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We calculate the dimensionless Fermi liquid parameters (FLPs), F
sym
0,1 and F

asym
0,1 , for spin asymmetric dense

quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove
such divergences, the hard density loop (HDL) corrected gluon propagator is used. The FLPs so determined
are then invoked to calculate magnetic properties such as magnetization 〈M〉 and magnetic susceptibility χM of
spin polarized quark matter. Finally, we investigate the possibility of magnetic instability by studying the density
dependence of 〈M〉 and χM .
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I. INTRODUCTION

The study of strongly interacting matter has been an area of
contemporary research for quite some time now. Such studies
are usually made in the extreme condition of temperature
and/or density. The high temperature (T ) studies are more
relevant to the ultrarelativistic heavy ion collisions while
the investigations involving high chemical potential (µ) or
extreme case of cold matter are more appropriate to astro-
physics [1]. It should, however, be noted that efforts are being
directed recently to also study the properties of a very dense
system in the laboratory where matter with predominantly
large chemical potential might be formed [2]. We here restrict
ourselves to zero temperature and investigate some of the
properties of quark matter in presence of a weak magnetic
field.

It has been shown recently that the degenerate quark
matter can show para-ferro phase transition below a critical
density [3]. To examine this possibility, in Ref. [3], a
variational calculation was performed. Subsequently, various
other calculations were also performed in different formalisms
to investigate such a possibility with varied conclusions [4–11].

The issue of spontaneous phase transition in dense quark
system at zero temperature was also examined in [12] by
invoking relativistic Fermi liquid theory (RFLT). In particular,
this was accomplished by calculating the chemical potential
(µ) and energy density of degenerate quark matter in terms of
the Landau parameters (LPs). The RFLT was first developed
by Baym and Chin [13,14] to study the properties of high
density nuclear matter. However, the formalism developed in
Ref. [13] is valid for unpolarized matter and LPs calculated
there are spin averaged. Here, on the other hand, we deal with
polarized quark matter which requires evaluation of the LPs
with explicit spin dependencies.

Recently, in [15,16] the authors have studied the magnetic
properties of degenerate quark matter in presence of weak
uniform external magnetic field B. Similar investigation was
also made in Ref. [11] by evaluating the effective potential and
employing quark magnetic moment as an order parameter.
These calculations were, however, restricted to the case of
unpolarized matter. On the contrary, our concern here is the

magnetic properties of polarized quark system. Consequently,
we first determine various spin combination of LPs such as spin
symmetric (F+(−),sym

0,1 ) and spin anti-symmetric (F+(−),asym
0,1 )

parameters and express quantities such as magnetization and
magnetic susceptibility in terms of these parameters. It is
needless to mention that unlike [11,15,16], the expressions
for χM and 〈M〉, as presented here, depend on the spin
polarization parameter ξ = (n+

q − n−
q )/(n+

q + n−
q ), where n+

q

and n−
q correspond to densities of spin-up and spin-down

quarks, respectively.
It is well known that the calculations of LPs require evalu-

ation of the forward scattering amplitudes which are plagued
with infrared divergences arising out of the exchange of
massless gluons. Formally, such divergences can be removed
by using HDL corrected gluon propagator. This can also be
achieved by introducing screening mass for the gluons. Such
regularizations are necessary for the evaluation of individual
LPs. On the other hand, in various physical quantities like
the ones we calculate here, the LPs appear in particular
combinations where such divergences cancel at least to the
order with which we are presently concerned.

The plan of the article is as follows. In Sec. II we
derive the expressions of LPs for polarized quark matter.
In Sec. III, we calculate magnetic susceptibility in terms of
LPs with explicit spin dependencies both with bare and HDL
corrected gluon propagator. In Sec. IV we summarize and
conclude.

II. SYMMETRIC AND ANTI-SYMMETRIC LANDAU
PARAMETERS

In this section we calculate LPs for spin polarized quark
matter. We are dealing with quasiparticles whose spins are
all eigenstates of the spin along a given direction, viz. z. The
quasiparticle interaction can be written as the sum of two
parts, viz. spin symmetric (f sym

pp′ ) and anti-symmetric (f asym
pp′ )

parameters [14,16]:

f ss ′
pp′ = f

sym
pp′ + (s · s ′)f asym

pp′ . (1)
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Assuming that the spins are randomly oriented with respect
to the momentum, we take average over the angles θ1 and
θ2 corresponding to spins s and s ′. The angular averaged
interaction parameter is given by [12]1

f ss ′
pp′

∣∣
p=ps

f ,p′=ps′
f

=
∫

d�1

4π

∫
d�2

4π
f ss ′

pp′
∣∣
p=ps

f ,p′=ps′
f

. (2)

Here the spin may be either parallel (s = s ′) or antiparallel
(s = −s ′) [3,12]. Thus the scattering possibilities are denoted
by (+,+), (+,−), (−,−), etc. The interaction parameters can
now be redefined as

f ++
pp′ = f

sym
pp′ + f

asym
pp′ = f −−

pp′ ,
(3)

f +−
pp′ = f

sym
pp′ − f

asym
pp′ = f −+

pp′ .

Once these interaction parameters are known, the FLPs
can be determined by expanding f ss ′

pp′ into the Legendre
polynomial:

f ss ′
l = (2l + 1)

∫
d�

4π
Pl(cos θ )f ss ′

pp′ , (4)

where cos θ = p̂ · p̂′. We define symmetric and anti-
symmetric part of LPs f

s,sym(asym)
l what one does to dealing

with the isospins in nuclear matter [12,14]:

f
+(−),sym
l = 1

2 (f ++(−−)
l + f

+−(−+)
l ),

(5)
f

+(−),asym
l = 1

2 (f ++(−−)
l − f

+−(−+)
l ).

It should be noted here that, f +−
pp′ = f −+

pp′ .

The dimensionless LPs are defined as F
s,sym(asym)
l =

Ns(0)f s,sym(asym)
l [12], where Ns(0) is the density of states

at the Fermi surface, which can be written as

Ns(0) =
∫

d3p

(2π )3
δ(εps − µs)

= Ncp
s2

f

2π2

(
∂p

∂εps

)∣∣∣∣
p=ps

f

. (6)

Here, Nc is the color factor, εps and µs are the spin dependent
quasiparticle energy and chemical potential, respectively. It
is evident from Eq. (6) that for spin polarized matter, the
density of states is spin dependent. This, as we shall see,
makes the calculation cumbersome. In the above expression
(∂p/∂εps)|p=ps

f
is the inverse Fermi velocity (1/vs

f ), where vs
f

is given by [12,15]

vs
f = ps

f

µs
− Ncp

s2

f

2π2

f
s,sym
1

3
. (7)

1Denoted hereafter as f ss′
pp′ = f ss′

pp′ .

With the bare propagator, the angular averaged spin
dependent interaction parameter yields [12]

f ++
pp′

∣∣
p=p′=p+

f

= − g2

9ε+2
f p+2

f (1 − cos θ )

×
[

2m2
q − p+2

f (1 − cos θ ) + 2mqp
+2
f

3(ε+
f + mq)

]
, (8)

f +−
pp′

∣∣
p=p+

f ,p′=p−
f

= g2

9ε+
f ε−

f

{
1 −

[
mqp

+2
f

3(ε+
f + mq)

+ mqp
−2
f

3(ε−
f + mq)

]

× 1(
m2

q − ε+
f ε−

f + p+
f p−

f cos θ
)}

. (9)

Here, mq is the quark mass, p±
f = pf (1 ± ξ )1/3, ε±

f = (p±2

f +
m2

q)1/2, and pf is the Fermi momentum of the unpolarized
matter (ξ = 0). Similarly, f −−

pp′ can be obtained by replacing
p+

f with p−
f and ε+

f with ε−
f in Eq. (8). One can find

dimensionless LPs, F sym
0,1 and F

asym
0,1 (suppressing spin indices)

by considering the OGE interaction. But both of these
(F sym(asym)

0,1 ) exhibit infrared divergences because of the term
(1 − cos θ ) that appears in the denominator of the interaction
parameter [see Eq. (8)]. This divergence disappears if one uses
HDL corrected gluon propagator to evaluate the scattering
amplitudes [17].

To construct HDL corrected gluon propagator with explicit
spin dependence one needs to evaluate the expressions for
longitudinal (	L) and transverse (	T ) polarization which have
been derived in [9]. We borrow the results directly:

	L(k0, k) = g2

4π2

(
C2

0 − 1
) ∑

s=±
ps

f εs
f

×
[
−1 + C0

2vs
f

ln

(
C0 + vs

f

C0 − vs
f

)]
, (10)

	T (k0, k) = g2

16π2
C0

∑
s=±

ps2

f

[
2C0

vs
f

+
(

1 − C2
0

vs
f

2

)

× ln

(
C0 + vs

f

C0 − vs
f

)]
. (11)

Here, C0 = k0/|k|, is the dimensionless variable and v±
f =

p±
f /ε±

f . It might be noted here, that the expressions for 	L

and 	T look rather similar to what one obtains in the case
of unpolarized matter (ξ = 0) [18] with only a difference in
v±

f . In the static limit, i.e., C0 → 0, the spin dependent Debye
mass (mD) is given by

	L = m2
D = g2

4π2

∑
s=±

ps
f εs

f . (12)

It is to be mentioned here, that the screening mass of the gluon
is spin dependent and the transverse gluons are screened only
dynamically [15,16]. With these, the symmetric combination
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of dimensionless LPs are found to be

F
+,sym
0 = g2p+

f

144π2

{
1

ε+
f

[
12 − 12m3

q + 12m2
qε

+
f + 3mqm

2
D + 4p+2

f mq + 3m2
Dε+

f

p+2
f (mq + ε+

f )
ln

(
1 + 4p+2

f

m2
D

)]

+ 1

ε−
f

[
12 + 1

p+
f p−

f (mq + ε+
f )(mq + ε−

f )

{
m2

q

[
3m2

D − 2
(
p+2

f + p−2
f

)]
+mq

[
3m2

D(ε+
f + ε−

f ) − 2(ε+
f p−2

f + ε−
f p+2

f )
] + 3m2

Dε+
f ε−

f

}
ln

(
2m2

q − m2
D + 2p+

f p−
f − 2ε+

f ε−
f

2m2
q − m2

D − 2p+
f p−

f − 2ε+
f ε−

f

)]}
, (13)

F
+,sym
1 = g2p+

f

48π2

{
1

ε+
f

[
12m3

q + 12m2
qε

+
f + 3mqm

2
D + 4p+2

f mq + 3m2
Dε+

f

p+2
f (mq + ε+

f )

[
2 −

(
1 + m2

D

2p+2
f

)
ln

(
1 + 4p+2

f

m2
D

)]]

+ 1

ε−
f

[
m2

q

[
3m2

D − 2
(
p+2

f + p−2
f

)] + mq

[
3m2

D(ε+
f + ε−

f ) − 2
(
ε+
f p−2

f + ε−
f p+2

f

)] + 3m2
Dε+

f ε−
f

p+
f p−

f (mq + ε+
f )(mq + ε−

f )

]

×
[

2 −
(

2m2
q − m2

D − 2ε+
f ε−

f

2p+
f p−

f

)
ln

(
2m2

q − m2
D + 2p+

f p−
f − 2ε+

f ε−
f

2m2
q − m2

D − 2p+
f p−

f − 2ε+
f ε−

f

)]}
. (14)

In deriving Eqs. (13) and (14), we consider exchange of
longitudinal gluons only. In Eqs. (13) and (14), the term in
the first square bracket arises due to the scattering of like-
spin states (++), while the latter comes from the scattering
of unlike-spin states (+−). Similarly one may determine
other combination of LPs like F

−,sym
0,1 , F

+,asym
0,1 , F

−,asym
0,1 ,

etc. In Fig. 1, the density dependence of symmetric and
anti-symmetric combination of dimensionless LPs is shown.
Similar plots for the LPs in isospin asymmetric nuclear matter
can be found in [19]. There, however, the calculated LPs are
finite, as the nucleon-nucleon interactions involve exchanges
of massive mesons such as σ , ω, δ, and ρ, etc. It is interesting
to note that the results of isospin asymmetric nuclear matter for
the LPs are qualitatively same as those of dense quark system.

III. MAGNETIC SUSCEPTIBILITY

Now, we proceed to calculate the magnetic susceptibility
for which an uniform magnetic field B is applied along the
z axis. The magnetic susceptibility is defined as [15,16]

χM =
∑
f

∂〈M〉f
∂B

∣∣∣∣∣∣
B=0

, (15)

where 〈M〉f is the magnetization for each flavor. Here, the
magnetic field is considered to be significantly weak for which
the spinors remain unaffected and only modification enters
through the single particle energy. Here, we consider one flavor
quark matter and suppress the flavor indices.

In presence of constant magnetic field B, the magnetization
depends on the difference of the number densities δn

asym
p =

δnp,s=1 − δnp,s=−1, where

nps = [
1 + exp β

(
εps − µ − 1

2gD(p)µqsB
)]−1

. (16)

In the last equation, µq denotes the Dirac magnetic moment
and gD(p) is the gyromagnetic ratio. The magnetization is
given by [15]

〈M〉 = µq

2
Nc

∫
d3p

(2π )3
gD(p)δnasym

p . (17)

For constant magnetic field, the variation of the distribution
function yields [15,16]

δnps = δnps

δεps

[
−1

2
gD(p)µqsB + Nc

∑
s ′

∫
d3p

(2π )3
f ss ′

pp′δnp′s ′

]
(18)

0 0.5 1 1.5 2
p

f
 (fm

-1
)

-0.2

-0.1

0

0.1

0.2

F
0,

1+
,s

ym

ξ = 0
ξ = 1 F

0

+,sym

F
1

+,sym

(a)

0 0.5 1 1.5 2
p

f
 (fm

-1
)

-0.25

-0.2

-0.15

-0.1

-0.05

0

F
0,

1+
,a

sy
m

ξ = 0
ξ =1

F
1

+,asym

F
0

+,asym

(b)

FIG. 1. Dimensionless LPs as a function of
Fermi momentum for unpolarized and polar-
ized quark matter. Symmetric and anti-symmetric
combination of LPs are plotted in (a) and (b),
respectively.
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and δn
asym
p is therefore given by

δnasym
p = −1

2
gD(p)µqB

(
∂n+

p

∂ε+
p

+ ∂n−
p

∂ε−
p

)

+Nc

∂n+
p

∂ε+
p

(f ++
0 δn+ + f +−

0 δn−)

−Nc

∂n−
p

∂ε−
p

(f −+
0 δn+ + f −−

0 δn−). (19)

With the help of Eqs. (17) and (19) the average magnetization
becomes

〈M〉 =
1
4gD

2µ2
qB[N+(0) + N−(0)]

1 + [N+(0) + N−(0)]f asym
0

, (20)

where we have suppressed the spin indices for f
s,asym(sym)
l . The

expression of 〈M〉 may be compared with the one presented
in [15,16] to see the difference between the unpolarized
and polarized matter. Likewise, the magnetic susceptibility
is found to be

χM =
(

gDµq

2

)2 [N+(0) + N−(0)]

1 + [N+(0) + N−(0)]f asym
0

, (21)

where gD is the angular averaged gyromagnetic ratio
[15,16].

With the help of Eqs. (6) and (21) we express the magnetic
susceptibility in terms of LPs as

χM = χP

[
1 + Nc(p+

f µ+ + p−
f µ−)

2π2

(
f

asym
0 − 1

3
f

sym
1

)]−1

.

(22)

Here, χP = g2
Dµ2

qNc(p+
f µ+ + p−

f µ−)/(8π2) is the Pauli sus-
ceptibility [15,16]. For unpolarized matter ξ = 0, implying
p+

f = p−
f , µ+ = µ−, and N+(0) = N−(0). From Eq. (22) we

get the well-known result for magnetic susceptibility [15,16]

χM = χP

[
1 + Ncpf µ

π2

(
f

asym
0 − 1

3
f

sym
1

)]−1

. (23)

A. Susceptibility with bare propagator

We have already mentioned that the individual LPs are
infrared divergent when evaluated with the bare gluon prop-
agator. But the combination (f asym

0 − 1
3f

sym
1 ) is always finite

and turns out to be

f
asym
0 − 1

3
f

sym
1 = 1

8

[∫ +1

−1
d(cos θ )(1 − cos θ )(f ++

pp′ + f −−
pp′ )

−
∫ +1

−1
d(cos θ )(1 + cos θ )(f +−

pp′ + f −+
pp′ )

]
= I1 − I2. (24)

Using Eqs. (8), (9), and (24) we have

I1 = −g2

36

{
1

p+2
f ε+2

f

[
2m2

q − p+2
f + 2mqp

+2
f

3(ε+
f + mq)

]
+ [p+

f → p−
f , ε+

f → ε−
f ]

}
, (25)

I2 = g2

36ε+
f ε−

f

× 1

3p+2
f p−2

f (mq + ε+
f )(mq + ε−

f )

×
{

−2p+
f p−

f

[
p−

f ε+
f (mqp

−
f − 3mqp

+
f − 3p+

f ε−
f ) + m2

q

(
p+2

f − 3p+
f p−

f + p−2
f

)
+mqp

+
f ε−

f (p+
f − 3p−

f )
] + mq

[
ε+
f

(
m2

qp
−2
f − p+

f p−3
f − p+2

f ε−2
f − mqε

−
f

[
p+2

f + p−2
f

])
−p−2

f ε−
f ε+2

f + (
m2

q − p+
f p−

f

)(
ε−
f p+2

f + mq

[
p+2

f + p−2
f

])]
ln

(
m2

q + p+
f p−

f − ε+
f ε−

f

m2
q − p+

f p−
f − ε+

f ε−
f

)}
. (26)

To determine χM for various ξ , we insert Eq. (24)
in Eq. (22), where I1 and I2 are given by Eqs. (25)
and (26).

B. Susceptibility with HDL corrected propagator

In this section we consider the screening effects due to HDL
corrected propagator of the gauge field [17]. The scattering

amplitude can be written as [15]

Mps,p′s ′ = − 4g2

9 [T 00(Ps, P ′s ′)D00 + T ij (Ps, P ′s ′)Dij ].

(27)

In the Coulomb gauge, we have D00 = �l and Dij =
(δij − qiqj /q

2)�t , where q = p − p′. �l and �t denote the
longitudinal and transverse gluon propagators given by [20]

�l = 1

q2 + m2
D

, �t = 1

q2
0 − q2

. (28)
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FIG. 2. Density dependence of magnetic susceptibility. Screening
effects (solid line) are compare with the simple OGE case (dashed
line) for unpolarized quark matter.

For spin parallel (s = s ′) and antiparallel (s = −s ′) interac-
tion, �l and �t have the following form:

�l(s = s ′)|p=p′=p±
f

= 1

2p±2

f (1 − cos θ ) + m2
D

,

�l(s = −s ′)|p=p+
f ,p′=p−

f
(29)

= 1

p+2
f + p−2

f − 2p+
f p−

f (1 − cos θ ) + m2
D

,

and

�t (s = s ′)|p=p′=p±
f

= − 1

2p±2

f (1 − cos θ )
,

�t (s = −s ′)|p=p+
f ,p′=p−

f
= 1

2
(
m2

q − ε+
f ε−

f + p+
f p−

f cos θ
) .

(30)

The matrix element given by Eq. (27) can be calculated
easily with OGE. We find that [16]

T 00(Ps, P ′s ′) = Tr[γ 0ρ(P, s)γ 0ρ(P ′, s ′)]

= 1

4m2
q

[
2p0p

′
0 − P · P ′ + m2

q

+ (
m2

q − P · P ′)(2a0b0 − a · b)

+ 2a0p
′
0(P · b) − 2p0p

′
0(a · b)

+ 2p0b0(a · P ′) − (P · b)(P ′ · a)
]

(31)

and

T ij (Ps, P ′s ′)
= Tr[γ iρ(P, s)γ jρ(P ′, s ′)]

= 1

4m2
q

{
(1 − a · b)p̂ip′j + (

m2
q − P · P ′)âibj

+ (a · P ′)p̂ibj + (b · P )p̂′iaj + gij
[(

m2
q − P · P ′)

× (1 − a · b) − (P · b)(P ′ · a)
]}

, (32)

with a symbol âibj = aibj + biaj . Here, the spin vector aµ

and bµ are given by

a = s + p(p · s)

mq(εp + mq)
; a0 = p · s

mq

, (33)

b = s ′ + p′(p′ · s ′)
mq(εp′ + mq)

; b0 = p′ · s ′

mq

. (34)

To evaluate the spin symmetric and spin anti-symmetric
combination of LPs, we need to calculate the scattering
amplitudes both for spin nonflip (s = s ′) and spin flip (s =
−s ′) interactions. The traces relevant for the longitudinal gluon
exchange are given by

T ++
00 = 1

6m2
q(mq + ε+

f )2

[
12m4

q + 12m3
qε

+
f

+ 6mqε
+
f p+2

f (1 + cos θ ) + 6m2
qp

+2
f (2 + cos θ )

+p+4
f (2 + 3 cos θ )

]
, (35)

T +−
00 = p+2

f p−2
f

6m2
q(mq + ε+

f )(mq + ε−
f )

. (36)

Similarly, the coefficient of �t turns out to be[
Tij ×

(
δij − qiqj

q2

)]++

= − p+2
f

6m3
q(mq + ε+

f )2

[
6mqp

+2
f + 2p+2

f ε+
f

+ 2m2
qε

+
f (4 + 3 cos θ ) + m3

q(8 + 3 cos θ )
]
, (37)

[
Tij ×

(
δij − qiqj

q2

)]+−
= − 1

6m3
q(mq + ε+

f )(mq + ε−
f )

(
p+2

f + p−2
f − 2p+

f p−
f cos θ

)
× {−p+2

f

[
mq

(
p+2

f + p−2
f

) + p−2
f ε+

f + p+2
f ε−

f

][
2p−2

f + mq(mq + ε−
f )

]
+mq(mq + ε+

f )
[ − p−2

f

(
mq

[
p+2

f + p−2
f

] + p−2
f ε+

f + p+2
f ε−

f

)
+ 2

(
p+2

f − 3p+
f p−

f + p−2
f

)
(mq + ε−

f )
(
m2

q − ε+
f ε−

f

)]
+p+

f p−
f cos θ

[
2p−2

f

(
mq

[
p+2

f + p−2
f

] + p−2
f ε+

f + p+2
f ε−

f

)
+mq

(
2m2

q

[
2p+2

f − 3p+
f p−

f + 2p−2
f

] + p−2
f ε+2

f + p+2
f ε−2

f

+mqε
−
f

[
5p+2

f − 6p+
f p−

f + 3p−2
f

] + mqε
+
f

[
3p+2

f − 6p+
f p−

f + 5p−2
f

]
+ 3ε+

f ε−
f

[
p+2

f + p−2
f − 2p+

f p−
f cos θ

])]}
. (38)
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FIG. 3. Magnetic susceptibility vs Fermi momentum using
screened gluon mass for unpolarized and complete polarized quark
matter.

Using Eqs. (27)–(30) and (35)–(38) one can easily calculate
the required combination (f asym

0 − 1
3f

sym
1 ) to evaluate the

magnetic susceptibility. Inserting this particular combination
of f0 and f1 in Eq. (22) we get χM . To determine χM , we need
to evaluate first µ+ and µ−. This can be done by adopting the
procedure outlined in Ref. [12]. With these, we can estimate
χM numerically for the polarized and unpolarized matter at
various densities. The corresponding results are discussed
below.

In Fig. 2 we plot the magnetic susceptibility of cold
and dense unpolarized quark matter as a function of Fermi
momentum. It is observed that, upon inclusion of the screening
effects, the divergence move toward lower densities. This
is consistent with what one obtains for unpolarized matter
[15,16]. Such shifts toward lower density are expected, as we
know, that the screening effect weakens the Fock exchange
interaction (see Refs. [15,16]). Moreover, this divergence
is related to the magnetic phase transition of quark matter
which shows up when the square bracketed term in Eq. (22)
vanishes. As noted in [3] and also in [12], this density
approximately corresponds to the critical density for para-
ferro phase transition. For the numerical estimation, we take
αc = g2/4π = 2.2 and mq = 300 MeV [3,12,15,16].

In Fig. 3, the density dependence of magnetic susceptibility
both for unpolarized and polarized matter has been shown. We
see that the magnetic susceptibility diverges at some critical
density which increases with increasing ξ . It is apparent from
the figure that, if the critical density for para-ferro phase
transition becomes lower than the critical density for the
magnetic transition, the latter cannot take place. Thus, we
conclude, that the magnetic transition depends on the critical
density of para-ferro phase transition.

0.5 0.6 0.7 0.8
ξ

-3

-2

-1

0

1

2

3

〈M
〉 (

10
-2

3 )

n
q
 = 0.1 

n
q
 = 0.15 

n
q
 = 0.25 

B = 10
7
 G

FIG. 4. Variation of magnetization with ξ for a magnetic field
B = 107 G. Solid, dashed and dash-dotted lines represent 0.1 fm−3,
0.15 fm−3, and 0.25 fm−3, respectively.

In Fig. 4, we show ξ dependence of the magnetization for
various densities. Note that the divergences appear at higher
ξ for larger density. Here the magnetic dipole moments of the
quarks are taken to be µu = 1.852µN , µd = −0.972µN , and
µs = −0.581µN , where the nuclear magneton µN = 3.152 ×
10−14 MeV/Tesla [21].

IV. SUMMARY AND CONCLUSION

In this work, we calculate dimensionless LPs F
sym
0,1 and

F
asym
0,1 for dense quark matter. These are then used to calculate

magnetic susceptibility and magnetization of degenerate quark
matter and the results are found to be consistent with previous
calculations in the appropriate limits. The qualitative behavior
of the FLPs as a function of density is also found to
be very similar to those of nuclear matter having isospin
asymmetry.

We observe that χM is free of all the infrared divergences
even in the massless gluon limit. It is, however, numerically
sensitive to the Debye mass. It is shown that the critical density
for the magnetic transition in polarized matter is higher than
that of the unpolarized one. The divergence and sign change
of the magnetic susceptibility signal the magnetic instability
of the ferromagnetic phase.
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