = 2K

9
[(n/n0)1/2 − 1]2 + E0(n0),

(63)
µ(n) = mN + E0(n0) + 2K

9
[(n/n0)1/2 − 1]

× [2(n/n0)1/2 − 1].

Here, mN = 939 MeV is the nucleon mass and E0(n0) =
−16.3 MeV is the average binding energy per nucleon at nu-
clear matter density n0 = 0.153/fm3 [25]. The compressibility
K is known to be 250 ± 30 MeV [25,26]; we shall fix it at 250.
See also Ref. [27].

Heavy-ion collisions at the Bevalac and at the BNL Alter-
nating Gradient Synchrotron showed no clear experimental
evidence for the formation of a quark-gluon plasma [28].
The baryon densities achieved were around two to four times
nuclear matter density. If one distributes one unit of baryon
number within one electromagnetic radius of a proton, 0.8 fm,
the baryon density would be about 0.47/fm3, which is slightly
more than three times nuclear matter density. Therefore, it
seems reasonable to estimate ng(T = 0) = 4n0. At this density
case I gives ε(4n0) = 641 MeV/fm3 and µ(4n0) = 1381 MeV.
Case II gives ε(4n0) = 599 MeV/fm3 and µ(4n0) = 1089
MeV. Case I corresponds to a relatively stiff equation of
state whose energy per baryon rises quadratically at high
density, whereas case II corresponds to a relatively soft
equation of state whose energy per baryon rises linearly at
high density. The energy densities are similar because they
are dominated by the nucleon mass, not interactions. The
chemical potentials differ by about 20% because interactions
do contribute. The pressure is most sensitive to the interac-
tions. Based on this information, we estimate µ0 = 1230 ±
150 MeV.

The Hagedorn temperature was already determined in the
late 1960’s and early 1970’s to be 160 MeV [29]. The critical
temperature, no matter what order the transition is, ought
to be slightly greater than this [30]. Data from heavy-ion
collisions at the CERN Super Proton Synchrotron and BNL
Relativistic Heavy Ion Collider show that no hadrons have
ever been observed with a temperature greater than about 160
to 170 MeV (at very small chemical potential) [31]. Current
lattice QCD calculations agree that with the physical values
of the light and strange quark masses, the transition is a rapid
crossover at zero chemical potential. However, they disagree
on the so-called critical temperature. One group [32] puts it at
150 MeV while another group [33] puts it at 190 MeV. Part
of the discrepancy may be in exactly how this temperature
is defined, but that is not entirely sufficient. Certainly, to
accurately determine this temperature requires an accurate
calculation of the low-temperature hadronic equation of state.
But this requires very fine lattice spacing, since the lattice must
first discern the structure of individual hadrons, and it requires
a very large lattice volume, since the hadrons become widely
separated at low temperature. This is a difficult problem which
may not be resolved for some time. However, it seems safe to
estimate T0 = 170 ± 20 MeV.

The value of the temperature at the critical point is of course
not known. However, it should lie on or very near to the curve
of T versus µ under discussion. How then can we estimate the
pressure Pc, energy density εc, entropy density sc, and baryon
density nc at the critical point? One obvious way is to use the
formulas for a perfect massless gas of gluons and Nf flavors
of quarks evaluated at Tc and µc. These formulas are (µ is the
baryon chemical potential and quarks have one third of that
value):

P = π2

90

(
16 + 21Nf

2

)
T 4 + Nf

18
µ2T 2 + Nf

324π2
µ4, (64)

s = 4π2

90

(
16 + 21Nf

2

)
T 3 + Nf

9
µ2T , (65)
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n = Nf

9
µT 2 + Nf

81π2
µ3, (66)

ε = 3P. (67)

When the relationship

µ2
c = µ2

0

(
1 − T 2

c

T 2
0

)
(68)

with the aforementioned estimates of T0 and µ0 is used, it turns
out that the pressure is almost independent of the numerical
value of Tc. Since two phases in equilibrium with the same
T and µ have the same pressure, would it not be nice if Pc

was independent of Tc? This is one hint. A second hint is
provided by the fact that all lattice QCD calculations show
that the pressure, energy density, and entropy density are all
lower than the ideal gas formula would suggest, at least at
µ = 0. In fact, they indicate a negative contribution to the
pressure proportional to T 2 [34,35], and a negative constant
contribution, like a bag constant. It has also been suggested,
in the context of cold dense matter as might exist in neutron
stars, that at T = 0 there may be a contribution proportional to
µ2 [36]. So let us hypothesize that, in the vicinity of the phase
transition or crossover and above, the high energy density
equation of state can be parameterized as

P = A4T
4 + A2µ

2T 2 + A0µ
4 − CT 2 − Dµ2 − B, (69)

where A4, A2 and A0 are given by the perfect gas equation
of state. Now suppose we substitute µ2 = µ2

0(1 − T 2/T 2
0 )

into this formula and demand that it be independent of T .
A simple exercise shows that T0 and µ0 must be related
according to

µ2
0

T 2
0

= 9π2

(
1 ±

√
8

15
− 32

45Nf

)
. (70)

Choosing Nf = 2.5, effectively to account for the smaller con-
tribution from the heavier strange quarks at these temperatures
and chemical potentials, and choosing the minus sign, leads to

µ0

T0
= 6.671 73 . . . (71)

in order that the coefficient of T 4 vanish. In other words,
if T0 = 180 MeV then µ0 = 1209 MeV. This relationship is
entirely in line with all the facts at hand. Demanding that the
coefficient of the T 2 term vanish requires

C − µ2
0

T 2
0

D = µ2
0

(
A2 − 2

µ2
0

T 2
0

A0

)
≈ 3.084 T 2

0 . (72)

The lattice calculations of Ref. [33] found that 2C ≈
0.24 GeV2. This translates into C ≈ 3.3T 2

0 using their value
of T0 ≈ 190 MeV. There are no calculations of the µ2

term in the pressure, but this analysis suggests that D is
very small; we shall take it to be zero for simplicity of
exposition.

With even larger uncertainties, Ref. [33] found that B ∼ T 4
0 .

For a reasonable interpolation of the lattice results near and
just above the crossover region, we take the coefficient to be

0.8. The parametrization is therefore

P = 169π2

360
T 4 + 5

36
µ2T 2 + 5

648π2
µ4

− 3.084T 2
0 T 2 − 0.8T 4

0 ,

s = 169π2

90
T 3 + 5

18
µ2T − 6.168T 2

0 T ,

n = 5

18
µT 2 + 5

162π2
µ3,

ε = −P + T s + µn. (73)

The critical pressure is computed from this to be Pc =
0.749T 4

0 . The critical entropy density sc, baryon density nc,
and energy density εc of course depend on the choice of Tc

and therefore µc.
All that remains is to specify �n at T = 0 and fσ . Since fσ

is assumed to be constant, it is natural that it be proportional to
Pc. For definiteness we shall take fσ = 5Pc ≈ 512 MeV/fm3

and �n = nc/3. In what follows we shall use all of the above
parametrizations and only vary Tc to see what effect it might
have on heavy-ion collisions.

V. NUMERICAL RESULTS FOR EQUATION OF STATE

In this section, we plot some of the thermodynamic
functions that were derived in the previous two sections. It
is important to note that, although the results do depend on
the numerical values of the parameters, the critical behaviors
obviously do not. In addition, since most of the parameters
were chosen to match onto known properties of quark-gluon
matter at µ = 0 and to dense nuclear matter at T = 0, the
results should not be too far from what is at present impossibly
difficult computations in QCD.

In Fig. 1 we show the pressure, entropy density, and energy
density obtained from Eq. (73) as functions of T at µ = 0.

FIG. 1. The pressure, entropy density, and energy density, nor-
malized so that they all have the same asymptotic value, versus
temperature at µ = 0. The parametrization is from Eq. (73), which is
motivated by lattice QCD calculations.
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FIG. 2. Temperature versus baryon chemical potential from the
parametrization of Eq. (52). The critical temperature lies somewhere
along this curve.

They are close to the curves computed in lattice QCD but
not identical. The parametrization of Eq. (73) is needed to
extrapolate the lattice results to large chemical potentials.
Anyway, all that is needed for the purposes of the chiral critical

point are the values of Pc, sc, and εc for a chosen value of Tc,
not the full T and µ dependence of the equation of state of the
quark-gluon plasma.

In Fig. 2 we show the curve of phase coexistence, T versus
µ, according to Eq. (52). One chooses Tc somewhere along
this curve. Then, for T > Tc along this curve, the transition
is a rapid crossover, whereas for T < Tc along this curve, the
transition is first order.

In Fig. 3 we show the curve of the phase coexistence T

versus n/n0 for various choices of Tc. These are indicated
by the solid curve. The dashed curve indicates the limit of
isothermal metastability, or isothermal spinodal. When T is
scaled by Tc, the phase coexistence curves fall on top of one
another, as do the spinodals, indicative of a special scaling
feature of this parametrization.

In Fig. 4 we show the isothermal compressibility as a
function of the temperature. For t < 0, it depends on whether
one approaches the phase coexistence curve from the low
density side or the high density side. For t > 0, it is computed
at the critical density. The result is independent of the choice
of Tc in this parametrization of the equation of state.

In Fig. 5 we show the heat capacity per unit volume as a
function of temperature for various choices of Tc. For t < 0,
it depends on whether one approaches the phase coexistence
curve from the low-density side or the high-density side. For
t > 0, it is computed at the critical density. When scaled by

FIG. 3. The solid curve denotes coexistence between high- and low-density phases. The dashed curve denotes the limits of metastability.
When scaled by the critical temperature and density the curves lie on top of each other.

055201-7



J. I. KAPUSTA PHYSICAL REVIEW C 81, 055201 (2010)

FIG. 4. The isothermal compressibility. For t < 0 they are eval-
uated along the coexistence curve whereas for t > 0 it is evaluated at
the critical density. The curves for Tc = 60, 100, and 140 MeV lie on
top of one another.

the entropy density at the critical point, the result for t > 0 is
independent of the choice of Tc, whereas for t < 0 it is almost
but not quite independent. For reference, the entropy density at

FIG. 6. The latent heat per unit volume versus temperature for
three choices of Tc.

the critical point is 1.741, 3.416, and 5.861 fm−3 for Tc = 60,
100, and 140 MeV, respectively.

In Fig. 6 we show the latent heat, or discontinuity in energy
density, as a function of T for various values of Tc. For

FIG. 5. The heat capacity per unit volume. For t < 0 they are evaluated along the coexistence curve whereas for t > 0 it is evaluated at the
critical density. When divided by the entropy density at the critical point the results are nearly independent of Tc.
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60 < Tc < 140 MeV, the latent heat is approximately
300 MeV/fm3 at T = 0 and goes to zero at Tc.

VI. FLUCTUATIONS

All thermodynamic functions are smooth and continuous
for any finite volume. The discontinuities associated with
phase transitions only arise in the infinite-volume limit.
The question to be addressed here is whether the features
characteristic of a chiral phase transition get smoothed out
in heavy-ion collisions to such an extent that they cannot
be discerned from experimental observations. The analysis
performed here is based on the Landau theory of fluctuations
[37], suitably modified to take into account the noninteger
powers of η appearing in the thermodynamic functions.

In a uniform system of large but finite volume V , the
thermodynamic potential  depends only on the temperature
and baryon chemical potential and is proportional to V .
Due to finite size fluctuations at the given temperature and
chemical potential, the actual value of the “order parameter”
η will not necessarily be the equilibrium one. To quantify this
phenomenon we expand  in powers of η:

(µ, T ; η) = 0(µ, T ) + 1(µ, T )η

+2(µ, T )η2 + σ (µ, T )|η|σ : (74)

In equilibrium, this must be an extremum with respect to
variations in η; namely

∂(µ, T ; η)

∂η
= 1(µ, T ) + 22(µ, T )η

+ σσ (µ, T )|η|σ−1sgn(η) = 0. (75)

The coefficient functions are determined by the fact that this
condition is fulfilled by the equation of state. Noting the powers
of η which appear, it is clear that one should choose

1(µ, T ) = K(−ncµ + f1), (76)

where K is some factor yet to be fixed. Upon using the
equilibrium relation between µ and η, namely Eq. (31), one
can determine the other coefficient functions:

2 = Kf2,
(77)

σ = Kfσ .

Therefore

(µ, T ; η) = 0(µ, T ) + K[(−ncµ + f1)η

+ f2η
2 + fσ |η|σ ]. (78)

In equilibrium /V = −P . Comparing this with the expres-
sion (30) for the pressure, one can deduce that K = V and

0(µ, T ) = V (f0 − ncµ) . (79)

Hence, we have obtained the expansion around the equilibrium
states

(µ, T ; η) = 0(µ, T ) + V [(−ncµ + f1)η

+ f2η
2 + fσ |η|σ ], (80)

with 0(µ, T ) given above.

FIG. 7. The thermodynamic potential as a function of η near the
critical point; the volume is 400 fm3. The stable phases are located at
the minima of the potential. Four different temperatures are shown,
with the solid curve representing the critical temperature.

The probability P(η) to find the system with a particular
value of η at given values of µ and T is

P(η) ∼ e−(µ,T ;η)/T . (81)

Along the coexistence curve ncµ = f1(t). Then,

(µ, T ; η) − 0(µ, T ) = V
(
f2η

2 + fσ |η|σ )
. (82)

Since t < 0, f2(t) < 0 and the thermodynamic potential has
two equal minima at the densities of the liquid and gas phases,
of course. This potential is shown in Fig. 7 for temperatures
both below and above Tc. In this figure, the volume was taken
to be 400 fm3. Obviously, the potential scales proportionately
with this volume. The value of 400 fm3 is really quite optimistic
for high-energy nuclear collisions. Considering that the critical
density is estimated to be about 5n0 ≈ 0.75 baryons/fm3,
this would mean that about 300 baryons participate in the
fluctuation. That is a substantial fraction of the total of 394 in
Au + Au, 416 in Pb + Pb, and 476 in U + U collisions. Even
then, the potential for the low and high density phases are only
5 MeV below the unstable mid-point when T/Tc = 0.6; it is
even less as Tc is approached.

It is interesting to find the probability that the system has
some value of η other than ηg or ηl along the curve of phase
coexistence. The relative probability is

P(η)/P(ηl) = e−�/T , (83)

where

� =  [µx(T ), T ; η] − [µx(T ), T ; ηl]

= V
[
f2

(
η2 − η2

l

) + fσ (|η|σ − |ηl|σ )
]
. (84)

Still using V = 400 fm3, the relative probability is plotted
as a function of η in Fig. 8 for several values of T � Tc.
For T � 0.6Tc there is more than a 90% probability to find
the system with any value of η in the range from −0.2 to
0.2. A major reason that this probability distribution is so
flat is due to the large value of the exponent σ = 5.815 ≈ 6.
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FIG. 8. The probability to find the system at a particular density
relative to the equilibrium densities at phase coexistence. Three
different temperatures are shown.

This is in contrast to the mean-field models that have σ = 4.
For a smaller and probably more realistic volume from the
perspective of nuclear collisions, the fluctuations would be
even greater. The magnitude of these fluctuations suggests
that it is difficult to probe the properties of the matter very
close to the chiral critical point.

VII. CONCLUSIONS

In this article we have constructed an equation of state in the
vicinity of the chiral critical point. It incorporates the correct
values of the critical exponents and amplitudes. Since only
certain properties of the equation of state are universal, there
is some freedom to vary the noncritical functional dependence
on temperature and density and to change the parameters in
those functions. The parametrization proposed here matches
the equation of state at zero baryon density as calculated in
lattice gauge theory, and at zero temperature using reasonable
extrapolations of dense nuclear matter. Certainly, refinements
and modifications are possible within the present framework.

The Landau theory of fluctuations away from equilibrium
states was employed to determine the potential magnitude
of the fluctuations one might expect in heavy-ion collisions.
The magnitude of these fluctuations is quite large, partly
due to finite-volume effects but primarily because the critical
exponent δ is much larger than in standard mean-field theories.
This flattens the Landau free energy as a function of density
away from the equilibrium densities and hence decreases the
cost to fluctuate away from them.

In the future, it would be highly desirable to have a
parametrization of the equation of state that includes not only
the behavior near the critical point but also extends to much
higher temperatures and densities. Ultimately, to compare with
experimental data, it will be necessary to incorporate this
knowledge into dynamical simulations of heavy-ion collisions.
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APPENDIX

Here we review the parametrization of the equation of state
near the chiral critical point as constructed in this manuscript
for ease of application. See the text for detailed explanations.

The critical point lies somewhere along the curve(
T

T0

)2

+
(

µ

µ0

)2

= 1. (A1)

Here T0 and µ0 are constants. The pressure at the critical point
is estimated from the expression

P = π2

90

(
16 + 21Nf

2

)
T 4 + Nf

18
µ2T 2

+ Nf

324π2
µ4 − CT 2 − B, (A2)

where Nf is the number of massless quark flavors. We use
Nf = 2.5 to simulate the larger strange quark mass. The
constants B and C are adjusted to represent the results of
lattice QCD calculations in the vicinity of the crossover region
at T > 0 but µ = 0 and to make the pressure a constant along
the critical curve. Then

µ2
0

T 2
0

= 9π2

(
1 −

√
8

15
− 32

45Nf

)
≈ (6.671 73)2, (A3)

C = Nf µ2
0

18

√
8

15
− 32

45Nf

≈ 3.084T 2
0 , (A4)

B = 0.8T 4
0 . (A5)

In particular, Pc ≈ 0.749T 4
0 . The values of the entropy density,

baryon density, and energy density at the critical point are
obtained from the above expression for the pressure via
thermodynamic identities. When numerical values are required
we use T0 = 180 MeV and thus µ0 = 1209 MeV.

The Helmholtz free energy is

f = f0(t) + f1(t)η + f2(t)η2 + fσ (t)|η|σ , (A6)

where η = (n − nc)/nc and t = (T − Tc)/Tc. The value of σ

is 5.815. The coefficient functions are

f0(t) =
{

f̄0(t) − a−(−t)2−α if t < 0

f̄0(t) − a+t2−α if t > 0,
(A7)

f1(t) = ncµ0

√
1 − T 2

c

T 2
0

(1 + t)2, (A8)

f2(t) =
{

f̄2(t) − b−(−t)γ if t < 0

f̄2(t) + b+tγ if t > 0,
(A9)

fσ = constant. (A10)
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The exponents are α = 0.11 and γ = 1.24. The f̄0(t) and f̄2(t)
are smooth functions of t . The critical amplitudes are related
by

b+ = (σ − 2)b−
5

(A11)

and

2a+ = a− + γ (γ − 1)

(2 − α)(1 − α)

(
2b−
σfσ

) 2
σ−2

b−. (A12)

From thermodynamic relations, the smooth function

f̄0(t) = εc − Tcsc(1 + t) (A13)

to first order in t . The simplest parametrization of the other
smooth function is

f̄2(t) = 1
2b−γ t2. (A14)

The parameters a− and b− are

a− = Tcsc/(2 − α), (A15)

b− = σfσ

2 − γ

(
�n

2nc

)σ−2

, (A16)

where �n is the discontinuity in the baryon density at
T = 0. For definiteness, we use �n = nc/3 and fσ = 5Pc ≈
3.745T 4

0 .
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