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Quick chemical equilibration times of hadrons (specifically, pp̄, KK̄ , ��̄, and ��̄ pairs) within a hadron
gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical
temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical
equilibration times. We compare our model to recent lattice results and find that for both Tc = 176 MeV and
Tc = 196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical
freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. Furthermore, the ratios
p/π , K/π , �/π , and �/π match experimental values well in our dynamical scenario.
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I. INTRODUCTION

(Anti-)strangeness enhancement was first observed at
CERN-SPS energies by comparing antihyperons, multistrange
baryons, and kaons to pp data. It was considered a signature for
quark gluon plasma (QGP) because, using binary strangeness
production and exchange reactions, chemical equilibrium
could not be reached within a standard hadron gas phase;
that is, the chemical equilibration time was on the order of
τ ∼ 100–1000 fm/c, whereas the lifetime of a fireball in
the hadronic stages is only τ ≈ 4–7 fm/c [1]. It was then
proposed that there exists a strong hint for QGP at SPS because
strange quarks can be produced more abundantly by gluon
fusion, which would account for strangeness enhancement
following hadronization and rescattering of strange quarks.
Later, however, multimesonic reactions were used to explain
secondary production of p̄ and antihyperons [2,3]. At SPS
they give a chemical equilibration time of τȲ ≈ 1–3 fm/c

using an annihilation cross section of σρȲ ≈ σρp̄ ≈ 50 mb
and a baryon density of ρB ≈ ρ0 to 2ρ0, which is typical for
evolving strongly interacting matter at SPS before chemical
freeze-out. Therefore, the time scale is short enough to account
for chemical equilibration within a cooling hadronic fireball at
SPS.

A problem arises when the same multimesonic reactions
were employed in the hadron gas phase at RHIC temperatures
where experiments again show that the particle abundances
reach chemical equilibration close to the phase transition [4].
At RHIC at T = 170 MeV, where σ ≈ 30 mb and ρ

eq
B ≈ ρ

eq
B̄

≈
0.04 fm−3, the equilibrium rate for (anti-)baryon production is
τ ≈ 10 fm/c.

Moreover, τ ≈ 10 fm/c was also obtained in Ref. [5] using
a fluctuation-dissipation theorem. From hadron cascades a
significant deviation was found from the chemically satu-
rated strange (anti-)baryons yields in the 5% most central
Au-Au collisions [6]. These discrepancies suggest that hadrons
are “born” into equilibrium; that is, the system is already
in a chemically frozen-out state at the end of the phase
transition [7,8]. To circumvent such long time scales, it was
suggested that near Tc there exists an extralarge particle density

overpopulated with pions and kaons, which drive the baryons
and anti-baryons into equilibrium [9]. However, it is not clear
how this overpopulation should appear, and how the subse-
quent population of (anti-)baryons would follow. Moreover,
the overpopulated (anti-)baryons do not later disappear [10].
Therefore, it was conjectured that Hagedorn resonances (heavy
resonances near Tc with an exponential mass spectrum) could
account for the extra (anti-)baryons [10–12].

Hadrons can develop according to

nπ ↔ HS ↔ n′π + XX̄, (1)

where XX̄ can be substituted with pp̄, KK̄ , ��̄, or ��̄.
Equation (1) provides an efficient method for producing of XX̄

pairs because of the large decay widths of the Hagedorn states.
In Eq. (1), n is the number of pions for the decay nπ ↔ HS
and n′ is the number of pions that a Hagedorn state will decay
into when an XX̄ is present. Because Hagedorn resonances
are highly unstable, the phase space for multiparticle decays
drastically increases when the mass increases. Therefore, the
resonances catalyze rapid equilibration of XX̄ near Tc and die
out moderately below Tc [11].

Unlike in pure glue SU(3) gauge theory where the Polyakov
loop is the order parameter for the deconfinement transition
(which is weakly first order), the rapid crossover seen on lattice
calculations involving dynamical fermions indicates that there
is not a well-defined order parameter that can distinguish the
confined phase from the deconfined phase. Because of this, it is
natural to look for a hadronic mechanism for quick chemical
equilibration near the phase transition. One such possibility
could be the inclusion of Hagedorn states. Recently, Hagedorn
states have been shown to contribute to the physical description
of a hadron gas close to Tc. The inclusion of Hagedorn states
leads to a low η/s in the hadron gas phase [13], which nears
the string theory bound η/s = 1/(4π ) [14]. Calculations of
the trace anomaly including Hagedorn states also fits recent
lattice results well and correctly describe the minimum of the
speed of sound squared, c2

s , near the phase transition found
on the lattice [13]. Estimates for the bulk viscosity including
Hagedorn states in the hadron gas phase indicate that the bulk
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viscosity, ζ/s, increases near Tc, which agrees with the general
analysis done in [15]. Furthermore, it has been shown [16] that
Hagedorn states provide a better fit within a thermal model to
the hadron yield particle ratios. Additionally, Hagedorn states
provide a mechanism to relate Tc and Tchem, which then leads to
the suggestion that a lower critical temperature could possibly
be preferred, according to the thermal fits [16].

Previously, in Ref. [11] we presented analytical results,
which we will derive in detail here. Moreover, we saw that
both the baryons and the kaons equilibrated quickly within an
expanding fireball. The initial saturation of pions, Hagedorn
states, baryons, and kaons played no significant role in the
ratios such as K/π and (B + B̄)/π .

Here we consider the effects of various initial conditions
on the chemical freeze-out temperature and we find that while
they play a small role in the total particle number, they
still reproduce fast chemical equilibration times. Additionally,
we assume lattice values of the critical temperatures (Tc =
176 MeV [17] and Tc = 196 MeV [18,19]) and find that
chemical equilibrium abundances are still reached close to
the temperature given by thermal fits (T ≈ 160 MeV).

This article is structured in the following manner. In Sec. II
we discuss the details of our statistical model that calculates
the chemical equilibrium values of the Hagedorn states and
other hadrons. Furthermore, in this section, fits are shown to
thermodynamical properties calculated in lattice QCD, which
are used to determine the mass spectrum of the Hagedorn
states, and the rate equations are discussed in detail. In Sec. III
we are able to extract the chemical equilibration time of an XX̄

pair when the pions and Hagedorn states are held constant. In
Sec. IV we derive an analytical result of the rate equations
when we consider only the decay HS ↔ nπ . We then discuss
the case of an expanding fireball and the results for the
various XX̄ pair production in Sec. V. The production of
� particles will also be considered in Sec. VI. We summarize
and discuss our results in Sec. VII. In the Appendix we present
some analytical and numerical results for the various equili-
bration stages in the hadron and Hagedorn-states gas mixture.

II. MODEL

Hagedorn resonances have an exponentially growing mass
spectrum [20]. Their large masses open up the phase space
for multiparticle decays. Recent analysis involving Hagedorn
states is given in Ref. [?]. Moreover, thoughts on observing
Hagedorn states in experiments are given in Ref. [22] and
their usage as a thermostat in Ref. [23]. Hagedorn states can
also explain the phase transition above the critical temperature
and, depending on the intrinsic parameters, the order of the
phase transition [24]. For an application of Hagedorn states
within hadronic jet events in e+e− collisions at CERN LEP,
see Ref. [25].

For the following discussion, the overall density of
Hagedorn states in our extended Hagedorn gas model are
straightforwardly described by

ρ =
∫ M

M0

A[
m2 + m2

r

] 5
4

e
m

TH dm, (2)

where M0 = 2 GeV and m2
r = 0.5 GeV. We note that in

this work we consider only mesonic Hagedorn states with
no net strangeness. The exponential in Eq. (2) arises from
Hagedorn’s original idea that there is an exponentially growing
mass spectrum. Thus, as TH is approached, Hagedorn states
become increasingly more relevant and heavier resonances
“appear.” The factor in front of the exponential has various
forms [?,23]. While the choice in this factor can vary, it
was found in Ref. [?] that the present form gives lower values
of TH , which more closely match the predicted lattice critical
temperature [17–19].

Returning to Eq. (2), its parameters (A, M , and TH ) are
dependent on the critical temperature. We assume that TH =
Tc, and then we consider the two different different lattice
results for Tc: Tc = 196 MeV [18,19], which uses an almost
physical pion mass, and Tc = 176 MeV [17]. Furthermore,
we need to take into account the repulsive interactions and,
therefore, we use the following volume corrections (as also
seen in [13,26,27]):

T = T ∗

1 − ppt (T ∗, µ∗
b)

4B

,

µb = µ∗
b

1 − ppt (T ∗, µ∗
b)

4B

,

pxv = ppt (T ∗, µ∗
b)

1 − ppt (T ∗, µ∗
b)

4B

,

(3)

εxv = εpt (T ∗, µ∗
b)

1 + εpt (T ∗, µ∗
b)

4B

,

nxv = npt (T ∗, µ∗
b)

1 + εpt (T ∗, µ∗
b)

4B

,

sxv = spt (T ∗, µ∗
b)

1 + εpt (T ∗, µ∗
b)

4B

,

which ensure that the our model is thermodynamically consis-
tent. Note that B is a free parameter that is based on the idea
of the MIT bag constant.

To find the maximum Hagedorn-state mass M and the
“degeneracy” A, we fit our model to the thermodynamic
properties of the lattice. In the RBC-Bielefeld collaboration
the thermodynamical properties are derived from the quantity
ε − 3p, the so-called interaction measure, which is what we
fit to obtain the parameters for the Hagedorn states. Thus,
we obtain TH = 196 MeV, A = 0.5 GeV3/2, M = 12 GeV,
and B = (340 MeV)4. The fit for the trace anomaly 
/T 4

is shown in Fig. 1. We also show the fit for the entropy
density in Fig. 2. Both fits are within the error of lattice
and mimic the behavior of the lattice results. As discussed
in Ref. [13], a hadron resonance gas model with Hagedorn
states uniquely fits the lattice data, whereas a hadron res-
onance gas without Hagedorn states completely misses the
behavior.

BMW calculates the thermodynamical properties sepa-
rately and, therefore, we fit only the energy density as
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FIG. 1. (Color online) Comparison of trace anomaly to lattice
QCD results from Refs. [18,19], where Tc = 196 MeV. HS is in
reference to our model including Hagedorn states.

shown in Fig. 3. From that we obtain TH = 176 MeV,
A = 0.1 GeV3/2, M = 12 GeV, and B = (300 MeV)4. We
also show a comparison to the entropy density in Fig. 4. Our
results with the inclusion of Hagedorn states are able to match
lattice data near the critical temperature but do not match as
well at lower temperatures in Figs. 1 and 2.

Our idea is that these very massive Hagedorn states exist,
as pictured in Fig. 5, and are so large that they decay
almost immediately into multiple pions and XX̄ pairs. While
it can be argued that Hagedorn states are more likely to
decay into a pair of particles—a lighter Hagedorn state and
another particle—these reactions are so quick that we can
consider the end results, which would be multiple particles
(mostly pions). That being said, it would be possible to put
Hagedorn states into a transport approach such as UrQMD
[28] using binary reactions with possible cross sections as
described in Ref. [29]. We leave this as a challenge for the
future.

Moreover, we need to consider the back reactions of
multiple particles combining to form a Hagedorn state to
preserve detailed balance. Rate equations provide us with a
perfect tool for this because there are loss and gain terms that
describe both the forward and the back reactions. Moreover,
the state of chemical equilibrium is a fixed point of the rate
equations. The rate equations for the Hagedorn resonances Ni ,
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FIG. 2. (Color online) Comparison of entropy density to lattice
QCD results from Refs. [18,19], where Tc = 196 MeV. HS is in
reference to our model including Hagedorn states.
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FIG. 3. (Color online) Comparison of energy density to lattice
QCD results from Ref. [17], where Tc = 176 MeV. HS is in reference
to our model including Hagedorn states.

pions Nπ , and the XX̄ pair NXX̄, respectively, are given by

Ṅi =�i,π

[
N

eq
i

∑
n

Bi,n

(
Nπ

N
eq
π

)n

−Ni

]

+�i,XX̄

⎡
⎣N

eq
i

(
Nπ

N
eq
π

)〈ni,x 〉
(

NXX̄

N
eq
XX̄

)2

−Ni

⎤
⎦ ,

Ṅπ =
∑

i

�i,π

[
Ni〈ni〉−N

eq
i

∑
n

Bi,nn

(
Nπ

N
eq
π

)n
]

+
∑

i

�i,XX̄〈ni,x〉
⎡
⎣Ni −N

eq
i

(
Nπ

N
eq
π

)〈ni,x 〉
(

NXX̄

N
eq
XX̄

)2
⎤
⎦ ,

ṄXX̄ =
∑

i

�i,XX̄

⎡
⎣Ni −N

eq
i

(
Nπ

N
eq
π

)〈ni,x 〉
(

NXX̄

N
eq
XX̄

)2
⎤
⎦ . (4)

The decay widths for the ith resonance are �i,π and �i,XX̄,
the branching ratio is Bi,n (see later in this article), and the
average number of pions that each resonance will decay into
is 〈ni〉. The equilibrium values N eq are both temperature- and
chemical-potential-dependent. However, here we set µb = 0.
Equation (4) can also be rewritten in terms of fugacities (λi ,
λπ , and λXX̄), which are found by dividing each total number
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FIG. 4. (Color online) Comparison of entropy density to lattice
QCD results from Ref. [17], where Tc = 176 MeV. HS is in reference
to our model including Hagedorn states.
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FIG. 5. Hagedorn states decay into multiple pions and an XX̄ pair.

by its respective equilibrium value, for example, λi = Ni

N
eq
i

(as

seen for the baryon-antibaryon pairs in [11]). Additionally, a
discrete spectrum of Hagedorn states is considered, which is
separated into mass bins of 100 MeV. Each bin is described by
its own rate equation.

The branching ratios, Bi,n, are the probability that the ith
Hagedorn state will decay into n pions. Because we are dealing
with probabilities, then

∑
n Bi,n = 1 must always hold. To

include a distribution for our branching ratios, we assume that
they follow a Gaussian distribution for the reaction HS ↔ nπ

Bi,n ≈ 1

σi

√
2π

e
− (n−〈ni 〉)2

2σ2
i , (5)

which has its peak centered at 〈ni〉 and the width of the
distribution is σ 2. Assuming a statistical, microcanonical
branching for the decay of Hagedorn states, we can take
a linear fit to the average number of pions in Fig. 1 in
Ref. [10] (multiplying π+ by three to include all pions) to
find 〈nπ 〉 such that 〈ni〉 = 0.9 + 1.2 mi

mp
is the average pion

number that each Hagedorn state decays into. Within the
microcanonical model a Hagedorn state is defined by its mass
and corresponding volume, where the volume is taken as
V = mi/ε. The mean energy density of a Hagedorn state is
ε (taken as ε = 0.5 GeV/fm3). Further discussions regarding
this can be found in Refs. [10,30]. The width of the distribution
is σ 2

i = (0.5 mi

mp
)2, where mp is the mass of the proton. Both

of our choices in 〈ni〉 and σ 2
i roughly match the canonical

description in Ref. [31].
Furthermore, we have the condition that each Hagedorn

resonance must decay into at least two pions. Because of the
nature of a Gaussian distribution, there is a nonzero probability
that a Hagedorn state can decay into less than two pions.
Therefore, we calculate the percentage of the distribution that
falls below two pions and redistribute that over n � 2 so that∑

n Bi,n = 1. This in turn leads to a new 〈ni〉 and σ 2
i , which we

find by calculating 〈ni〉 = ∑
n nBi,n and σ 2

i = 〈n2
i 〉 − 〈ni〉2.

Thus, after we normalize for the cutoff n � 2, we have 〈ni〉 ≈
3–34 and σ 2

i ≈ 0.8–510.
For the average number of pions when an XX̄ pair is

present, we again refer to the microcanonical model in
Refs. [10,30]. We use 〈nπ 〉 but then readjust it to the average
pion number according to Fig. 2 in Ref. [10] for when a
baryon-antibaryon pair is present (there the distribution is for

a resonance of mass m = 4 GeV). Thus,

〈ni,x〉 =
(

2.7

1.9

)
(0.3 + 0.4 mi) ≈ 2–7, (6)

where mi is in GeV. In this article we do not consider a
distribution but rather only the average number of pions when
an XX̄ pair is present. We assume that 〈ni,x〉 = 〈ni,p〉 =
〈ni,k〉 = 〈ni,�〉 = 〈ni,�〉 for when a proton antiproton pair,
kaon antikaon pair, ��̄, or ��̄ pair is present. Ideally, 〈ni,k〉,
〈ni,�〉, and 〈ni,�〉 should be derived separately and will be done
in a future presentation using a canonical model [32].

We used a linear fit for the total decay width similar to that
used in Ref. [33]. The total decay width

�i = 0.15 mi − 0.027 (7)

(�i and mi in terms of GeV), which ranges from �i =
250 MeV to �i = 1800 MeV, is a linear fit extrapolated from
the data in Ref. [34]. However, in Eq. (4) the total decay width
is separated into two parts: one for the reactions HS ↔ nπ ,
�i,π , and one for the reaction in Eq. (1), �i,XX̄, whereby
�i = �i,π + �i,XX̄. Then relative decay width �i,XX̄ is the
average number of XX̄ in the system 〈X〉 multiplied by the
total decay width �i . Essentially, a fraction of the decay of the
ith Hagedorn state goes into XX̄ (set by the number of XX̄ the
ith Hagedorn state on average decays into) and the remainder
goes into pions.

We find 〈p〉 by linearly fitting the proton in Fig. 2 in
Ref. [10] so that

p = 0.058 mi − 0.10, (8)

where mi is in GeV and 〈p〉 ≈ 0.01–0.6. Thus, �i,pp̄ is between
3 and 1000 MeV. Clearly, �i,π is then �i,π = �i − 〈p〉�i,π .
Analogously for the kaons, the decay width is �i,KK̄ = 〈K〉�i ,
where

K+ = 0.075 mi + 0.047, (9)

where mi is in GeV, which is also taken from Fig. 2 in Ref. [10].
We find that 〈K〉 = 0.2 to 0.95 [10,30]. Thus, �i,KK̄ is between
50 and 1700 MeV.

For � we use a canonical model assuming that the baryon
number B = 0, the strangeness S = 0, and the electrical charge
Q = 0 to calculate the average � number. The results of
this are shown in Fig. 6. We find that our 〈�〉 is lower than
that from the microcanonical ensemble in [10], which is also
shown in Fig. 6. This corresponds to a decay width of �i,��̄ =
3–250 MeV.

Furthermore, the average number of �’s is also shown
in Fig. 6 from our canonical model, again assuming that
the baryon number B = 0, the strangeness S = 0, and the
electrical charge Q = 0. In Fig. 6 we multiply 〈�〉 to better
view the results. The resulting decay width is �i,��̄ = 0.01–
4 MeV.

The equilibrium values are found using a statistical model
[35], which includes 104 particles from the the PDG [34]
(only light and strange particles). As in Ref. [35], we also
consider the effects of feeding (the contributions of higher-
lying resonances such as the ρ or ω resonances on the number
of “pions” in our system; that is, N

eq
π includes “all” the

pions from resonances from the PDG [34]). Feeding is also
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FIG. 6. (Color online) Average number of �’s and �’s. The
�’s are calculated within our canonical ensemble and the �’s are
calculated in both our canonical ensemble and a microcanonical
ensemble.

considered for the protons, kaons, and �’s. Additionally,
throughout this article our initial conditions are the various
fugacities at t0 (at the point of the phase transition into the
hadron gas phase),

α ≡ λπ (t0), βi ≡ λi(t0), and φ ≡ λXX̄(t0), (10)

which are chosen by holding the contribution to the total
entropy from the Hagedorn states and pions constant; that
is,

sHad(T0, α)V (t0) + sHS(T0, βi)V (t0)

= sHad+HS(T0)V (t0) = const. (11)

and the corresponding initial condition configurations we
choose later can be seen later in this article in Table II.
sHad(T0, α) is the entropy density at the initial temperature,
that is, the critical temperature multiplied by our choice in
α. Because the hadron resonance is dominated by pions, we
can assume that α represents the initial fraction of pions in
equilibrium. sHS(T0, βi) represents the entropy contribution
from the Hagedorn states at Tc multiplied by the initial fraction
of Hagedorn states in equilibrium. We hold α as a constant
and then find the appropriate βi . The volume expansion V (t)
is discussed in detail following Sec. V.

III. CHEMICAL EQUILIBRATION TIME ESTIMATE

As a starting point of our analysis, we first estimate the
chemical equilibration time of the XX̄ by looking at the
fugacity of the XX̄ rate equation; that is, Eq. (4) can be
rewritten in terms of λ as shown for BB̄ in Eq. (3) in Ref. [11],
when both the pions and Hagedorn states are held constant.
The XX̄ rate equation then becomes

λ̇XX̄ =
∑

i

�i,XX̄

N
eq
i

N
eq
XX̄

(
βi − α〈ni,x 〉λ2

XX̄

)
, (12)

which we can integrate,

λXX̄ = ζ

⎡
⎢⎣

(
φ+ζ

φ−ζ

)
e

2t
τXX̄ + 1(

φ+ζ

φ−ζ

)
e

2t
τXX̄ − 1

⎤
⎥⎦ , (13)

where

τXX̄ ≡ N
eq
XX̄√∑

i �i,XX̄N
eq
i βi

√∑
i �i,XX̄N

eq
i α〈ni,x 〉

,

(14)

ζ ≡
√ ∑

i �i,XX̄N
eq
i βi∑

i �i,XX̄N
eq
i α〈ni,x 〉 ,

and λXX̄(0) ≡ φ. Substituting in α = 1 and βi = 1 when the
pions and Hagedorn states are in chemical equilibrium, we
rederive Eq. (7) in Ref. [11],

τXX̄ = N
eq
XX̄∑

i �i,XX̄N
eq
i

, (15)

which is shown in Fig. 7. From Eq. (15) we see that the
time scale has an indirect dependence on the decay width.
Because the decay width has a linear dependence on the
mass, the time scale decreases when more Hagedorn states
are included. However, N

eq
i also decreases with increasing

mass so above a certain point very many Hagedorn states need
to be included to see an effect in the time scale. Furthermore,
the chemical equilibrium values have a dependence on the
temperature, which makes the time scale shortest for the
highest temperatures.

In Figs. 8 and 9 we hold the Hagedorn states and pions
and let the XX̄ pairs reach chemical equilibrium. That means
that in Eq. (4) we set Nπ = N

eq
π and Ni = N

eq
i in the ṄXX̄

equation. Figure 8 shows the results for pp̄, KK̄ , and ��̄,
respectively, for TH = 176 MeV and Fig. 9 shows the same
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FIG. 7. (Color online) Comparison of the chemical equilibrium
times for p’s, K’s, �’s, and �’s when α = 1 and βi = 1, where
(a) TH = 176 MeV and (b) TH = 196 MeV. The band at the bottom of
the panel is the range of chemical equilibrium times for the Hagedorn
states (see Table I).
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FIG. 8. (Color online) Graph of the number of proton-antiproton
pairs, kaon-antikaon pairs, and �-anti-� pairs when both the
resonances and the pions are held in equilibrium for TH = 176 MeV.

for TH = 196 MeV. In all cases the temperature is held constant
while the rate equations are solved over time. At T = Tc

all XX̄ reach chemical equilibrium almost immediately (on
the order of t < 0.2 fm/c). As T is decreased, the chemical
equilibrium time obviously increases, which is clear from
Fig. 7.

Even as the temperature is lowered we still see quick
chemical equilibrium times. For the pp̄ and ��̄ pairs at T =
0.9 Tc, the chemical equilibrium time is still about t < 1 fm/c.
The KK̄ pairs do have a slower chemical equilibrium time
owing to their larger chemical equilibrium abundances, which
is directly related to the chemical equilibration time through
Eq. (4). This again represents the main idea, which is the
importance of potential Hagedorn states in understanding fast
chemical equilibration of hadrons close to and below Tc. The
Hagedorn states increase dramatically in number close to the
critical temperature and, thus, by its subsequent decay and
repopulation they will quickly produce the various hadronic
particles.

The equilibration of XX̄ pairs then shown in Figs. 8 and 9,
where the analytical result in Eq. (13) matches the numerical
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FIG. 9. (Color online) Graph of the number of proton-antiproton
pairs, kaon-antikaon pairs, and �-anti-� when both the resonances
and the pions are held in equilibrium for TH = 196 MeV.

result exactly. From Figs. 8 and 9 it can be seen that all
XX̄ pairs equilibrate quickly close to the critical temperature
τ < 1 fm/c. Clearly, though, as the temperature decreases,
the chemical equilibration time lengthens. However, at TH =
196 MeV chemical equilibrium is still reached quickly,
τ < 1 fm/c.

IV. ANALYTICAL RESULTS: PIONS AND HAGEDORN
RESONANCES

While the chemical equilibration time derived in the
previous section is a good estimate, it can only be strictly
applied when the pions and Hagedorn states are assumed
to stay in chemical equilibrium at a constant temperature
(Figs. 8 and 9). Otherwise, nonlinear effects that appear when
the pions and Hagedorn states are allowed to equilibrate
appear.

To understand the dynamics in more detail, we consider the
simplified case when the Hagedorn resonances decay only into
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TABLE I. Chemical equilibration times from analytical estimates
where QE is quasiequilibrium at 95% of each respective TH . Here
T B

c = 176 MeV and T B
c = 196 MeV.

HS M2 GeV M12 GeV

τi = 1/�i 0.8 (fm/c) 0.1(fm/c)

0.95T B
c 0.95T R

c

λπ ≈ 0 τ 0
π ≡ N eq

π∑
i �iN

eq
i 〈ni〉βi

0.5 0.1

λπ ≈ 1 τπ ≡ N eq
π∑

i �iN
eq
i 〈n2

i 〉
0.01 0.003

QE τQE
π ≡ N eq

π∑
i �iN

eq
i σ 2

i

+
∑

QE N
eq
i 〈n2

i 〉∑
i �iN

eq
i σ 2

i

1.7 1.6

pions HS ↔ nπ , which gives

Ṅi = �i

[
N

eq
i

∑
n=2

Bi,n

(
Nπ

N
eq
π

)n

− Ni

]
,

(16)

Ṅπ =
∑

i

�i

[
Ni〈ni〉 − N

eq
i

∑
n=2

Bi,nn

(
Nπ

N
eq
π

)n
]

.

Assuming that the pions and the Hagedorn states described
in Eq. (16) are then allowed to equilibrate near Tc in a
static system, we are able to derive analytical solutions, the
derivation of which is shown in detail in the Appendix . For
the analytical solutions we divide the chemical equilibration
into three stages, the chemical equilibration times of which are
shown in Table I. The first stage (described by τ 0

π in Table I)
of the evolution is dominated by the chemical equilibration of
the pions when the pions are still far away from their chemical
equilibrium values. After the pions are close to chemical
equilibrium, new dynamics take over, which are described
by τπ in Table I and Fig. 10.

In both Stage 1 and Stage 2 the equilibration of the
Hagedorn states is set by the dynamics of the pions. Finally,
in Stage 3 the pions, which are already almost in chemical
equilibrium, reach a quasiequilibrium state with the Hagedorn
states. Quasiequilibrium is reached when at least one species
of Hagedorn states has succeeded its chemical equilibrium
time scale determined from the inverse of its decay width, that
is, τi = 1/�i . Because the heaviest Hagedorn states have the
shortest τi’s, then quasiequilibrium is reached when τi of
the heaviest Hagedorn state is surpassed. During this stage
nonlinear affects take over and, thus, a longer time scale, τQE

π ,
is seen. While this time scale may appear long, both the pions
and the Hagedorn states are so close to chemical equilibrium
that they are within roughly 10% (depending on the initial
conditions) or less of their chemical equilibrium values before
quasiequilibrium is even reached. The detailed calculations are
shown in the Appendix.

Therefore, the most important chemical equilibration time
is then that from the pions in Stage 1, that is, τ 0

π . The time
scale from Stage 2 is so short that it is not of much importance.
Additionally, by the time that Stage 3 is reached, both the pions
and the Hagedorn states are essentially in chemical equilibrium
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FIG. 10. (Color online) Comparison of the chemical equilibration
times of the pions to the total chemical equilibration time for
(a) TH = 176 MeV and (b) TH = 196 MeV.

and, therefore, the nonlinear affects do not play a large role
in the overall chemical equilibration time. One can see this
more clearly in Fig. 31(a) in the Appendix, where the pions
and heavier Hagedorn states are extremely close to chemical
equilibrium, while the lighter Hagedorn states are still only
moderately close to their chemical equilibrium values. There-
fore, the Hagedorn states and pions are able to be roughly in
chemical equilibrium on the order of <1 fm/c, according to
our analytical solution when held at a constant temperature.

This also applies to the KK̄ reaction HS ↔ nπ + KK̄ , as
shown in Fig. 31(b) in the Appendix . The time scale for the
pions and Hagedorn states are slightly longer when the KK̄

pairs are present. The same goes for the estimated chemical
equilibration time of the KK̄ pairs in the previous section, τKK̄ .

V. EXPANDING FIREBALL

To include the cooling of the fireball, we need to find a
relationship between the temperature and the time, that is,
T (t). To do this, we apply a Bjorken expansion for which the
total entropy is held constant

const = s(T )V (t) ∼ Sπ

Nπ

∫
dNπ

dy
dy, (17)

where s(T ) is the entropy density of the hadron gas with
volume corrections.

The total number of pions in the 5% most central collisions,
dNπ

dy
, can be found from experimental results in Ref. [36]. There

they found the phase-space yields for the pions π+ (292.0) and
π− (290.9) using a Gaussian fit for yields as a function of the
rapidity dNπ

dy
, where we used the rapidity range y = ±0.5.
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FIG. 11. Entropy per pion for a hadron gas in chemical equilib-
rium within the fireball ansatz.

We then assumed that the number of π0’s were also in that
same range and took the average of the two to find 291.5.
Thus, our total pion number is

∑
i Nπi = ∫ 0.5

−0.5
dNπ

dy
dy = 874.

While for a gas of noninteracting Bose gas of massless pions
Sπ/Nπ = 3.6 we do have a mass for our pions, so we must
adjust Sπ/Nπ accordingly. In Ref. [37] it was shown that when
the pions have a mass the ratio changes and, therefore, the
entropy per pion is close to Sπ/Nπ ≈ 5.5. The actual Sπ/Nπ

in our model is shown in Fig. 11 where Sπ/Nπ ≈ 6, which is
only slightly higher.

The effective volume at midrapidity can be parametrized as
a function of time. We do this by using a Bjorken expansion
and including accelerating radial flow. The volume term is then

V (t) = π ct
[
r0 + v0(t − t0) + 1

2a0(t − t0)2
]2

, (18)

where the initial radius is r0(t0) = 7.1 fm for TH = 196 and
the corresponding t

(196)
0 ≈ 2 fm/c. For TH = 176 we allow

for a longer expansion before the hadron gas phase is reached
and, thus, calculate the appropriate t

(176)
0 from the expansion

starting at TH = 196, which is t
(176)
0 ≈ 4 fm/c (there is a slight

variation dependence on the choice of v0 and a0). The T (t)
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FIG. 12. (Color online) The temperature-time relationship is
directly linked to the average transversel velocity chosen in Eq. (18)
within the fireball model ansatz.
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FIG. 13. (Color online) Ratio of the entropy of the Hagedorn
states to the total entropy.

relation is shown in Fig. 12, which has almost no effect on the
results as seen later in Fig. 16 and Fig. 17. Therefore, we choose
v0 = 0.5 and a0 = 0.025 for the remainder of this article. The
relation depicted allows to translate the later shown figures
labeled by the effective global temperature of the evolving
system directly into the evolving system time.

Because the volume expansion depends on the entropy
according to Eq. (17) and the Hagedorn resonances contribute
strongly to the entropy only close to the critical temperature
(see Fig. 13), the equilibrium values actually decrease with
increasing temperature close to Tc for the hadrons as seen in
Figs. 14 and 15. One can clearly see from Fig. 13 that the
Hagedorn states contribute strongly close to Tc down to about
80% of Tc.

Therefore, one has to include the potential contribution
of the Hagedorn resonances to the pions as in the case of
standard hadronic resonances, for example, a ρ meson decays
dominantly into two pions and thus accounts for them by a
factor two. This is similar to what was done in the Appendix
in Eq. (A7). Including the Hagedorn-state contribution, we

Nπ
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N
π,K K

eq

N
π,

eq

a

120 140 160 180 200
0

200
400
600
800

1000
1200
1400

T MeV

N

Nπ
eq

NHS
eq

N
π,p p

eq

N
π,K K

eq

N
π,

eq

b

120 140 160 180 200
0

200
400
600
800

1000
1200
1400

T MeV

N

FIG. 14. (Color online) Comparison of the effective pion numbers
when (a) TH = 176 MeV or (b) TH = 196 MeV.
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FIG. 15. (Color online) Comparison of the total number of XX̄

and their effective numbers when (a) TH = 176 MeV or (b) TH =
196 MeV.

arrive at our effective number of pions

Ñπ,XX̄ = Nπ +
∑

i

Ni[(1 − 〈Xi〉)〈ni〉 + 〈Xi〉〈ni,x〉], (19)

which are shown in Fig. 14. In Fig. 14 we see that after the
inclusion of the effective pion numbers the number of pions
only decreases with decreasing temperature. Furthermore, in
Fig. 14 the total number of Hagedorn states,

∑
i N

eq
i is also

shown. While there are by far fewer Hagedorn states present
than pions, we see that they are important because of their
large contribution to the entropy density, as shown in Fig. 13.
The reason that the effective number of pions increases close
to Tc is that the number of pions that the heavy Hagedorn states
decay into is large. If 〈ni〉 was smaller or no longer linear, it
could be possible that the effective number of pions would
remain constant.

Moreover, it is useful to consider the effective number of
XX̄ pairs

ÑXX̄ = NXX̄ +
∑

i

Ni〈Xi〉 (20)

because Hagedorn states also contribute strongly to the XX̄

pairs close to Tc, as seen in Fig. 15. Again we see that only
the effective number of XX̄ pairs have consistent decreasing
behavior with decreasing temperature, whereas without the
Hagedorn-state contributions we see a decrease close to Tc.

TABLE II. Initial condition configurations, recalling Eq. (10).

α = λπ (t0) βi = λi(t0) φ = λXX̄(t0)

IC1 1 1 0
IC2 1 1 0.5
IC3 1.1 0.5 0
IC4 0.95 1.2 0

Along with the expansion, we also must solve these rate
equations [Eq. (4)] numerically.1 We start with various initial
conditions, as mentioned previously, that are described by
α, βi , and φ (see Table II). The initial temperature is the
respective critical temperature and we end the expansion at
T = 110 MeV, a global kinetic freezeout temperature.

For the remainder of this article we include only results
for an expanding fireball, which are solved numerically.
As an initial test we hold both the pions and the Hagedorn states
in chemical equilibrium and allow just XX̄ to equilibrate, as
seen in Figs. 16 and 17. The black solid line in each graph
is the chemical equilibrium abundances and the colored lines
are the dynamical calculations for various expansions that
follow the T (t) shown in Fig. 12. We see that regardless of our
volume expansion they all quickly approach equilibrium. In
Figs. 16 and 17 the XX̄ all reach chemical equilibrium almost
immediately, well before 0.9Tc the chemical equilibration
time is <1 fm/c. The only exception is the KK̄ pairs for
TH = 176 MeV. However, we see later on that the K/π ratio
matches the data.

More interestingly, we consider the case when the pions,
Hagedorn states, and XX̄ all are allowed to chemical equi-
librate. We then vary the initial conditions and observe their
effects. The results for pp̄ pairs are shown in Figs. 18 and
19. In Figs. 18 and 19 we show the evolution of both the pp̄

pairs and the pions for the reaction nπ ↔ HS ↔ nπ + XX̄.
Note that in all the following figures the effective numbers
are shown so that the contribution of the Hagedorn states is
included.

One can see that the chemical equilibration time does
depend slightly on our choice of βi ; that is, a larger βi

means a quicker chemical equilibration time. For instance,
if the Hagedorn states were overpopulated coming out of
the QGP phase, then chemical equilibrium times would be
slightly shorter. However, even when the Hagedorn resonances
start underpopulated, the pp̄ pairs are able to reach chemical
equilibrium immediately. Additionally, when the pp̄ pairs
start at about half their chemical equilibrium values, it only
helps the pp̄ pairs to reach equilibrium at a slightly higher
temperature (on the order of a couple of MeV). Additionally,
we see a greater dependence on βi for TH = 176 MeV than
for TH = 176 MeV. Throughout the evolution we see from the
pions that they remain roughly in chemical equilibrium. Thus,
our initial analytical approximation appears reasonable.

In Fig. 20, the ratio of protons to π ’s is shown. We also
compare our results to that of experimental data. We see that

1We solve our coupled nonlinear differential equations using
NDSOLVE in MATHEMATICA.

054909-9



NORONHA-HOSTLER, BEITEL, GREINER, AND SHOVKOVY PHYSICAL REVIEW C 81, 054909 (2010)

Np p
eq

v0 0.3c
v0 0.5c
v0 0.7c

a

110 120 130 140 150 160 170 180
0

10

20

30

40

50

60

T MeV

N
p

p

NK K
eq

v0 0.3c
v0 0.5c
v0 0.7c

b

110 120 130 140 150 160 170 180
0

10

20

30

40

50

T MeV

N
K

K

N
eq

v0 0.3c
v0 0.5c
v0 0.7c

c

110 120 130 140 150 160 170 180
0

2

4

6

8

10

12

T MeV

N

FIG. 16. (Color online) Results for the (a) pp̄, (b) KK̄ , and
(c) ��̄ when the pions and Hagedorn resonances are held in
equilibrium for TH = 176 MeV.

for TH = 176 MeV our results enter the band of experimental
data before T = 170 MeV and remain there throughout the
entire expansion regardless of the initial conditions. However,
for TH = 176 MeV the results are slightly different. In this
case, the ratios match the experimental data early on at around
T = 190 MeV. However, they become briefly overpopulated
around T = 160–170 MeV but then quickly return to the
experimental values, except for the case when we have initial
conditions such that the pions are overpopulated. This could
imply that there are a few too many Hagedorn states and a
fit for the Hagedorn states with a lower A (degeneracy of the
Hagedorn states) may produce better results.

As with the protons, the total number of kaons are also
slightly dependent on our chosen initial conditions, more
specifically, our choice in βi . In Figs. 21 and 22 the temperature
of the evolving system after the phase transition at which
chemical equilibrium among standard hadrons is basically
reached and maintained is between T = 160 and T = 170 for
TH = 176 MeV and they have also already reached chemical
equilibrium by T = 170 for TH = 196 MeV, below which
the Hagedorn states basically die out. The one exception

Np p
eq

v0 0.3c
v0 0.5c
v0 0.7c

a

120 140 160 180 200
0

10

20

30

40

50

60

T MeV

N
p

p

NK K
eq

v0 0.3c
v0 0.5c
v0 0.7c

b

120 140 160 180 200
0

10

20

30

40

50

T MeV

N
K

K

N
eq

v0 0.3c
v0 0.5c
v0 0.7c

c

120 140 160 180 200
0

2

4

6

8

10

12

T MeV

N

FIG. 17. (Color online) Results for the (a) pp̄, (b) KK̄ , and
(c) ��̄ when the pions and Hagedorn resonances are held in
equilibrium for TH = 196 MeV.

is when the Hagedorn states begin underpopulated, that is,
when βi < 1. In this case, the kaon pairs take longer to reach
chemical equilibrium. However, when we look at K/π in
Fig. 23, lower βi actually fits the data better.

Moreover, the pions again remain roughly at chemical
equilibrium throughout the expansion as seen in Figs. 21 and
22. While the pion graphs look roughly similar in Figs. 18–22,
they are not. The difference is how the pions are affected in
the presence of a pp̄ pair compared to a decay that includes a
kaon antikaon pair.

In Fig. 23 the ratio of kaons to pions is shown for
TH = 176 MeV and for TH = 196 MeV. For TH = 176 MeV
our results are roughly at the upper edge of the experimental
values. However, for TH = 196 MeV our results are slightly
higher than the experimental values, although the results at
T = 110 MeV are almost exactly those of the uppermost
experimental data point.

We can also observe the effects of the expansion on the ��̄

pairs as seen in Figs. 24 and 25. We see that both reach the
experimental values almost immediately (T > 170 for TH =
176 MeV and around T = 190 for TH = 196 MeV). The one
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FIG. 18. (Color online) Results for the (a) p’s and (b) pions with
various initial conditions for TH = 176 MeV.

exception is again for an underpopulation of Hagedorn states,
which reaches chemical equilibrium at T ≈ 165 for TH =
176 MeV and already by T = 170 for TH = 196 MeV.

The ratio of �/π ’s is shown in Fig. 26. In both cases,
the �/π ’s match the experimental values extremely well. For
TH = 176 MeV our results reach the equilibrium values at
T ≈ 170 MeV and for TH = 196 MeV the experimental values
are reached already by T ≈ 170 MeV.
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FIG. 19. (Color online) Results for the (a) p’s and (b) pions with
various initial conditions for TH = 196 MeV.
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FIG. 20. (Color online) Results for the ratio of p’s with various
initial conditions for (a) TH = 176 MeV or (b) TH = 196 MeV. Note
that for STAR p/π− = 0.11 and p̄/π− = 0.082.

A summary graph of all our results is shown in Fig. 27. The
black error bars cover the range of error for the experimental
data points from both STAR and PHENIX. The points show
the range in values for the various initial conditions at
T = 110 MeV. We see in our graph that our freeze-out results
match the experimental data well.

What the graphs in Figs. 18–26 show us is that a dynamical
scenario is able to explain chemical equilibration values that
appear in thermal fits by T = 160 MeV. In general, TH =
176 MeV and TH = 196 give chemical freeze-out values in
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FIG. 21. (Color online) Results for the (a) K’s and (b) pions with
various initial conditions for TH = 176 MeV.
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FIG. 22. (Color online) Results for the (a) K’s and (b) pions with
various initial conditions for TH = 196 MeV.

the range between T = 160 and T = 170 MeV. These results
agree well with the chemical freeze-out temperature found in
Ref. [16].

Moreover, the initial conditions have little effect on the
ratios and give a range in the chemical equilibrium temperature
of about ∼5 MeV, which implies that information from the
QGP regarding multiplicities is washed out owing to the rapid
dynamics of Hagedorn states. Lower βi does slow the chemical
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FIG. 23. (Color online) Results for the ratio of K’s with various
initial conditions for (a) TH = 176 MeV or (b) TH = 196 MeV. Note
that for STAR K+/π− = 0.16 and K−/π− = 0.15.
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FIG. 24. (Color online) Results for the (a) �’s and (b) pions with
various initial conditions for TH = 176 MeV.

equilibrium time slightly. However, as seen in Fig. 27 they
still fit well within the experimental values. Furthermore, in
Ref. [11] we showed that the initial condition plays pretty much
no roll whatsoever in the ratios of K/π+ and (B + B̄)/π+,
thus strengthening our argument that the dynamics are washed
out following the QGP.

While the variance in the chemical equilibration time
arising from the initial conditions may seem contradictory
to the K/π+ and (B + B̄)/π+ ratios in Ref. [11], it can be
explained with the pion populations. In Figs. 18–22, quicker
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FIG. 25. (Color online) Results for the (a) �’s and (b) pions with
various initial conditions for TH = 196 MeV.
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FIG. 26. (Color online) Results for the ratio of �/π ’s with various
initial conditions for (a) TH = 176 MeV or (b) TH = 196 MeV. Note
that for STAR �/π− = 0.54 and �̄/π− = 0.41.

chemical equilibration times, and thus larger total baryon/kaon
numbers, translated into a larger number of pions in the system.
Thus, the K/π+ and (B + B̄)/π+ ratios do not depend on the
initial conditions.

VI. PRODUCTION OF ��̄

We can also use our model to investigate the possibility of
�’s. In Ref. [10], they discussed the possibility of �’s being
produced from the following decay channels:

HS ↔ ��̄ + X,

HS (sssq̄q̄q̄) ↔ � + B̄ + X, (21)

HSB(sss) ↔ � + X.
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FIG. 27. (Color online) Plot of the various ratios including all
initial conditions defined in Table II. The points show the ratios at
T = 110 MeV for the various initial conditions (circles are for TH =
176 MeV and diamonds are for TH = 196 MeV). The experimental
results for STAR and PHENIX are shown by the black error bars.
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FIG. 28. (Color online) Results for the (a) �’s and (b) pions with
various initial conditions for TH = 176 MeV.

The first decay channel of a mesonic nonstrange Hagedorn
state we can implement straightforwardly with our model by
employing the canonical branching ratio via Fig. 6. The results
are shown in Fig. 28 for TH = 176 MeV and in Fig. 29 for
TH = 196 MeV; the �/π ratio is shown in Fig. 30. We are
able to find the average number of �’s from Ref. [32], as seen
in Fig. 6. We see that, using only the first reaction, we are
still impressively able to adequately populate the ��̄ pairs
so that they roughly match the experimental data. However,
from Fig. 7 we see that for the � particle, the equilibration
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FIG. 29. (Color online) Results for the (a) �’s and (b) pions with
various initial conditions for TH = 196 MeV.
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FIG. 30. (Color online) Results for the ratio of �/π ’s with various
initial conditions for (a) TH = 176 MeV or (b) TH = 196 MeV. Note
that for STAR �/π− = 9.5 × 10−4 and �̄/π− = 9.6 × 10−4.

times are short only very close to Tc. The scenario is thus
more delicate. If one would take, for example, one half or
one fourth, respectively, of the decay width of that of Eq. (7),
the total production of � is not sufficient up to 25% or 50%,
respectively, to meet the experimental yield (the other ratios
are not significantly affected by such a change of the decay
width).

In a future work, it would be interesting to observe the
other decay channels, as given in Eq. (21) and described in
Ref. [10]. The second reaction includes a mesonic, three-
times-strange Hagedorn state, whereas the third decay channel
includes a baryonic, strange Hagedorn state. Both states are
much more likely to directly decay into a �. These are,
admittedly, exotic states, but should also occur in the spirit of
Hagedorn states. To observe these decay channels, a method,
for example, a microscopic quark model, must be found to find
the appropriate Hagedorn spectrum for strange mesonic and
baryonic Hagedorn states.

VII. CONCLUSIONS

In this article we found that hadronic matter, at RHIC
or SPS energies, can reach chemical equilibrium within
a dynamical scenario using Hagedorn states close to the
critical temperature. These states were able to produce quick
chemical equilibration times in (anti-)protons, (anti-)kaons,
and (anti-)�’s close to the critical temperature owing to their
strong increase in their abundancy. The existence of such a
mixture of standard hadrons and Hagedorn states just below
the phase transition can explain dynamically the chemical
equilibration of the hadronic species at around temperatures
of 160 to 170 MeV, as seen within the thermal models.

From our analytical results we found that the chemical
equilibration time depends on the temperature, decay widths,
and branching ratios, but not the initial conditions. While this

changes slightly when an expanding fireball is considered, the
initial condition still only play a small role and only mini-
mally affect the “freeze-out” temperature at which chemical
equilibrium is reached. This demonstrates that regardless of
the population of hadrons coming out of the QGP phase,
the initial conditions are washed out and everything can
reach abundances which correspond to those of chemical
equilibrium by the chemical freeze-out temperatures found in
Ref. [16].

Moreover, from our previous article [11], we showed that
particle ratios [K/π+ and (B + B̄)/π+] are not affected
by the initial conditions and here we showed that p/π ,
K/π , �/π , and also �/π match the experimental values
regardless of the initial conditions. Figure 27 demonstrates
this especially nicely and summarizes our findings: Regardless
of the initial conditions, our dynamical scenario can match
experimental data. We do find, however, that TH = 196 fits
within the experimental data box for K/π , whereas TH = 176
is slightly above. This appears to reconfirm the findings in
Ref. [16].

Our results imply that both lattice temperature can ensure
that the hadrons reach their chemical equilibrium values by
T = 160–170 MeV. Although the ratios for TH = 176 do
fit the data somewhat better, both match the experimental
values reasonably well. This implies that, independent of the
critical temperature, the hadrons are able to reach chemical
freeze-out.

We see sufficiently short time scales for the chemical
equilibrium of hadrons. The protons, kaons, and �’s reach
chemical equilibrium on the order of �τ ≈ 1–2 fm/c.
Moreover, Hagedorn states provide a very efficient way
for incorporating multihadronic interactions (with parton
rearrangements).

In an upcoming presentation we will use a canonical model
to derive all the branching ratios included in our calculations.
We can then look at reactions that include a mixture of strange
and nonstrange baryons (for instance, p̄ + �) and multistrange
baryons. However, considering that our initial results produce
quick chemical equilibration times for the baryons, kaons,
and �’s, it is reasonable to believe that this will occur for
mixed reactions and multistrange baryons as well. In addition,
the machinery of standard hadronic reactions, that is, binary
scattering processes and resonance production processes, help
also to equilibrate the various hadronic degrees of freedom.
Still, our work indicates that the population and repopulation
of potential Hagedorn states close to phase boundary can be
the key source for a dynamical understanding of generating
and chemically equilibrating the standard and measured
hadrons.
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APPENDIX: ANALYTICAL SOLUTIONS OF VARIOUS
EQUILIBRATION PROCESSES

If our initial conditions are such that both the pions and
the Hagedorn states begin far out of chemical equilibrium, we
can find an analytical solution by subdividing the analysis into
three distinct stages. Initially, during Stage 1 the pions are
underpopulated such that we can say that they approximately
begin at α ≈ 0 (we can also start the pions above zero, and the
approximation works well). Because the pions reach chemical
equilibrium much quicker than the Hagedorn states owing
to all the Hagedorn states decaying quickly into pions, then
we can make the approximation that the Hagedorn states are
held at their initial value of βi . One can see this from the
difference in the time scales from Table I, where τi > τ 0

π and
τi > τπ . Because α ≈ 0 we let λn

π ≈ 0, then substituting this
into Eq. (16) we obtain

λ̇π =
∑

�i

N
eq
i

N
eq
π

βi〈ni〉,
(A1)

λπ =
(

t

τ 0
π

+ α

)
,

which is the fugacity of the pions in Stage 1 and gives
τ 0
π ≡ N

eq
π∑

i �iN
eq
i 〈ni 〉βi

. Again, using the approximation α ≈ 0 and

substituting Eq. (A1) into the Hagedorn-state rate equation in
Eq. (16), with the solution

λ̇i = �i

[(
t

τ 0
π

)〈ni 〉
− λi

]
,

λi =
[

1 − 〈ni〉
(−t

τi

)−〈ni 〉
e
−( t

τi
)
∫ − t

τi

0
x〈ni 〉−1e−xdx

]

×
(

t

τ 0
π

)〈ni 〉
+ βie

−
(

t
τi

)
. (A2)

Substituting x = t
τi
ξ into the integral in Eq. (A2), expanding

the exponential inside the integral so ey = ∑∞
j=0

yj

j ! , and
integrating over ξ provides us with the fugacity of the
Hagedorn states in Stage 1:

λi =
(

t

τ 0
π

)〈ni 〉
⎡
⎣1 − e

−( t
τi

)
∞∑

j=0

〈ni〉
j !(〈ni〉 + j )

(
t

τi

)j

⎤
⎦

+βie
−( t

τi
)
. (A3)

Therefore, Eqs. (A1) and (A3) describe the behavior of
the pions and Hagedorn states during the initial stage of
the evolution toward chemical equilibrium. They are then
compared to the numerical results in Fig. 31.

As the pions near equilibrium, our approximation of λπ ≈ 0
no longer holds and we switch to Stage 2, where we assume
λπ ≈ 1 at time t1. Here t1 is a time when the pions are almost
in chemical equilibrium, which is normally taken when the
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FIG. 31. (Color online) (a) Numerical and analytical results for

the pions and Hagedorn states, where η = 0.9 at T = 175 MeV for
TH = 176 MeV when βi = 1.1 and α = 0.9. (b) Numerical results
for the same initial conditions including KK̄ pairs with φ = 0.

pions reach about ∼95% of their chemical equilibrium value.
Returning to the pion equation in Eq. (16), we can substitute
in λπ = 1 − ε and use the approximation (1 − ε)n ≈ 1 − nε:

ε̇ = −
∑

�i

N
eq
i

N
eq
π

[
(βi − 1)〈ni〉 + 〈

n2
i

〉
ε
]
. (A4)

Additionally, we substituted in βi for λi as an approximation
because the Hagedorn states do not change significantly in
Stage 1 (the majority of the evolution is done by the pions).
Recall that βi = λi(t = 0) and it is a constant. In its present
form, Eq. (A4) can be integrated. We also define ε(t1) = 1 − η,
where η is close to 1 (η is the measurement of how close the
pions are to their equilibrium value when we switch from
Stage 1 to Stage 2). Then, after integration,

λπ =
[
1 + γ − (1 + γ − η) e− t−t1

τπ

]
, (A5)

where γ =
∑

i �iN
eq
i (βi−1)〈ni 〉∑

i �iN
eq
i 〈n2

i 〉
and τπ ≡ N

eq
π∑

i �iN
eq
i 〈n2

i 〉
. Analo-

gously to Stage 1, we substitute the pion equation, that is,
Eq. (A5), into the Hagedorn resonance equation in Eq. (16)
and integrate

λi =
[
de

− t−t1
τi + 1 + 〈ni〉γ

−
(

τπ

τπ − τi

)
〈ni〉 (1 + γ − η) e− t−t1

τπ

]
, (A6)

where d = ωi − 1 + 〈ni〉γ + ( τπ

τπ −τi
)〈ni〉(1 + γ − η) and

λi(t1) = ωi . Thus, our equations for the evolution of the pions
and Hagedorn states are Eqs. (A5) and (A6), respectively. As
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with Stage 1, the evolution equation for the Hagedorn states
is dictated by that of the pions.

Stage 3, that is, quasiequilibrium, begins once the pions
and at least one species of Hagedorn resonances (τ7 GeV

is the shortest chemical equilibration time) has surpassed
its equilibration time (τπ and τi , respectively). To under-
stand quasiequilibrium, we must use the effective pion
number

Ñπ = Nπ +
∑

i

Ni〈ni〉 (A7)

because we need a variable that can observe the effects of
both the pions and resonances. The effective pion number
essentially includes the number of effective pions that each
Hagedorn state could decay into. Thus, we start by taking the
derivative of Eq. (A7) in terms of its fugacity

˙̃λπ = 1

Ñ
eq
π

[
N eq

π λ̇π +
∑

i

N
eq
i λ̇i〈ni〉

]

=
∑

i �iN
eq
i

Ñ
eq
π

[
〈ni〉

∑
n

Bi,nλ
n
π −

∑
n

Bi,nnλn
π

]
. (A8)

Once again, we make the substitution λπ = 1 − ε so that

˙̃ε = − 1

Ñ
eq
π

∑
i

�iN
eq
i σ 2

i ε, (A9)

where σ 2
i = 〈n2

i 〉 − 〈ni〉2 in the Gaussian distribution of our
branching ratios. To relate ε and ε̃, we return to Eq. (A7) and
separate λi into a sum over the resonances in quasiequilibrium
and one over the “freely” equilibrating resonances

λ̃π = 1

Ñ
eq
π

[
N eq

π λπ +
∑
QE

N
eq
i 〈ni〉λi +

∑
free

N
eq
i 〈ni〉λi

]
.

(A10)

Because the pions reach quasiequilibrium first, that is, τπ < τi

near Tc, we set the π rate equation in Eq. (16) equal to zero,
which gives λi ≈ 1

〈ni 〉
∑

n Bi,nnλn
π , so

λ̃π ≈ 1 −
(
N

eq
π + ∑

QE N
eq
i

〈
n2

i

〉)
ε

Ñ
eq
π

−
∑

free〈ni〉
(
N

eq
i − N

eq
i λi

)
Ñ

eq
π

. (A11)

Equation (A11) then has the form λ̃π ≈ 1 − ε̃, where

ε̃ =
(
N

eq
π + ∑

QE N
eq
i

〈
n2

i

〉)
ε

Ñ
eq
π

+
∑

free〈ni〉
(
N

eq
i − N

eq
i λi

)
Ñ

eq
π

.

(A12)

We can then solve for ε in Eq. (A12) and substitute ε into
Eq. (A9), which in turn can be integrated. This leads us to the

solution

ε̃ = εj e
− t−τj

τ
QE
π +

∑
free

〈ni〉N eq
i −

∑
i �iN

eq
i σ 2

i

Ñ
eq
π

∑
QE Ni

〈
n2

i

〉

×
∑
free

N
eq
i 〈ni〉e

− t−τj

τ
QE
π

∫ t

0
e

x−τj

τ
QE
π λi(x)dx, (A13)

where j stands for the latest resonance to reach chemical
equilibrium at that point in time and

τQE
π ≡ N

eq
π∑

i �iN
eq
i σ 2

i

+
∑

QE N
eq
i

〈
n2

i

〉
∑

i �iN
eq
i σ 2

i

(A14)

is the quasiequilibrium time. Clearly, once all the Hagedorn
states have reached chemical equilibrium, then j symbolizes
the resonance of M = 2 GeV, because it is the slowest
Hagedorn state to equilibrate. The sums over “free” is the
sum over the Hagedorn states that have not yet surpassed
their respective chemical equilibrium time, τi . Once τ2 GeV

is reached, those sums equal zero. Therefore, after τ2 GeV, all
that remains is

ε̃ = ε2 GeVe
− t−τ2 GeV

τ
QE
π , (A15)

where τQE
π is shown in Table I. Finally, we rewrite Eq. (A15)

in terms of the pion evolution equation

λπ = 1 − (1 − κ)e
− t−τ2 GeV

τ
QE
π , (A16)

where κ = λπ (τ2 GeV).
Because the resonance equation depends on the population

of the pions, we substitute Eq. (A16) into the Hagedorn
resonance rate equation in Eq. (16), assuming the pions are
near equilibrium [i.e., we use the approximation λ = 1 − ε

and (1 − ε)n ≈ 1 − nε],

λi =
[
θi − 1 + τQE

π

τ
QE
π − τi

〈ni〉(1 − κ)

]
e
− t−τ2 GeV

τi

+ 1 − τQE
π

τ
QE
π − τi

〈ni〉(1 − κ)e
− t−τj

τ
QE
π , (A17)

where θi = λi(τ2 GeV). Thus, for Stage 3 the population
equations for the pions and the Hagedorn states are Eqs. (A16)
and (A17) so long as t � τ2 GeV.

Figure 31 reveals a remarkable close fit with our numerical
results for T = 175 MeV; that is, T < TH . Thus, the quasi-
chemical equilibrium time, τQE, depends only on �i , 〈ni〉, σ 2

i ,
and N eq, which is temperature dependent, but not on our initial
conditions. As mentioned in the text, though, τQE includes
many nonlinear effects that only occur close to the chemical
equilibrium. Thus, the more appropriate time scale is τ 0

π to
describe the dynamics.

We also see from Fig. 31 that when KK̄ pairs are included
the pions and Hagedorn resonances equilibrate in roughly the
same amount of time, which implies that our analytical solution
can still be approximately applied when KK̄ pairs are present.
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