
PHYSICAL REVIEW C 81, 054903 (2010)

Kaon and pion femtoscopy at the highest energies available at the BNL Relativistic Heavy Ion
Collider (RHIC) in a hydrokinetic model
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The hydrokinetic approach that incorporates hydrodynamic expansion of the systems formed in A + A

collisions and their dynamical decoupling is applied to restore the initial conditions and space-time picture
of the matter evolution in central Au + Au collisions at the top Relativistic Heavy Ion Collider energy. The
analysis is based on the detailed reproduction of the pion and kaon momentum spectra and femtoscopic data in
whole interval of the transverse momenta studied by both the STAR and the PHENIX collaborations. The fitting
procedure utilizes the two parameters: the maximal energy density at supposed thermalization time 1 fm/c and
the strength of the prethermal flows developed to this time. The quark-gluon plasma and hadronic gas is supposed
to be in complete local equilibrium above the chemical freeze-out temperature Tch = 165 MeV with the equation
of states (EoS) at high temperatures as in the lattice QCD. Below Tch the EoS in the expanding and gradually
decoupling fluid depends on the composition of the hadron-resonance gas at each space-time point and accounts
for decays of resonances into the nonequilibrated medium. A good description of the pion and kaon transverse
momentum spectra and interferometry radii is reached at both used initial energy density profiles motivated by
the Glauber and color glass condensate models, however, at different initial energy densities. The discussion
as for the approximate pion and kaon mT scaling for the interferometry radii is based on a comparison of the
emission functions for these particles.

DOI: 10.1103/PhysRevC.81.054903 PACS number(s): 25.75.Cj, 25.75.Ld

I. INTRODUCTION

At present the majority of the dynamical models of A + A

collisions which describe the soft-physics phenomena are
based on the Landau’s idea [1] of space-time evolution of
the thermal matter formed in the collisions. This approach
implies at once the specific space-time scales in the problem
of nuclear scattering such as a time of expansion, a volume
occupied by the fireball, hydrodynamic lengths, etc. The only
direct tool for measuring at these femtoscopic scales is the
intensity interferometry method, now often called femtoscopy.
The measured scales—the interferometry, or Hanbury Brown–
Twiss (HBT) radii—are associated just with the homogeneity
lengths in the rapidly expanding system created in heavy-ion
collisions [2]. So comparing experimental data of the space-
time scales characterizing such a dynamical model of the
system evolution and particle production should be one of the
first tasks in justifying the model and discriminating between
different approaches. Nevertheless, such a comparison was
often ignored because almost all dynamic models, which
pretend to be complete and therefore describe the evolution
of the matter as well as its gradual decay, for example, the
hybrid [hydrodynamic plus ultrarelativistic quantum molecu-
lar dynamics (UrQMD)] models [3], failed to reproduce pion
out-, side-, and long-interferometry radii simultaneously with
the hadronic spectra at the Relativistic Heavy Ion Collider
(RHIC). Until now it was possible to reach only when some
artificial parametrization of freeze-out processes, for example,
a sudden freeze-out at a fairly large temperature close to the
hadronization one [4], is utilized.

In Refs. [5–7] the hydrokinetic model (HKM) for A + A

collisions has been developed. It combines the advantages
of the hydrodynamic approximation, where possible phase

transitions are encoded in the corresponding equation of
state (EoS), and the microscopic approach, accounting for
a nonequilibrated process of the spectra formation owing to
gradual particle liberation. The dynamical decoupling is de-
scribed by the particle-escape probabilities in inhomogeneous
hydrodynamically expanding systems in a way consistent with
the kinetic equations in the relaxation-time approximation
for emission functions [5]. The method can be applied to
match correctly hydrodynamics and UrQMD, using as the
input the locally nonequilibrated distribution functions from
the HKM. Then one can match these models at spacelike hy-
persurfaces related to the late stage of the evolution, escaping
thus the inconsistencies connected with an inapplicability of
hadron cascade models at very high densities and with the
causality [8].

The HKM method also allows one to take into account
a back reaction of particle emission on the hydrodynamic
evolution that corresponds an account of the viscous effects at
the hadronic stage of the evolution [6]. It is worth noting that
the ratio of the shear viscosity to the total entropy obtained
in HKM model is less than 1/2 in the space-time region of
maximal hadronic emission [9]. An analysis of the quark-gluon
plasma (QGP) evolution within viscous hydrodynamics is
also a topical problem because the shear viscosity brings an
important effect, an increase of transverse flows during the
evolution [10]. However, until the viscosity of the QGP as
the function of the temperature becomes clear, this effect is
simpler to take into account in the phenomenological way, as
is proposed in what follows.

In this article we apply the HKM [5,6] to an analysis of
the femtoscopic measurements at RHIC for central Au + Au
collisions at the top energy

√
s = 200 A GeV. Namely, we
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analyze pion and kaon transverse momentum spectra and
the mT behavior of the pion and kaon interferometry radii
to clarify, in particular, how these observables depend on
the initial conditions: Glauber- and color glass condensate
(CGC)-like. The basic hydrokinetic code, proposed in Ref. [6],
is modified now to include decays of resonances into the
expanding hadronic chemically nonequilibrated system and,
based on the resulting composition of the hadron-resonance
gas at each space-time point, to calculate the EoS in the vicinity
of this point. The obtained local EoS allows one to determine
the further evolution of the considered fluid elements. In the
zone of chemical equilibrium, above the chemical freeze-out
temperature, the EoS is taken in accordance with the lattice
QCD results.

The article is organized as Follows. Section II is devoted to
the initial conditions (IC) for thermal evolution of the matter
in Au + Au collisions at RHIC. In Sec. III we discuss the EoS
of the matter in equilibrated and chemically nonequilibrated
zones. The kinetics of the system in the nonequilibrium
zone related to the system’s evolution and decoupling is
described in Sec. IV. The underlying hydrodynamic model
for both chemically equilibrated and nonequilibrated domains
is presented in Sec. V. Section VI is devoted to the results
obtained and discussions. The conclusions and outlook are
presented in Sec. VII.

II. INITIAL CONDITIONS FOR HYDROEVOLUTION
OF THERMAL MATTER

Our results are all related to the central rapidity slice
where we use the boost-invariant Bjorken-like initial condition
in the longitudinal direction. We consider the proper time
of thermalization of quark-gluon matter as the minimal one
discussed in the literature, τ0 = 1 fm/c [11].

A. Prethermal flows

If one starts the hydrodynamic evolution at the “conven-
tional time” τi =1 fm/c without transverse flow—because no
pressure is established before thermalization—the resulting
radial flow will not be developed enough to describe si-
multaneously the absolute values of pion, kaon, and proton
spectra, as well as the anisotropy of elliptic flow in noncental
collisions. To describe the observables, one needs to start the
hydroevolution at very small initial time, τ ∼ 0.5 fm/c [12],
where it is difficult to expect the thermalization. This contro-
versial situation is overcome owing to the results of Ref. [13],
where it is shown that the initial transverse flows in thermal
matter, as well as their anisotropy leading to asymmetry of
the transverse momentum spectra in noncentral collisions,
could be developed at the prethermal, either classical field
(Glasma) [14], string [15], or partonic stages, with even more
efficiency than in the case of very early hydrodynamics. So,
the hypotheses of early thermalization at times less than
1 fm/c is not necessary: The radial and elliptic flows develop
regardless of whether a pressure is already established. The
general reason for them is an essential finiteness of the
system in the transverse direction. Then the flows of particle
number or energy directed outward from the system cannot

be compensated by the inward-directed (from periphery to
the center) flows. This difference results in nonzero net flows
no matter how the collective velocity is defined, according
to Ekkart or to Landau-Lifshitz. Further development and
exploitation of these results is presented in Refs. [16–18].

The initial transverse rapidity profile is supposed to be linear
in radius rT :

yT = α
rT

RT

, where RT =
√〈

r2
T

〉
, (1)

where α is the second fitting parameter. Note that the fitting
parameter α should include also a positive correction for
underestimated resulting transverse flow because in this work
we did not account in a direct way for the viscosity effects [10]
at the QGP stage or the hadronic stage. In the formalism
of HKM [6], the viscosity effects at the hadronic stage are
incorporated in the mechanisms of the back reaction of particle
emission on hydrodynamic evolution, which we ignore in
current calculations. Because the corrections to transverse
flows, which depend on unknown viscosity coefficients, are
unknown, we use fitting parameter α to describe the “additional
unknown portions” of flows caused by prethermal flow
development and the viscosity effects in QGP.

B. Glauber-like initial transverse profile

A simple Glauber model initialization assumes that the
initial energy density in the transverse plane is proportional
to the participant nucleon density [19],

ε(b, xT ) = ε0
ρ(b, xT )

ρ0
, (2)

with ρ0 ≡ ρ(0, 0) and

ρ(b, xT ) = [T (xT + b/2)S(xT − b/2)

+ T (xT − b/2)S(xT + b/2)],
(3)

S(xT ) =
{

1 −
[

1 − σNN

T (xT )

A

]A
}

,

where A is atomic number, equal to 197 for Au + Au
collisions, and σNN = 51 mb (=5.1 fm2) is the nucleon-
nucleon cross section at

√
sNN = 200 A GeV. The impact

parameter b = (b, 0) is equal to zero, b = 0, in the considered
case of central collision. The parameter ε0 ≡ ε(b = 0, xT = 0)
is the maximal energy density at the initial moment of
thermalization. The thickness T (xT ) is expressed through the
Woods-Saxon distribution profile:

T (xT ) =
∫ ∞

−∞
FWS(x) dxL, (4)

where

FWS(x) = a

exp
[(√

x2
L + x2

T − RA

)/
δ
]+ 1

. (5)

Here we use that RA = 1.12A1/3–0.86A−1/3 ≈ 6.37 fm, δ =
0.54 fm. Constant a is obtained from the normalization
condition: ∫

T (xT ) d2xT = A. (6)
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One can think that transversal Glauber-like ε profile has
been formed to some initial time τ0 ≈ 0.1–0.3 fm/c (see
later in this article) when the system is not thermal yet.
However, the form of the profile is, practically, not modified
to supposed thermalization time τ0 ∼ 1 fm/c because the
transverse velocities reached up to this time are relatively
small. At the same time, the absolute values of energy density
can change significantly because of the strong longitudinal
expansion. We use the maximal energy density ε0 at time
τi = 1 fm/c as the second fitting parameter.

C. Initial conditions motivated by the color glass
condensate model

Within CGC effective field theory, some important physical
properties of the field are defined by the parameter �s = g2µ,
where g2 = 4παs and µ2 is a dimensionless parameter, which
is the variance of the Gaussian weight over the color charges
ρ of partons. The value of �s0 is approximately equal to the
saturation scale value, Qs , and for the RHIC energies one
can use �s0 ≈ Qs ≈ 2 GeV2 [20]. According to the results of
Refs. [21,22], (proper) time τ0 ≈ 3/�s is an appropriate scale
controlling the formation of gluons with a physically well-
defined energy. At later times the dynamics of the classical
Yang-Mills fields produced in nucleus-nucleus collisions can
be linearized and approximated by that of a system of weakly
coupled harmonic oscillators. Then one can compute the
field amplitudes squared in momentum space and find the
corresponding distribution for the gluon number [22,23] for
a cylindrically homogeneous transverse profile. It has the
following form at pT < 1.5�s and η = 1

2 ln t+xL

t−xL
� 0:

dN

d2pT d2xT dη
≡ f (Teff)

= a1

g2

[
exp
(√

p2
T + m2

eff

/
Teff
)− 1

]−1
, (7)

where meff = a2�s0, Teff = a3�s ; a2 = 0.0358, a3 = 0.465.
The constant a1/g

2 will be absorbed into factor ε0, which is
our fitting parameter.

The dependence of the distribution (7) on transverse
coordinates xT is constructed as follows [22]:

�2
s (xT ) = �2

s0
ρ(b, xT )

ρ0
, (8)

where the participant density at a particular position in the
transverse plane is defined by Eq. (3).

To define the initial energy density profile, we need the
partonic phase-space distribution f 0(x, p) = dN/d3xd3p.
Note that it is associated with the hypersurfaces t = const. To
express the phase-space density through the values dN

d2xT d2pdη

defined at
√
t2 − x2

L=τ0, one should take into account that the
density of partons with momentum p crossing element d3σ (x)
of this hypersurface is

p0 dN

d3p

∣∣∣∣
dσ (x)

= pµdσµ(x)f 0(x, p)

= f0(x, p)τ0pT cosh θd2xT dη, (9)

where θ = y − η and y is the rapidity of partons (in momentum
space). Therefore,

f0(x, p) = 1

τ0mT cosh θ

dN

d2xT d2pT dηdy
. (10)

One can formally get the d6N distribution from Eq. (7) by
multiplying it by a δ function:

dN

d2pT d2xT dηdy
= f (Teff)δ(y − η). (11)

Such a phase-space distribution, corresponding the CGC
asymptotic results [24], is widely used for a description of
the initial state in A + A collisions [25]. However, a presence
of the δ function in the phase-space density contradicts
evidently the basic principle of the quantum mechanics.
Indeed, the classical phase-space density has to follow from the
quantum mechanical one in some limit. The Wigner function
fW(x, p) [26], which is the quantum mechanical analog of the
classical phase-space density f (x, p), satisfies the restriction∫
f 2

W(x, p)d3pd3x � (2πh̄)−3 (see, for example, Ref. [27];
note that the equality takes place for a pure state only);
here the normalization condition

∫
fW(x, p)d3pd3x = 1 is

supposed. It evidently excludes utilization of the δ function
as factor in the structure of the Wigner function. Therefore,
to escape contradiction with quantum mechanics, an another
prescription, instead of utilization of a δ function, should
be used for the longitudinal part of distribution f (x, p); it
can be, for example, the boost-invariant prescriptions used in
Ref. [17]. Following this recept, the smearing of δ function at
hypersurface τ0 in Eq. (11) is as follows:

dN

d2pT d2xT dηdy
= f

[
Teff

cosh (η − y)

]
. (12)

In this way, we fix the phase-space density (10). This may
correspond to quasithermal averaged partonic distribution,
which can be reached at moment τ0 owing to quantum effects
(uncertainly principle), different kinds of turbulences, and the
Schwinger-like mechanism of pair production in the pulse of a
strong color field. It does not mean that the true thermalization
that should be supported by a permanent mechanism of
partonic interactions is reached at τ0 ≈ 3/�s ≈ 3 fm/c.

As a result, we use the following form of boost-invariant
phase-space distribution for gluons at the initial hypersurface
τ0:

f0 = g−2 a1(τ0mT cosh θ )−1

exp
[√

m2
eff(xT ) + p2

T cosh θ
/
Teff(xT )

]− 1
, (13)

where θ = η − y, xT = (X, Y ) = (xT cos ϕ, xT sin ϕ), and we
consider gluons as massless particles, mT = pT . Such a distri-
bution depends on the effective mass meff(xT ) = a2�s(xT ) and
the temperature Teff(xT ) = a3�s(xT ) [numerical values for a2

and a3 are the same as in Eq. (7)], which, in accordance with
Ref. [22], are determined by the local scale �s(xT ) (8).

The components of the energy-momentum tensor in the
pseudo-Cartesian coordinates reads

T µν(x) =
∫

pµpνf (x, p)pT dpT dydφ, (14)
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where the Lorentz-invariant integration measure d3p/p0 in the
Cartesian variables is already rewritten in Björken variables as
pT dpT dydφ.

We numerically calculate the components of the energy-
momentum tensor with the distribution function, following
from Eq. (13), at η = 0.

Note that, at τ = τ0, the energy-momentum tensor takes the
form

T
µν

0 (xT , xL = 0) = a1

g2τ0
�3

s (xT )tµν, (15)

where tµν are the constant coefficients fixed by the constants
a2 and a3. Therefore, the energy profile in transverse plane
at τ0 in central collisions can be presented in the form [see
Eq. (8)]

ε(xT ) = ε0
ρ3/2(0, xT )

ρ
3/2
0

, (16)

where the number of participants is defined by Eq. (3). For
the same reason as for the Glauber-like IC, we use the form
of this profile to build the IC for hydrokinetic evolution at the
thermalization time τi = 1 fm/c. The maximal energy density
ε0 at (proper) time τi is the fitting parameter as in the case of
the Glauber IC.

III. THE THERMAL MATTER IN A + A COLLISION
AND EQUATION OF STATE

Here we describe the matter properties and its ther-
modynamic characteristics, for example, EoS, which are
necessary components of the HKM. We suppose that soon
after thermalization the matter created in A + A collisions at
RHIC energies is in the QGP state. Also at time τi , there is a
peripheral region with relatively small initial energy densities:
ε(r) < 0.5 GeV/fm3. This part of the matter (“corona”) does
not transform into QGP and has no chance of being involved
in thermalization process [28]. By itself, the corona gives
no essential contribution to the hadron spectra [28]. One
should consider it separately from the thermal bulk of the
matter and should not include in hydrodynamic evolution.
Therefore, we cut the initial Glauber or CGC-like profiles at
ε(r) � 0.5 GeV/fm3 when we consider IC for hydrodynamic
evolution of the system.

During the system evolution the QGP is cooling and finally
transforms into a hadron phase, most probably, according
to the crossover scenario. Such a transformation may occur
in the 170–190 MeV temperature interval. At temperature
T = Tch ≈ 165 MeV, the chemical freeze-out happens, as
seen in an analysis of the particle number ratios [29,30].
The conception of the chemical freeze-out means that at the
temperatures T � Tch the bulk of the expanding matter is in
the local thermal and chemical equilibrium, while at T < Tch

the chemical composition becomes in some sense frozen:
one can neglect the majority of inelastic reactions except
for decays of resonances and recombination processes. The
hadronic matter is not in chemical equilibrium in the lat-
ter thermodynamic region. Moreover, the hadronic medium
gradually emits particles in this zone, thus loosing also the

local thermal equilibrium. Therefore, one should consider in
different ways the matter evolution in the two four-dimensional
(4D) space-time zones separated by the 3D hypersurface
corresponding to the isotherm T = Tch ≈ 165 MeV. Let us
describe the thermodynamic properties of matter in both of
these regions.

A. The EoS in the equilibrated space-time domain

At high temperatures corresponding to the QGP phase
and crossover transition to hadron phase, we use a realistic
EoS [31] adjusted to the lattice QCD results for zero barionic
chemical potential so that it is matched with an ideal chem-
ically equilibrated multicomponent hadron resonance gas at
Tc = 175 MeV. To take into account a conservation of the net
baryon number, electric charge, and strangeness in the QGP
phase, one has first to make corrections to thermodynamic
quantities for nonzero chemical potentials. As it is proposed
in Ref. [32], a modification of the EoS can be evaluated by
using of the Taylor series expansion in terms of the light and
strange quark chemical potentials, or analogously in baryon
and strange hadronic chemical potentials:

p(T ,µB,µS)

T 4
= p(T , 0, 0)

T 4
+ 1

2

χB

T 2

(µB

T

)2

+ 1

2

χS

T 2

(µS

T

)2
+ χBS

T 2

µB

T

µS

T
. (17)

The expansion coefficients χB and χS are, respectively,
the baryon number and strangeness susceptibilities which
are related to thermal fluctuations of baryon number and
strangeness in a thermal medium at zero chemical potentials.

To obtain the EoS in the equilibrium zone we use the
numerical results for χB and χS as a function of the temperature
given in Ref. [32]. The values for the ratios µq/T in (17) during
the system evolution can be determined approximately. If at
some hypersurface corresponding to an isotherm, like at the
chemical freeze-out hypersurface, the chemical potentials are
uniform and the following ratios remain constant:

µq

T
= constq, where q = B, S,E

during the chemically equilibrated isoentropic evolution of
the Boltzmann massless gas. In our approximation we use
these constraints and find the corresponding constants from the
chemical potentials obtained together with Tch from an analysis
of the particle-number ratios. In concrete calculations we use
the chemical freeze-out temperature Tch = 165 MeV, corre-
sponding chemical potentials µB = 29 MeV, µS = 7 MeV,
and µE = −1 MeV, and the strangeness suppression factor
γS = 0.935, which are dictated by 200 A GeV RHIC particle-
number ratio analysis done in the statistical model [29,30].

B. The EoS in the chemically nonequilibrated domain

At the chemical freeze-out temperature Tch the “lattice” EoS
taken from [31] and corrected for nonzero chemical potentials
is matched with good accuracy with an ideal Boltzmann
hadronic resonance gas, which includes N = 359 hadron states
made of u, d, and s quarks with masses up to 2.6 GeV.
Essentially, we use the same particle set in the FASTMC
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event generator [33]. Technically, in the numerical code, we
input the corresponding N functions—the densities ni of
each hadron i and the equations for ni already at the very
beginning of the system evolution; however, these densities
are meaningless in the QGP phase and their evaluation does
not influence the system evolution in the equilibrated zone.
These functions are brought into play at T < Tch. If this
thermodynamic region would correspond to the complete
conservation of the particle numbers, then, in addition to the
energy-momentum conservation, one would account for the
conservation equations for particle number flows in the form

∂µ(niu
µ) = 0, i = 1 · · · N. (18)

In our problem, however, during the system evolution in
the nonequilibrated zone T < Tch, the resonance decays have
to be taken into account. The decay law in a homogeneous
medium with T � mi (mi is the resonances mass) implies a
summing up of a decrease of the unstable ith particle number
owing to decays and an increase because of decays of heavier
j th resonance into the ith particle:

dNi

dt
= −�iNi +

∑
j

bij�jNj , (19)

where �i is the total width of resonance i, bij = BijMij

denotes the average number of ith particles coming from
an arbitrary decay of j th resonance, Bij = �ij /�j,tot is the
branching ratio, and Mij is the number of ith particles produced
in j → i decay channel. The set of N equations (19), solved
together, takes into account all possible cascade decays i →
j → k → · · · . This also conserves net charges—for example,
baryon, electric charge, and strangeness—because the charges
are conserved in resonance decay process. If one relates
Eq. (19) to the fluid element of some volume �V moving
with four-velocity uµ, then a covariant relativistic extension of
the decay law for a hydrodynamic medium leads to Eq. (18),

∂µ[ni(x)uµ(x)] = −�ini(x) +
∑

j

bij�jnj (x), (20)

when one neglects a thermal motion of the resonance j ,
which can be justified because post (chemical) freeze-out
temperatures are much less than the mass of the lightest known
resonance. Also, Eq. (20) for the hydrodynamic evolution
is written under supposition of an instant thermalization of
the decay products, which is consistent with the ideal fluid
approximation (mean free path is zero). In the kinetic part
of the HKM we consider the next approximation when the
nonequilibrium character of the distribution functions and
the kinetics of resonance decays are taken into account. We
also can approximately account for a recombination in the
processes of resonance decays into expanding medium just by
utilizing the effective decay width �i,eff = γ�i in Eq. (20).
We use γ = 0.75 [34] for the resonances containing u and
d quarks supposing thus that about 30% of such resonances
are recombining during the evolution.

Equation (20), together with the hydrodynamic equations
and the EoS, should give one the energy density and compo-
sition of the gas in each space-time point. To find the EoS
p = p(ε, {ni}) for the mixture of hadron gases, we start with

the expressions for energy density and particle density for the
ith component of multicomponent Boltzmann gas:

εi = gi

2π2
m2

i T [3T K2(mi/T ) + mK1(mi/T )] exp(µi/T ),
(21)

ni = gi

2π2
m2

i T K2(mi/T ) exp(µi/T ).

Then, the equation for the temperature is

ε = 3nT +
∑

i

nimi

K1(mi/T )

K2(mi/T )
, (22)

where n =∑i ni . Having solved this equation numerically
for given ε and {ni}, we get the temperature and then find
the pressure using a simple relation for multicomponent
Boltzmann gas:

p = nT . (23)

Equations (22) and (23) define p = p(ε, {ni}).
Thus, we follow the evolution of all N densities of hadron

species in hydrocalculation and compute the EoS dynamically
for each chemical composition of N sorts of hadrons in every
hydrodynamic cell in the system during the evolution. Using
this method, we do not limit ourselves to chemically frozen or
equilibrated evolution, keeping nevertheless a thermodynami-
cally consistent scheme.

As was mentioned earlier, we use the Boltzmann approxi-
mation in the EoS calculation to decrease computational time.
However, for emission function and spectra calculation we
use quantum Bose-Einstein/Fermi-Dirac distribution functions
with chemical potentials calculated to give the same particle
densities as in the Boltzmann case. We checked that the
measure of relative divergence in the energy density if one uses
the quantum distribution functions instead of the Boltzmann
one is not bigger than 3% in the thermodynamic region, which
actually contributes to the formation of hadronic spectra.

IV. KINETICS IN THE NONEQUILIBRIUM
HADRONIC ZONE

To describe the nonequilibrium evolution and decay of a
hadronic system, we start from the Boltzmann equations for
the mixture of hadrons, most of which have finite lifetimes and
decay widths compatible with particle masses. The set of such
equations for i components of the hadron resonance gas, which
account for the only binary interactions (elastic scattering) and
resonance decays, is

p
µ

i

p0
i

∂fi(x, p)

∂xµ

= Gscatt
i − Lscatt

i (x, p) + G
decay
i (x, p) − L

decay
i (x, p)

≡ Gi(x, p) − Li(x, p). (24)

Here we ignore the processes of resonance recombination,
which is simpler to account for phenomenologically (see the
previous section). The term gain (G) describes an income of
the particles into phase-space point (x, p) owing to scatters
and resonance decays. The term loss (L) is related to a
decrease of particles in the vicinity of the phase space point
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(x, p) owing to rescattering and decays of resonances. The
loss term is proportional to the particle number density at
point x, so Lscatt

i (x, p) = fiRi, L
decay
i (x, p) = fiDi , where

R is the scattering rate and D is the decay rate. If one
considers the equations for stable or quasistable particles, then
L

decay
i (x, p) = 0 (Di ≡ 0).

The method making it possible to find the emission
function of the hadrons based on the Boltzmann equations
in the (generalized) relaxation time approximation was pro-
posed in Refs. [5,6]. Following to this method we put
Ji(x, p) ≈ Ri,l.eq.(x, p) and Gi ≈ Ri,l.eq.(x, p)fi,l.eq.(x, p) +
G

decay
i (x, p). The quantity R(x, p) = τ−1

rel (x, p) is the inverse
relaxation time or collision rate in the global reference frame.
Then,

pµ

p0
∂µfi(x, p) = [f l.eq.

i (x, p) − fi(x, p)
]
Ri(x, p)

+G
decay
i (x, p) − L

decay
i (x, p). (25)

The explicit form of the G
decay
i (x, p) term will be derived

later. In the first approximation to hydrokinetic evolution,
the parameters of the local equilibrium distribution function
fi,l.eq.(x, p), for example, the temperature T (x) and chemical
potentials µi(x) are determined by the hydrodynamic evolu-
tion. The details of hydrodynamic approach used in the model
are described in the next section.

A. Emission functions in hyperbolic coordinates
and spectra formation

All our results are related to the very central rapidity
interval, y ≈ 0, and we will use the boost-invariant approach
to describe strong longitudinal matter expansion observed at
RHIC. For such an approach the hyperbolic coordinates in
(t, xL) directions are more suitable than the Cartesian ones.
Then the kinetic equations take the form

1

mT cosh y

(
mT cosh θ

∂

∂τ
− mT sinh θ

τ

∂

∂η
+ 	pT

∂

∂	rT

)
× fi(τ, θ, rT , pT )

= [f l.eq.

i (τ, θ, rT , pT ) − fi(τ, θ, rT , pT )
]
Ri(τ, θ, rT , pT )

+G
decay
i (τ, θ, rT , pT ), (26)

where τ =
√
t2 − x2

L is a proper time, mT =
√
m2 + p2

T is a
transverse mass, θ = η − y, η is a space-time rapidity, defined
before Eq. (7), and y is a particle rapidity.

The formal solutions of Eq. (26) correspond to the nonequi-
librium distribution functions in expanding and decaying a
multihadronic system:

fi(τ, θ, rT , pT ) = f
l.eq.

i

[
τ0, θ

(τ0)(τ ), r(τ0)
T (τ ), pT

]
× exp

{
−
∫ τ

τ0

R̃i

[
s, θ (s)(τ ), r(s)

T (τ ), pT

]
ds

}

+
∫ τ

τ0

dλ
{
f

l.eq.

i

[
λ, θ (λ)(τ ), r(λ)

T (τ ), pT

]
R̃i

× [λ, θ (λ)(τ ), r(λ)
T (τ ), pT

]

+ G̃
decay
i

[
λ, θ (λ)(τ ), r(λ)

T (τ ), pT

]}
× exp

{
−
∫ τ

λ

R̃i

[
s, θ (s)(τ ), r(s)

T (τ ), pT

]
ds

}
,

(27)

where R̃i(λ, θ, rT , pT ) = cosh y

cosh θ
Ri(λ, θ, rT , pT ) and G̃

decay
i

(λ, θ, rT , pT ) = cosh y

cosh θ
G

decay
i (λ, θ, rT , pT ).

Here we use the notation⎧⎨
⎩

sinh θ (τ0)(τ ) = τ
τ0

sinh θ

r(τ0)
T (τ ) = rT − pT

mT

(
τ cosh θ −

√
τ 2

0 + τ 2 sinh2 θ
)
.

(28)

The invariant value is p0Ri(x, p) = p∗0R∗
i (x, p), where

the asterisks ∗ denote a value in the local rest frame of the fluid
element at point x, so

R̃i(x, p) = cosh y

cosh θ
Ri(x, p) = cosh y

cosh θ

pµuµ

p0
R∗

i (p, T )

= pµuµ

mT cosh θ
R∗

i (p, T ). (29)

To connect the formal solution (27) with observables, for
example, the particle spectrum, we use the equality

p0 d3n

d3p
= d2n

2πpT dpT dy
=
∫

σout

dσµpµf (x, p), (30)

where σout is a “distant” hypersurface of large τ = const, where
all the interactions among hadrons are ceased.

In what follows we use the variable substitution in the first
term of Eq. (27) describing the “initial emission,”⎧⎨
⎩

sinh θ = τ0
τ

sinh θ ′

rT = r′
T + pT

mT

(
τ cosh θ −

√
τ 2

0 + τ 2 sinh2 θ
)
,

(31)

and the substitution,{
sinh θ = λ

τ
sinh θ ′

rT = r′
T + pT

mT

(
τ cosh θ −

√
λ2 + τ 2 sinh2 θ

)
,

(32)

in the second term of Eq. (27) related to the “four-volume
emission.” After transformation to new variables {τ, θ ′, 	r ′},
we arrive with the result∫

σout

dσµpµf (x, p)

=
∫

σ0

dσ
µ

0 pµf
l.eq.

i (τ0, θ
′, r′

T , p)

× exp

{
−
∫ ∞

τ0

R̃i

[
s, θ (s)(τ0), r(s)

T (τ0), pT

]
ds

}

+
∫ τ

τ0

dλ

∫
σ (λ)

dσµ(λ)pµ
[
f

l.eq.

i (λ, θ ′, r′
T , pT )R̃i

× (λ, θ ′, r′
T , pT ) + G̃

decay
i (λ, θ ′, r′

T , pT )
]

× exp

{
−
∫ ∞

λ

R̃i

[
s, θ (s)(λ), r(s)

T (λ), pT

]
ds

}

= p0 d3N

d3p
, (33)
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where σ (λ) is τ = λ = const hypersurface, so dσµ(λ)pµ =
λmT cosh θ ′dθ ′d2	r ′

T . The exponential values in these expres-
sions are the escape probabilities

P(τ, rT , θ, pT ) = exp

{
−
∫ ∞

τ

R̃i

[
s, θ (s)(τ ), r (s)

T (τ ), pT

]
ds

}
(34)

for particles with momentum p at space-time point (τ, rT , η =
θ + y) (in hyperbolic coordinates) to become free without any
collision [5,6].

In the preceding expression we can separate the four-
volume emission function

Si(λ, θ, rT , pT ) = [f l.eq.

i (λ, θ, rT , p)R̃i(λ, θ, rT , p)

+ G̃
decay
i (λ, θ, rT , pT )

]
P(λ, rT , θ, pT )

(35)

and the initial emission:

Si,0(θ, rT , pT ) = f
l.eq.

i (τ0, θ, rT , pT )P(τ0, rT , θ, pT ). (36)

These expressions demonstrate obviously that the particle
emission is formed by the particles that undergo their last
interaction or are already free initially. These expressions
for the hadron emission function are the basic functions for
calculations of the single- and multiparticle spectra [5]. To
evaluate these quantities for observed (quasi-) stable particles,
one needs to find the term gain G

decay
i for resonance decays

and the collision rates Ri .

B. Resonance decays in multicomponent gas

We suppose that in the first (hydrodynamic) approximation
the products of resonance decays that interact with the medium
are thermalized and they become free later, after the last
collision with one of other particles. However, at the late stages
of matter evolution the system becomes fairly dilute, so that
some of these produced particles get a possibility to escape
without any collisions: P > 0. To describe this we use the
following forms for L

decay
i and G

decay
i terms (for two-particle

resonance decay) [35]:

p0
i L

decay
i (x, pi) =

∑
k

∑
l

∫
d3pk

p0
k

∫
d3pl

p0
l

�i→klfi(x, pi)

× mi

Fi→kl

δ(4)(pi − pk − pl)

= mi�ifi(x, pi), (37)

where resonance i decays into particles or resonances k and l,

p0
i G

decay
i (x, pi) =

∑
j

∑
k

∫
d3pj

p0
j

∫
d3pk

p0
k

�j→ikfj (x, pj )

× mj

Fj→ik

δ(4)(pj − pk − pi), (38)

where the resonance j decays into particles i and k with partial
width �j→ik for this decay channel, and

Fj→ik =
∫

d3pk

p0
k

∫
d3pi

p0
i

δ(4)(pj − pk − pi)

= 2π

m2
j

[(
m2

j − m2
k − m2

i

)2 − 4m2
i m

2
k

]1/2
. (39)

To escape the complicated problem with satisfaction of
thermodynamic identities in hadron resonance gas, we utilize
in what follows the mass shell approximation for resonances,
supposing that mi = 〈mi〉. Also, as it was already discussed,
we take into account that the resonance mass in hadron
resonance gas is much larger than the temperature, mi � Tc.
Then the most probable velocity of resonance in the rest system

of a fluid element is small, vi ≈
√

2T
mi

, and one can use the
approximation

p
µ

i ≈ miu
µ. (40)

So the resonance distribution function takes the form

fj (x, pi) ≈ p0
j

mj

nj (x)δ3[pj − mj u(x)]. (41)

It allows us to perform integrations in Eq. (38) over pj , pk

analytically and get

G
decay
i (x, pi) =

∑
j

∑
k

�j→ik

nj (x)

p0
i p

0
kFj→ik

δ

× [mju
0(x) − p0

k − p0
i

]
, (42)

where p0
k =

√
m2

k + [mj u(x) − pi]2.
Just this form of gain term is used when spectra are evalu-

ated according to Eq. (33). Note that in practical calculations
we substitute the δ function with its Gaussian representation,

δ(x) = 1

R
√

π
e−x2/R2

,

and take a finite parameter value R = 50 MeV.

C. Collision rates

The collision rate R(x, p) = 1
τrel(x,p) is one of the basic

values for calculating the intensity of the interactions in the
expanding system and its decoupling. The latter is described
through the escape probability P(x, p) (34)—the integral
value of R along the possible trajectory of a particle with
momentum p running freely through the whole expending
system. The rate of collisions in the rest frame of some
fluid element that accounts for scatters of a given particle
with any other ith hadronic species in the thermal Boltzmann
system depends only on particle energy E∗

p = pµuµ and the
thermodynamic parameters of this fluid element [36]:

R∗(E∗
p, T , {µi})

=
∑

i

∫
d3ki

gi

(2π )3
exp

[
−Ek,i − µi(x)

T (x)

]

× σi(si)

√
[si − (m − mi)2][si − (m + mi)2]

2E∗
pEk,i

. (43)
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Here gi = (2ji + 1), Ep =
√

p∗2 + m2, Ek,i =
√

k2
i + m2

i , si =
(p∗ + ki)2 is the squared c.m. energy of the pair, and σi(s) is
the total cross section of selected particle with particle i in the
corresponding binary collision. One can change the integration
variable to squared c.m. energy s, energy of scattering partner
Ek , and momentum angle φ, and perform Ek and φ integration
analytically, which gives the following expression for the
remaining integral:

R∗(E∗
p, T , {µi})

=
∑

i

giT eµi/T

8π2p∗E∗
p

∫ ∞

(m+mi )2
dsσi(s)

×
√(

s − m2 − m2
i

)2 − 4m2
i m

2

× sinh

[
p∗

2T m2

√(
s − m2 − m2

i

)2 − 4m2
i m

2

]

× exp

[
−
(
s − m2 − m2

i

)
E∗

p

2T m2

]
. (44)

We calculate σi(s) in a way similar to the UrQMD code [37]:

(i) The Breit-Wigner formula is applied for meson-meson
and meson-baryon scattering:

σ MB
total(

√
s) =

∑
R=�,N∗

〈jB,mB, jM,mM‖JR,MR〉

× 2SR + 1

(2SB + 1)(2SM + 1)

× π

p2
cm

�R→MB�total

(MR − √
s)2 + �2

tot

/
4
,

where �total =∑(channels) �R→MB, with
√

s-dependent
parametrization of partial decay widths,

�R→MB(M) = �R

MR

M

[
pCMS(M)

pCMS(MR)

]2l+1

× 1.2

1 + 0.2
[

pCMS(M)
pCMS(MR )

]2l
,

chosen to depend on absolute value of particle momen-
tum in two-particle rest frame:

pCMS(
√

s) = 1

2
√

s

√(
s − m2

1 − m2
2

)2 − 4m2
1m

2
2.

In the case of meson-meson scattering, a constant
elastic cross section of 5 mb is added to fully reproduce
the measured cross section.

(ii) Particle Data Group table data for p − p, p − n, p − p̄,
etc., scattering is used.

(iii) For other baryon-baryon scattering, an additive quark
model,

σtotal = 40

(
2

3

)m1+m2
(

1 − 0.4
s1

3 − m1

)

×
(

1 − 0.4
s2

3 − m2

)
[mb],

where mi = 1(0) corresponds to meson(baryon) and si

is the number of strange quarks in hadron i, is used.

Note that all relevant resonance states (see preceding)—359
different species—are taken into account for the calculation
of σi(s).

V. HYDRODYNAMICS

We describe the system evolution in the equilibrium zone
at T > Tch by the perfect hydrodynamics. The small shear
viscosity effects, which lead to an increase of the transverse
flows [10] we account for phenomenologically, including this
effect in the parameter α of initial velocity as described in
Sec. II A. The matter evolution in this zone is described
by the relativistic hydrodynamical equations related to the
conservation of energy momentum,

∂νT
µν = 0, (45)

and equations associated with the net baryon number,
strangeness, and isospin conservations

∂ν(qiu
ν) = 0. (46)

Here qi is the density of the conserved quantum number.
At T < Tch the equations for the system evolution in the

first approximation, fi = f
l.eq

i , can be derived from the basic
equation (25). Namely, integrating the left- and right-hand
sides of Eq. (25) over d3p, one arrives at Eq. (20) for
particle number flow in the nonequilibrium zone and at
hydrodynamic equation (45) by integrating Eq. (25) over
pν

i d
3pi and summing over index i.

Note that in the first approximation the matter evolu-
tion is described by the equations of ideal hydrodynamics
while the distribution function (27) in a decaying system
is in nonequilibrium. The iteration procedure, including the
next-order approximations, which, in fact, leads to viscous
hydrodynamic evolution, is described in Ref. [6]. In this article
we limit ourselves with the first approximation. Then the
energy-momentum tensor T µν has a simple structure, which
is employed in this model,

T µν = (ε + p)uµuν − p · gµν, (47)

where ε is energy density and p is pressure defined from the
EoS. In the chemically equilibrated zone the pressure is defined
from the lattice QCD calculations, as discussed in Sec. III A.
In the nonequilibrium zone the EoS generally depends on all
360 variables, p = p(ε, {ni}), and it is evaluated altogether
with solution of the evolutionary equations. The reason is
that it is impossible to store the EoS table; therefore, we
compute pressure each time we need to (e.g., when restoring
thermodynamic variables from conservative variables or when
computing fluxes through each cell boundary) solving analytic
Eqs. (22) and (23) numerically.

Let us rewrite equations in hyperbolic coordinates. These
coordinates are suitable for dynamical description at RHIC
energies, because, for example, zero longitudinal flows corre-
spond to boost-invariant expansion (so nonzero longitudinal
flow corresponds to deviation from boost invariance), and
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evolution parameter τ = √
t2 − x2 is not affected by strong

longitudinal flow, which saves computational time. It is
convenient to write the equations in conservative form; then
the conservative variables are

	Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

{Qni
}

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 2(ε + p) − p

γ 2(ε + p)vx

γ 2(ε + p)vy

γ 2(ε + p)vη

{γ ni}

⎞
⎟⎟⎟⎟⎟⎟⎠ . (48)

Here the expression in curly brackets denotes N variables
associated with the particle densities for each sort of hadron.
The Qi are conservative variables in the sense that an integral
(discrete sum over all cells) of Qi gives the total energy,
momentum, and particle numbers, which are conserved up
to the fluxes on the grid boundaries. The velocities in this
expression are defined in a LCMS (longitudinally comoving
system) and related to velocities in the laboratory frame as

vx = vlab
x · cosh yf

cosh(yf − η)
,

vy = vlab
y · cosh yf

cosh(yf − η)
, (49)

vη = (yf − η),

where yf = 1
2 ln[(1 + vlab

z )/(1 − vlab
z )] is the longitudinal ra-

pidity of fluid element, η = 1
2 ln[(t + z)/(t − z)] is the geo-

metrical rapidity.
The full hydrodynamical equations are

∂τ

⎛
⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

{Qni
}

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
quantities

+ 	∇ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

{Qni
}

⎞
⎟⎟⎟⎟⎟⎟⎠ 	v +

⎛
⎜⎜⎜⎜⎜⎜⎝

	∇(p · 	v)

∂xp

∂yp

1
τ
∂ηp

0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
fluxes

+

⎛
⎜⎜⎜⎜⎜⎜⎝

(Qτ + p)
(
1 + v2

η

)/
τ

Qx/τ

Qy/τ

2Qη/τ

{Qni
/τ }

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
sources

= 0 (50)

and 	∇ = (∂x, ∂y,
1
τ
∂η).

For hydrodynamic calculations related to the midrapidity
region on central A + A collisions, we impose longitudinal
symmetry and cylindrical symmetry in transverse direction.
This actually means that tangential (in transverse direction)
and longitudinal velocities in LCMS vanish, so Qφ = Qη = 0,
as well as the fluxes in the φ and η directions. Then, one has

to solve the following set of equations:

∂τ

⎛
⎜⎝

Qτ

Qr

{Qni
}

⎞
⎟⎠

︸ ︷︷ ︸
quantities

+∂r ·

⎛
⎜⎝

(Qτ + p)vr

Qrvr + p

{Qni
vr}

⎞
⎟⎠

︸ ︷︷ ︸
fluxes

+

⎛
⎜⎝

(Qτ + p)(1 + v2
η)
/
τ − (Qτ + p)vr/r

Qr/τ − Qrvr/r

{Qni
/τ − Qni

vr/r}

⎞
⎟⎠

︸ ︷︷ ︸
sources

= 0.

(51)

vr/r is practically ambiguous at r = 0, so we put vr/r = α

there and use α value interpolated from the neighboring points.
We base our calculations on the finite-volume approach: We

discretize the system on a fixed grid in the calculational frame
and interpret Qn

i as average value over some space interval i,
which is called a cell (i is a multi-index in multidimensional
case). We also split continuous time evolution into a sequence
of finite time steps n.

The Qn
i are then updated after each time step according to

the fluxes on the cell interface during the time step �tn. In the
3D case, one has the following update formula:

Qn+1
ijk = Qn

ijk − �t

�x1
(Fi+1/2,jk + Fi−1/2,jk)

− �t

�x2
(Fi,j+1/2,k + Fi,j−1/2,k)

− �t

�x3
(Fij,k+1/2 + Fij,k−1/2), (52)

where F is the average flux over the cell boundary and indexes
+1/2 and −1/2 correspond to right and left cell boundary,
respectively, in each direction.

This is a basis of the Godunov method [38], which
implies that the distributions of variables on the grid are
piecewise. This forms the Riemann problem at each cell
interface. Then the flux through each cell interface depends
only on the solution of a single Riemann problem, supposing
that the waves from the neighboring discontinuities do not
intersect. The latter is satisfied with Courant-Friedrichs-Lewy
condition [39].

To solve the Riemann problems at each cell interface,
we use relativistic Harten-Lax-van Leer-Einfeldt solver [40],
which approximates the wave profile in the Riemann problem
with a single intermediate state between two shock waves
propagating away from the initial discontinuity. Together with
the shock-wave-velocity estimate, in this approximation one
can obtain analytical dependence of flux on initial conditions
for the Riemann problem, which makes the algorithm explicit.

We proceed then to construct a higher-order numerical
scheme. To do so,

(i) in time: the predictor-corrector scheme is used for the
second order of accuracy in time; that is, the numerical
error is O(dt3) instead of O(dt2);
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(ii) in space: in the same way, to achieve the second-
order scheme, the linear distributions of quantities
(conservative variables) inside cells are used.

A. Multidimension problem

At each time step, we compute and sum the fluxes for each
cell with those of all its neighbors and update the value of
conservative variables with the total flux. Thus, we do not use
operator splitting (dimensional splitting) and thus avoid the
numerical artifacts introduced by this method, for example,
artificial spatial asymmetry.

B. Grid boundaries

To treat grid boundaries, we use the method of ghost cells.
We include the two additional cells on either end of grid in each
direction and set the quantities in these cells at the beginning
of each time step. For simplicity, we set the quantities in
ghost cells to be equal to these in the nearest “real” cell,
thus implementing nonreflecting boundary conditions (outflow
boundary). This physically corresponds to the boundary, which
does not reflect any wave, which is consistent with expansion
into vacuum.

C. Vacuum treatment

In our simulations we deal with spatially finite systems
expanding into vacuum. Thus, computational grid in the
Eulerian algorithm must initially contain both system and
surrounding vacuum. To account for a finite velocity of
expansion into vacuum, which equals c for an infinitesimal
slice of matter on the boundary, we introduce additional
(floating-point) variables in each cell, which keep the extent of
matter expansion within a cell, having value 1 for the complete
cell and 0 for a cell with vacuum only. The matter is allowed
to expand in the next vacuum cell only if the current cell is
filled with the matter.

VI. RESULTS AND DISCUSSION

In this article we apply the HKM for an analysis of
the space-time picture of Au + Au collisions at the top
RHIC energies. Such an analysis provided in the evolutionary
models of heavy-ion collisions have to be based on a detailed
description of the pion and kaon femtoscopic scales and must
also describe well the absolute values of the spectra (not only
spectra slopes) of the particles. As was noted in Ref. [6], the
following factors favor the simultaneous description of the
mentioned data: a relatively hard EoS (crossover transition
between hadronic and quark-gluon matters, not the first-order
phase transition), the pre-thermal transverse flows developed
to thermalization time, an account for an “additional portion”
of the transverse flows owing to the shear viscosity effect [10],
a correct description of the gradual decay of the system at the
late stage of the expansion. All these factors are included in
the presented version of the HKM.

We use both the Glauber-like (Sec. II A) and the CGC-like
(Sec. II C) initial conditions. In the former case the mean
transverse radii, defined by Eq. (1), is RT = 4.137 fm for

the top RHIC energy. The best fit for the Glauber IC is reached
at the following values of the two fitting parameters related
to the proper time τ = 1 fm/c: ε0 = 16.5 GeV/fm3 (〈ε〉 =
11.69 GeV/fm3) and parameter of the initial velocity defined
by Eq. (1), α = 0.248 (〈vT 〉 = 0.224). In the case of the CGC-
like initial conditions RT = 3.88 fm, the fitting parameters
leading to the best data description are ε0 = 19.5 GeV/fm3

(〈ε〉 = 13.22 GeV/fm3) and α = 0.23 (〈vT 〉 = 0.208). The
parameters α for the initial transverse flows are somewhat
larger than they are for the free streaming approximation of
the prethermal stage [17]. The reason is, as it is explained in
Sec. II, that the fitting parameter α is related to the “unknown
portions” of flows, caused by the two factors: a developing of
the prethermal flows and the viscosity effects in the QGP. In
addition, an account of the event-by-event fluctuations of the
initial conditions also leads to an increase of the “effective”
transverse flows, obtained by averaging at the final stage,
as compared to the results based on the initial conditions
averaged over initial fluctuations [41]. Because we use the later
kind of IC, it should lead also to an increase of the effective
parameter α.

As was discussed in Sec. III, the chemically nonequilibrated
evolution at the late stage, T < Tch = 165 MeV is not charac-
terized by a simple EoS, like p = p(ε, µB). In our calculations
the pressure in this domain depends on 360 variables: energy
density and particle concentrations. In Fig. 1 we illustrate the
“effective” EoS at the temperatures around and below Tch. The
points related to the later region characterize all diapasons that
the pressure gains at each energy density when the system
evolves with the Glauber IC fixed above. We see that the
pressure is different from that in the “limited” cases: the chemi-
cally equilibrated and completely chemically frozen evolution
[when the numbers of all (quasi) stable particles and reso-
nances are conserved]. At relatively large energy densities in a

FIG. 1. (Color online) EoS p(ε) used in the HKM calculations.
The solid black line is related to the chemically equilibrated phase,
taken from lattice QCD results as described in Sec. III A, while
gray region consists of the set of the points corresponding to
the different hadron gas compositions at each ε occurring during the
late nonequilibrium stage of the evolution. The dashed line denotes
EoS for the chemically equilibrated hadron gas, and the dotted line
denotes that for the chemically frozen one. They are shown for a
comparison.
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FIG. 2. (Color online) The transverse momentum spectra of (a) negative pions and (b) negative kaons, all calculated in the HKM model.
The comparison only with the STAR data are presented in the separate small plots. The interferometry radii (c) Rout, (d) Rside and (f) Rlong

and (e) Rout/Rside ratio for π−π− pairs and mixture of K−K− and K+K+ pairs. The experimental data are taken from the STAR [44,45] and
PHENIX [46–48] Collaborations.

dominated space-time region the nonequilibrium EoS is harder
than even in the chemically equilibrated case. This could
reduce the out-to-side ratio for transverse interferometry radii.

The results of the HKM for the pion and kaon spectra,
interferometry radii and Rout/Rside ratio, are presented in
Fig. 2. Because the temperature and baryonic chemical
potential at chemical freeze-out, which are taken from the
analysis of the particle number ratios [29], are more suitable
for the STAR experiment, the HKM results for kaon spectra

are good for the STAR data but not so much for the PHENIX
ones. Note also that, in spite of other studies (e.g., [4]), we
compare our results for the interferometry radii within the
whole measured interval of pT covered at the top RHIC energy.
Finally, one can conclude from Fig. 2 that the description of
pion and kaon spectra and space-time scales is quite good for
both IC, the Glauber and CGC. It is worth noting, however,
that the two fitting parameters α and ε0 are various by 10–20%
for different IC, as is described above.
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FIG. 3. (Color online) The φp-integrated emission functions of (a,b,c) negative pions and (d,e,f) negative kaons with different momenta:
(a,d) pT = 0.2 GeV, (b) pT = 0.85 GeV, (e) pT = 0.7 GeV, and (c,f) pT = 1.2 GeV at the Glauber IC. The values of pT in the middle row
(b,e) correspond to the same transverse mass for pions and kaons mT = 0.86 GeV.

The special attention acquires a good description of the
pion and kaon longitudinal radii together with the Rout/Rside

ratio, practically, within the experimental errors. Such an
achievement means that the HKM catches the main features
of the matter evolution in A + A collisions and correctly
reproduces the homogeneity lengths in the different parts of
the system that are directly related to the interferometry radii
at the different momenta of the pairs [2]. In this connection it
is valuable to show the structure of the emission function for
pions and kaons.

In Fig. 3 we illustrate the space-time structure of the
particle emission at the Glauber IC for different transverse
momenta of particles, with the longitudinal momenta close
to zero. The space-time picture of particle liberation is

quite different for different transverse momenta: For the soft
particles the maximal emission occurs close to the cental part
and happens at relatively later times, while the most of the hard
particles are emitted from the periphery of the system at early
times. In fact (see also Refs. [6,42]), the temperatures in
the regions of the maximal emission are quite different for
different pT ; they are for pions T ≈ 75–110 MeV for pT =
0.2 GeV/c and T ≈ 130–135 MeV for pT = 1.2 GeV/c.
So, if one uses the generalized Cooper-Frye prescription
[6,42] applied to the hypersurfaces of the maximal emission,
these hypersurfaces will be different for the different particle
momenta and do not correspond to common isotherm [6,42].

One can see in Fig. 3 (top panels) that at equal transverse
momentum pT the maximal emission of kaons happens earlier
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than pions, as one can expect because the kaons interact more
weakly. At the same time the kaon interferometry radii in
Fig. 2 follow approximately to the pion radii, demonstrating
the approximate mT scaling [43] with deviations to the slightly
larger values than pion radii have. Explanations can be gained
from the middle row in Fig. 3, where the comparison is done for
the same transverse mass of pions and kaons. Then the maxima
of pion and kaon emissions become closer and the majority
of kaons leave system even somewhat later than pions at the
same mT , opposite to the comparison at the same pT . Because
in the simplest situations the homogeneity lengths for bosons
depend on mT [43], one could say that the approximate mT

scaling could indicate the similarity of the freeze-out picture
for kaons and pions. However, probably, such a conclusion is
very approximate because the real structure of the emission
processes in A + A collisions is quite complicated, as one can
see from the details in Fig. 3.

VII. CONCLUSIONS

The HKM [5,6] is developed for a detailed study of the
matter evolution and space-time picture of hadronic emission
from rapidly expanding fireballs in A + A collisions. The
model allows one to describe the evolution of the QGP, as
well as the gradually decoupling hadronic fluid—a chemically
nonequilibrium matter, where the EoS is defined at each
space-time point and accounts for decays of resonances into
the nonequilibrated medium.

The HKM is applied to restore the initial conditions and
space-time picture of the matter evolution in central Au + Au
collisions at the top RHIC energy. The analysis, which is based
on a detailed reproduction of the pion and kaon momentum
spectra and measured femtoscopic scales, demonstrates that
basically the pictures of the matter evolution and particle emis-
sion are similar at both Glauber and CGC IC with, however,
different initial maximal energy densities: It is about 20% more
for the CGC initial conditions. The initial prethermal flow is
slightly less for the CGC IC. The main factors, which allow one
to describe well simultaneously the spectra and femtoscopic
scales, are a relatively hard EoS (crossover transition and
chemically nonequilibrium composition of hadronic matter),

prethermal transverse flows developed to thermalization time,
an account for an “additional portion” of the transverse flows
owing to the shear viscosity effect and fluctuation of initial
conditions, and a correct description of a gradual decay of
the nonequilibrium fluid at the late stage of expansion. Then
one does not require the too-early thermalization time, τi <

1 fm/c, to describe the data well. All these factors are included
in the presented version of the HKM and it allows one to
describe observables with only the two parameters.

An analysis of the emission function at the top RHIC
energies demonstrates that the process of decoupling the
fireballs created in Au + Au collision lasts from about 8 to
20 fm/c, more than half the fireball’s total lifetime. The
temperatures in the regions of the maximal emission are
different at the different transverse momenta of emitting
pions: T ≈ 75–110 MeV for pT = 0.2 GeV/c and T ≈
130–135 MeV for pT = 1.2 GeV/c. A comparison of the pion
and kaon emissions at the same transverse mass demonstrates
the similarity of the positions of emission maxima, which
could point out to the reason for an approximate mT scaling.

VIII. SUMMARY

The advanced HKM tool allows one to describe the process
of fireball evolution and gradual particle liberation in agree-
ment with underlying kinetic equations. Further developments
of the hydrokinetic approach and an analysis of the data in
noncentral A + A collisions will be the subject of a follow-up
work.
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