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Breakup mechanisms in heavy-ion collisions at low energies

L. Shvedov,1 M. Colonna,1,* and M. Di Toro1,2

1Laboratori Nazionali del Sud, INFN, via S. Sofia 62, I-95123 Catania, Italy
2Physics and Astronomy Department, University of Catania, Catania, Italy

(Received 9 March 2009; published 18 May 2010)

We investigate reaction mechanisms occurring in heavy-ion collisions at low energy (∼20 MeV/nucleon). In
particular, we focus on the competition between fusion and breakup processes (deep inelastic and fragmentation)
in semiperipheral collisions, where the formation of excited systems under various conditions of shape and
angular momentum is observed. Adopting a Langevin treatment for the dynamical evolution of the system
configuration, described in terms of shape observables such as quadrupole and octupole moments, we derive
fusion and fission probabilities, from which the corresponding fusion and breakup cross sections can finally be
evaluated. The dependence of the results on shape, angular momentum, and excitation energy is discussed.
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I. INTRODUCTION

Nuclear reactions between medium-mass nuclei at low en-
ergies (∼20 MeV/nucleon) offer the possibility to investigate
several aspects of dissipative mean-field dynamics and to
probe nuclear matter under extreme conditions with respect
to shape, spin, and excitation energy. In this energy domain,
well above the Coulomb barrier but below the Fermi energies,
one essentially observes two types of reaction mechanisms:
Fusion dominates in the case of central and semiperipheral
collisions, while binary reseparation processes, associated
with deep-inelastic or fast-fission mechanisms, essentially
involve the remaining range of (semi)peripheral reactions [1].
However, along the transition from fusion to binary processes,
composite systems with a rather elongated shape and large
intrinsic angular momentum can be formed, corresponding to
metastable (or even unstable) conditions, where mean-field
fluctuations may play a decisive role in determining the
final outcome. The presence of large event-by-event variances
related to the onset of new instabilities has already been noted
in experiments, from the anomalous distribution of primary
fragment properties in binary events [2,3]. The observed vari-
ances (in mass, charge, excitation energy, angular distribution)
appeared to be much larger than those predicted by mean-field
nucleon exchange models. Similar conclusions were reached
in theory simulations based on stochastic transport models [4].

Interaction times are quite long and a large coupling
among various mean-field modes is expected, leading to the
coexistence of different reaction mechanisms in semicentral
collisions. Study of the competition between fusionlike and
binarylike processes—and, more generally, of the fate of
the hot nuclear residues created in these reactions—is a
longstanding problem, from which a lot about mean-field
dynamics and fundamental properties of nuclear forces can
be learned. This issue has recently received renewed interest,
owing to the possibility of performing new analyses involving
neutron-rich or even exotic systems [5]. Under these conditions
the reaction mechanism characterizing dissipative collisions
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is expected to be sensitive to the density dependence of the
isovector part of the nuclear interaction, a matter that is largely
debated nowadays [5,6].

In reactions involving medium-heavy nuclei, as a result
of the complex neck dynamics, one can also observe, in
sufficiently inelastic collisions, new modes of reseparation of
the colliding system, such as dynamical ternary breaking, with
massive fragments nearly aligned along a common separation
axis [7,8]. Experimental evidence of this mechanism has
recently been reported in the case of 197Au + 197Au collisions
at 15 MeV/nucleon, where aligned quaternary breaking has
also been observed [9]. These effects could still be explained in
terms of the persistence of the excitation of shape and rotational
modes in projectile-like fragments (PLFs) and/or targetlike
fragments (TLFs) that are formed in binarylike events, which
would lead to further reseparation along a preferential axis,
similar to what happens in fast-fission processes of PLFs
or TLFs. It is worth mentioning that, at a higher beam
energy (∼40 MeV/nucleon), where, apart from mean-field
effects, two-body correlations are important, ternary breakings
become the dominant process, and new features are observed,
corresponding to the emission of small fragments coming
directly from the strongly interacting neck region [10].
Actually one may think in terms of a smooth transition between
the different decay modes of PLFs and/or TLFs from fast
fission, characterized by splitting into fragments of similar
size and low relative velocity, to neck emission, where small
fragments are emitted at a higher relative velocity with respect
to PLFs and TLFs.

From the preceding discussion, it is clear that understanding
the competition between reaction mechanisms in dissipative
collisions, as well as the nature of new exotic reseparation
modes, requires a thorough analysis of the underlying mean-
field dynamics and associated shape fluctuations and rotational
effects. In this paper, we attempt to improve the dynamical
description of low-energy collisions by coupling a microscopic
transport approach based on mean-field concepts, suitable for
following the early stage of the collision up to the formation
of composite excited sources, to a more refined treatment of
the dynamics of shape observables, including the associated
fluctuations within the Langevin scheme [11], for the following
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evolution up to the definition of the final outcome. In particular,
we discuss the dynamics of excited sources characterized
by given values of quadrupole and octupole moments and
intrinsic angular momentum. This allows one to investigate
the competition between fusionlike and binarylike reaction
mechanisms and to evaluate fusion cross sections, as well as
the probability and the features of fast-fission processes of
PLFs (or TLFs). The paper is organized as follows. In Sec. II
we present the hybrid transport treatment employed to follow
the dynamical evolution of the system. Results concerning the
competition between fusion and binary processes are discussed
in Sec. III. Finally, conclusions and perspectives are drawn in
Sec. IV.

II. SIMULATION OF THE COLLISIONAL DYNAMICS

A. Dynamical description of nuclear reactions

The evolution of systems governed by a complex phase
space can be described by a transport equation, of the
Boltzmann-Nordheim-Vlasov type, with a fluctuating term,
the so-called Boltzmann-Langevin equation (BLE) [12,13]:

df

dt
= ∂f

∂t
+ {f,H } = Icoll[f ] + δI [f ], (1)

where f (r, p, t) is the one-body distribution function, that is,
the semiclassical analog of the Wigner transform of the one-
body density matrix, H (r, p, t) the mean-field Hamiltonian,
Icoll the two-body collision term (that accounts for the residual
interaction) incorporating the Fermi statistics of the particles,
and δI [f ] the fluctuating part of the collision integral. The
nuclear equation of state, directly linked to the mean-field
Hamiltonian H , can be written as

E/A(ρ, I ) = Es/A(ρ) + Csym(ρ)I 2 + O(I 4), (2)

where I = (N − Z)/A is the asymmetry parameter. We adopt
a soft isoscalar equation of state, Es/A(ρ), with compressibil-
ity modulus K = 200 MeV, which is favored, for example,
from flow studies [14]. For the density (ρ) dependence of the
symmetry energy Csym(ρ), we consider a linear increase in the
potential part of the symmetry energy with density:

Csym(ρ) = a

(
ρ

ρ0

)2/3

+ b

(
ρ

ρ0

)
, (3)

where ρ0 is the saturation density, a = 13.4 MeV, and b =
18 MeV. From the expression of the energy density, Eq. (2),
the mean-field potential is directly derived. The free-energy-
and angle-dependent nucleon-nucleon cross section is used in
the collision integral [15]. Within this approach, the system is
described in terms of the one-body distribution function f , but
this function may experience a stochastic evolution in response
to the action of the fluctuating term δI [f ].

However, the numerical resolution of the full BLE is not
available yet in three dimensions. Approximate treatments of
the BLE have been introduced so far (see Refs. [15] and [16]),
such as the stochastic mean-field (SMF) model, which consists
in the implementation of stochastic density fluctuations only in
coordinate space and can be solved numerically using the test
particle method [15]. It should be noticed that semiclassical

models have been shown to work well for description of
the approaching phase of reactions at energies above the
Coulomb barrier, leading to the formation of composite excited
systems [17–19]. Moreover, the SMF model is particularly ap-
propriate for description of the evolution of the dilute unstable
sources that develop in dissipative collisions at Fermi energies
(30–100 MeV/nucleon) [20]. In this context, quantal effects
can also be incorporated in the dynamics of the unstable
collective modes [21,22].

However, here we are essentially interested in semicentral
reactions at lower energies where, most likely, the formation
of elongated (rather than dilute) systems is observed, and
phenomena associated with surface (rather than volume)
metastability and/or instability may take place. To improve
the treatment of fluctuations suitable for describing the latter
scenario, we adopt a hybrid description of the dynamics: We
follow the microscopic SMF evolution until the instant in
time when local thermal equilibrium is established and one
observes the formation of quasistationary elongated systems,
with a density close to the normal value. Then, to deal
with the following evolution of the system, we move to a
more macroscopic model description, where the system is
characterized in terms of global observables, for which the
full treatment of fluctuations in phase space is numerically
affordable, as explained here.

B. Dynamical evolution of shape observables

This section is devoted to the description of the dynamical
evolution of excited systems whose leading degrees of freedom
are shape observables, while the density remains always close
to the normal value, ρ0 = 3/4πr3

0 , r0 being the nuclear radius
constant (r0 = 1.2 fm). The configuration of the system under
study, having given charge Z and mass A, is described by three
global observables (and associated velocities): the quadrupole
moment β2, the octupole moment β3, and the rotation angle
ω. For situations far from a spherical shape, thermal agitation
can induce fluctuations that may eventually lead to breakup
channels. Hence correct treatment of shape fluctuations is
crucial for characterization of the reaction mechanism. For
this purpose, we consider the stochastic extension of the
Rayleigh-Lagrange equations of motion [23] (the Langevin
equation):

d

dt

∂L

∂q̇i

+ ∂F

∂q̇i

= ∂L

∂qi

+ Ffluc(t), (4)

where qi(i = 1, 2, 3) = (ω, β2, β3). L(qi, q̇i) = Ekin(qi, q̇i) +
Erot(qi, q̇i) − Epot(qi) denotes the Lagrangian of the system,
and

F (qi, q̇i) = 1

2

dEtot

dt
= 1

2

3∑
i,j=2

Rij q̇i q̇j (5)

is the Rayleigh dissipation function. Ekin, Erot and Epot indicate
the kinetic, rotational, and potential energy of the system,
respectively, and the quantity Rij is the dissipation tensor.
The difference with respect to the standard Rayleigh-Lagrange
equations is the fluctuation term Ffluc, which can be interpreted
as a rapidly fluctuating stochastic force, in the same spirit of
the Brownian motion, similar to the fluctuating term in the
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BLE, Eq. (1). We solve numerically the set (4) of coupled
equations.

For given values of the quadrupole and octupole moments,
the shape of the system is parametrized, in terms of the polar
angle θ , as follows:

R(θ ) = R0(β2, β3){1 + β1(β2, β3)Y10(θ )

+β2Y20(θ ) + β3Y30(θ )}, (6)

where the functions Yi0(θ ) are spherical harmonics. The
parameters β1 and R0 are introduced to conserve the position
of the center of mass and the total volume V of the system and
can be determined from the equations∫

dV z = 2π

4

∫ π

0
R4(θ ) sin θ cos θdθ = 0, (7)∫

dV = 2π

3

∫ π

0
R3(θ ) sin θdθ = 4

3
πr3

0 A, (8)

where z denotes the coordinate along the system maximum
elongation axis (or symmetry axis). In the following we
discuss in detail the derivation of the different terms of the
Lagrangian L.

1. Rotational energy

The rotational energy is simply equal to

Erot = 1
2I (β2, β3)ω̇2, (9)

where

I (β2, β3) = πmρ0

5

∫ π

0
R5(θ ){1 + cos2 θ} sin θ dθ (10)

is the moment of inertia for the whole system, m being the
nucleon mass.

2. Kinetic energy

The kinetic energy can be expressed as follows:

Ekin = 1

2

3∑
i,j=2

Mij (β2, β3)q̇i q̇j . (11)

To calculate the mass tensor Mij , we adopt the prescriptions
of Ref. [24]:

Mi,j = 1
2 (M ′

i,j + M ′
j,i), (12)

with

M ′
i,j = 2πmρ0

∫ π

0

L∑
l=1

bilR
l+2(θ )Pl(cos θ )

×
{

∂R0

∂βj

S + R0

(
∂β1

∂βj

Y10 + Yj0

)}
sin θ dθ. (13)

Here Pl are Legendre polynomials and S(θ ) = R(θ )/R0. In
our calculations we have L = 5. The coefficients b2l and b3l

are obtained by solving the system of equations

L∑
l=1

Aklbml = Cmk, k = 1 · · · L, m = 2, 3, (14)

with

Akl =
∫ π

0
Rl−1(θ )

{
lPl(cos θ ) − 1

R(θ )

∂R(θ )

∂θ

∂Pl(cos θ )

∂θ

}

·Rk−1(θ )

{
kPk(cos θ ) − 1

R(θ )

∂R(θ )

∂θ

∂Pk(cos θ )

∂θ

}
× sin θ dθ, (15)

Cmk =
∫ π

0
Rk−1(θ )

{
kPk(cos θ ) − 1

R(θ )

∂R(θ )

∂θ

∂Pk(cos θ )

∂θ

}

·
{

∂R0

∂βm

S + R0

(
∂β1

∂βm

Y10 + Ym0

)}
sin θ dθ. (16)

3. Potential energy: Nuclear term

Concerning the nuclear part of the potential energy En,
we discuss essentially the surface contribution, because our
system keeps a constant volume over time. We adopt a dou-
ble volume integral of the Yukawa-plus-exponential folding
function [25]:

En = −as(1 − ksI
2)

8π2r 2
0 a3

∫
V

∫
V

(σ

a
− 2

) e−σ/a

σ
d3r d3r ′, (17)

where as is the surface-energy constant, ks is the surface-
asymmetry constant, and a is the range of the Yukawa-plus-
exponential potential. σ denotes the modulus of the relative
distance σ = |r − r ′|. Parameters have been fitted to the
ground-state energies and fission barrier heights [26,27]. To
reduce the numerical efforts, the integral of Eq. (17) can
be transformed into a double surface integral, by using the
twofold Gauss divergence theorem. For axially symmetric
shapes, one of the azimuthal integrations can be performed
trivially [25,28], and the resulting threefold integral is

En = as(1 − ksI
2)

4πr 2
0

∫ ∫ ∫ {
2 −

[(σ

a

)2
+ 2

σ

a
+ 2

]
e−σ/a

}

× P (θ, θ ′, φ)P (θ ′, θ,−φ)

σ 4
dθ dθ ′ dφ, (18)

where the distance σ can be expressed as

σ = [R2(θ ) + R2(θ ′) − 2R(θ )R(θ ′)
· {cos θ cos θ ′ + sin θ sin θ ′ cos φ}]1/2

and

P (θ, θ ′, φ) = R(θ ) sin θ{R2(θ ) − R(θ )R(θ ′)
× [cos θ cos θ ′ + sin θ sin θ ′ cos φ]

−R(θ ′)
∂R(θ )

∂θ
[sin θ cos θ ′−cos θ sin θ ′ cos φ]}.

4. Potential energy: Coulomb term

The Coulomb part of the potential energy is taken as [29]:

EC = E
sharp
C + 
Edif

C ,

where E
sharp
C is the Coulomb energy corresponding to a sharp

charge-density distribution and 
Edif
C is a correction caused

by the diffuseness.
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The sharp-surface part of the Coulomb energy is equal to

E
sharp
C = −ρ2

pπ

6

∫ ∫ ∫
P (θ, θ ′, φ)P (θ ′, θ,−φ)

σ
dθ dθ ′ dφ,

(19)

where ρp is the charge (proton) density, ρp = (Z/A)ρ0. The
correction to the Coulomb energy owing to the diffuseness can
be expressed as


Edif
C = ρ 2

p πa 3
C

∫ ∫ ∫ {
2

σ

aC

− 5

+
[

1

2

(
σ

aC

)2

+ 3
σ

aC

+ 5

]
e−σ/aC

}

× P (θ, θ ′, φ)P (θ ′, θ,−φ)

σ 4
dθ dθ ′ dφ, (20)

where aC is the range parameter of the Yukawa function
generating the diffuse charge distribution [28–30].

5. Dissipation function

The one-body dissipation mechanism is evaluated as fol-
lows (see Ref. [23] for details):

dE

dt
= mρ0v

∮
ṅ2 dS, (21)

where the integration is performed over the whole surface of
the system, v = 3

4vF is the average nucleon velocity, and

ṅ2 =
∣∣ ∂R

∂t

∣∣2

|∇R|2 , R = r − R(θ ). (22)

Hence we get the following expressions for the dissipation
tensor Rij :

Ri,j = 2|i−j |πmρ0v

∫ π

0

{
R0

{
∂β1

∂βi
Y10 + Yi0

}
+ ∂R0

∂βi
S
}

1 + 1
R2(θ)

{
∂R(θ)

∂θ

}2

×
{
R0

{
∂β1

∂βj

Y10 + Yj0

}
+ ∂R0

∂βj

S

}
R2(θ ) sin θ dθ.

(23)

6. The Langevin term

The stochastic force Ffluc(t) will determine fluctuations
in momentum space, according to the value of the diffusion
coefficient D. We assume that

〈Ffluc(t)Ffluc(t + s)〉 = Dδ(s). (24)

The action of the stochastic force Ffluc may be simulated
numerically by repeatedly producing a random kick δP in
the collective velocity associated with the quadrupole and
octupole moments. The value of δP is chosen randomly from
a Gaussian distribution with mean value and variance given by

δP = 0, (25)

(δP )2 = Dδt, (26)

where δt is the small time step between two kicks. The
diffusion coefficient D can be found using the Einstein
relation:

D = 2T γ, (27)

where γ is the dissipation coefficient and T is the temperature
of the system [31]. Hence the fluctuations that we are
considering are induced essentially by the thermal agitation.
We note that our dissipation tensor Rij , introduced previously,
also has nondiagonal terms. Hence, to correctly extract the
dissipation coefficients, we diagonalize the dissipation tensor
Rij → γij . The tensor γij will have only diagonal elements:
γ2 and γ3. Now we can find D2 and D3 in the new coordinate
system and evaluate δP2 and δP3, the random kicks for the new
coordinates. Finally, it is possible to go back to the general
coordinates β2 and β3, by the inverse transformation, and
obtain δPβ2 and δPβ3 .

In conclusion, we essentially follow a semiclassical treat-
ment also for the description of the dynamics of shape
observables, looking, in particular, at quadrupole and octupole
oscillations, which may lead to rather elongated configurations
of the system under study. In this context, the fluctuations
inserted in the dynamics of the collective oscillations are
of a thermal nature, as discussed previously. It would be
interesting to include also the contribution of quantal (zero-
point) fluctuations of these surface modes, as the frequencies
are of the order of the temperature [31]. This would increase
the overall amplitude of surface oscillations, inducing larger
fluctuations in the system configuration. For instance, the
importance of zero-point fluctuations of vibrational modes of
the nuclear surface hwas recently pointed out in an evaluation
of fusion cross sections in heavy-ion collisions at near- and
sub-barrier energies [32]. In our “exit channel” case we would
expect just the opposite, that is, a larger breakup probability.

III. RESULTS

We exploit the Langevin treatment outlined in Sec. II
to investigate the competition between (incomplete) fusion
and binary breakup mechanisms in low-energy reactions. We
consider the system 36Ar + 96Zr at two beam energies, 9 and
16 MeV/nucleon, in the following range of impact parameters:
b = 5–7 fm and b = 4–6 fm at 9 and 16 MeV/nucleon,
respectively. Within this selection, according to the SMF
dynamical evolution, one observes the formation of quasis-
tationary elongated configurations for which fluctuations are
expected to be crucial in determining the following evolution.
For lower impact parameters, the conditions of the reactions
are such that one always obtains incomplete fusion, while for
larger impact parameters binary breakup is observed. Contour
plots of the density in the reaction plane, as obtained in
SMF calculations, are displayed in Figs. 1 and 2 for the two
reactions.

Description of the system in terms of the global observables
β2, β3, and ω begins at the moment when, according to the
full SMF evolution, the composite system reaches a quasista-
tionary shape, having dissipated almost completely the radial
part of the kinetic energy deposited in the system, while the
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FIG. 1. Contour plots of the density projected on the reaction
plane calculated with the SMF for the reaction 36Ar + 96Zr at
9 MeV/nucleon, at several times (fm/c). The size of each box is
40 fm.

angular part is converted into intrinsic spin. This time instant
is estimated to be around tfreeze-out ≈ 200 fm/c. During the
earlier dynamical evolution, pre-equilibrium nucleon emission
takes place. As a consequence, the mass and charge of the
system are smaller than the total mass and charge numbers,
respectively. We get A ≈ 122, Z ≈ 53. As shown in Figs. 1
and 2, the system configuration can be suitably parametrized
in terms of quadrupole and octupole moments. From this point
of view, the Langevin treatment introduced previously appears
to be appropriate for describing the following evolution,
although the dynamical description is devolved to a few leading
degrees of freedom. The initial conditions of the Langevin
equation were determined running 10 SMF trajectories. The
corresponding parameters are listed in Tables I and II, for a
couple of events, for each considered case.

Then, within the Langevin treatment, 200 stochastic events
were considered for each SMF trajectory. Fluctuations were
injected each 3 fm/c.

According to the values listed in Tables I and II, we test
essentially the behavior of composite systems with a variety of
conditions of angular momentum, ranging from 50 to 100 h̄,

TABLE I. Characteristics of the composite system, as obtained in
the reaction 36Ar + 96Zr at 9 MeV/nucleon at time tfreeze-out: excitation
energy, intrinsic angular momentum, quadrupole moment, octupole
moment and associated collective velocities. The time unit adopted
to define the collective velocities is 10−22 s = 30 fm/c. Two events
are displayed for each impact parameter. The fission probability (see
text) is reported in the last column.

b (fm) E∗ (MeV) L (h̄) β2 β3 dβ2/dt dβ3/dt P

7 225 100 1.14 −0.73 0.099 0.024 0.990
7 242 95 1.00 −0.76 0.143 −0.129 0.990
6 240 77 0.83 0.47 0.062 −0.010 0.645
6 224 84 1.01 −0.52 0.113 −0.063 0.880
5 216 64 0.58 −0.32 0.125 0.938 0.375
5 227 58 0.56 0.36 −0.004 0.005 0.145

TABLE II. Same as Table I, but for the reaction at
16 MeV/nucleon.

b (fm) E∗ (MeV) L (h̄) β2 β3 dβ2/dt dβ3/dt P

6 279 90 0.88 0.34 0.016 0.059 1.000
6 277 97 0.88 0.44 −0.015 −0.031 1.000
5 241 73 0.37 0.15 −0.063 −0.047 0.320
5 252 77 0.63 0.40 0.136 −0.020 0.580
4 258 63 0.31 0.06 0.052 0.018 0.110
4 247 52 0.22 0.05 −0.007 0.002 0.035

and quadrupole moment β2, from 0.2 to 1. The excitation
energy is about 250 MeV, corresponding to temperatures of the
order of 4 MeV. Apart from the situation observed in the case
of b = 7 fm, E/A = 9 MeV/nucleon, the octupole moment
β3 always takes rather small values, of both signs, indicating
that the memory of the entrance channel mass asymmetry is
lost. Also, the quadrupole and octupole collective velocities
are rather low and may take values of both signs, suggesting
that collective motions, apart from the rotation associated with
the intrinsic spin, are damped. These conditions correspond
closely to quasistationary, metastable situations; that is, the
system is stable against small shape fluctuations. On one
hand, it may evolve radiating its excitation energy and spin
and relaxing slowly toward the spherical configuration. On
the other hand, if the amplitude of the kicks of the associated
collective velocities is high enough, the system may overcome
the fission barrier and reach configurations corresponding
to surface instabilities, from which it rapidly separates into
two pieces. However, one should also consider that the latter
possibility is in competition with nucleon emission, which
reduces the excitation energy (and the associated amplitude of
thermal fluctuations), while the shape of the system is evolving.
The nucleon emission rate can be evaluated according to
the standard Weisskopf formalism [33]. For the situations
under study, the excitation energy decreases, owing to nucleon
emission, by approximately 2.5 MeV each 30 fm/c. We follow
the trajectory of the system until the available excitation energy
is fully dissipated.

FIG. 2. The same as Fig. 1 but at 16 MeV/nucleon.
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Hence, thanks to the introduction of fluctuations in the
dynamical evolution, for a given impact parameter one
observes a bifurcation of trajectories, leading either to compact
shapes (fusion) or to elongated shapes, with large values
of quadrupole and/or octupole moments, which eventually
cause the breakup of the system. Actually the two possible
outcomes are associated with a kind of bimodal behavior of
the shape observables, related to configurations corresponding
to local minima of the total (surface + Coulomb) energy.
It is interesting that bimodality has recently been observed
also in the context of liquid-gas phase transitions, where
volume instabilities are concerned and dilute systems may
either recompact to normal density or split into a huge number
of small fragments [34].

A. Fission rates

In the following, we first discuss some illustrative results
obtained in the case of the reaction at 16 MeV/nucleon,
b = 5–6 fm. In Fig. 3 we present one example of trajectories
corresponding to the two possible exit channels (fusion or
fission), in the (β2, β3) plane. Because of the random kicks,
starting from the same initial conditions, rather different
paths are explored. It should be noted that, also in the
case of trajectories leading to fusion, the final configuration
is not exactly spherical, but is associated with small (not
vanishing) values of the quadrupole moment. This corresponds
to the stationary configuration compatible with the amount of
intrinsic angular momentum present in the system. On the
contrary, breakup configurations are characterized by rather
large values of β2 and/or β3. Actually one sees an interesting
correlation between the two parameters, which is represented
in Fig. 4. In fact, both large quadrupole and large octupole
moments are linked to breakup configurations, that correspond
to tangent spheroids. Fluctuations of the octupole moment are
rather large, although the majority of the events is located near
β3 = 0, corresponding to symmetric fission.

In Figs. 5 and 6 (left) the fission rate, dN/dt , as obtained
for b = 6–7 fm at 9 MeV/nucleon and b = 5–6 fm at

0 0.5 1 1.5 2 2.5 3
β2

-0.5

0

0.5

1

1.5

2

β 3

fusion
fission

FIG. 3. One example of trajectories leading either to fusion or
to breakup, in the (β2,β3) plane, as obtained in the reaction at
16 MeV/nucleon, b = 5 fm.

2 2.5 3 3.5 4
β2

-2

-1

0

1

2

β 3

b = 5 fm
b = 6 fm

E/A = 16 MeV/nucleon 

FIG. 4. Correlations between the values of quadrupole and those
of octupole moments, as obtained for the breakup configurations in
the case of the reaction at 16 MeV/nucleon, b = 5–6 fm.

16 MeV/nucleon, is displayed as a function of time for a
set of 200 events in each of the cases considered. For the
most peripheral impact parameters, after an initially increasing
trend, related to the time interval needed to build and propagate
fluctuations, we observe an almost-exponential decrease,
as expected in the case of constant breakup probability
γbreak. In this case one can write dN/dt = Ntγbreak, with
Nt = N0e

−γbreakt and N0 = 200 (the total number of events
considered). This corresponds to situations where the breakup
probability (γbreak ≈ 0.002 fm/c is not much affected by the
competing nucleon emission. All events practically lead to
fission over a time interval that is shorter than the one needed
to exhaust the available excitation energy by nucleon emission.
In fact, the maximum of the emission rate is observed at about
300 fm/c, and the system needs, on average, roughly 500 fm/c

to reach the breakup configuration (this is actually the half-life
time τbreak = 1/γbreak). On the contrary, for smaller impact
parameters (corresponding to lower deformation of the system
and lower angular momentum), the breakup probability γbreak

is quenched by been a factor 4 (see Figs. 5 and 6, left) and
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FIG. 5. (Color online) Left: Distribution of the time tbreak (see text)
obtained for the reaction at 9 MeV/nucleon and impact parameters
b = 7 fm (solid histogram) and b = 6 fm (hatched histogram). Right:
Angular distribution of the breakup direction. Solid line and circles
refer to b = 7 fm; dashed line and open squares are for b = 6 fm.
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FIG. 6. (Color online) Same as Fig. 5, for the reaction at
16 MeV/nucleon and b = 5–6 fm.

decreases in the course of time because of nucleon emission,
which reduces the excitation energy and the corresponding
number of thermal fluctuations. In most cases, the excitation
energy deposited in the system is dissipated before the breakup
configuration can be reached. It is interesting that, even in the
most favourable case, the typical durations of the process are
rather long (500 fm/c), compared, for instance, to the time
scales associated with the development of volume instabilities
in multifragmentation processes at higher energies (about
150 fm/c). This can be explained in terms of the larger amount
of excitation energy deposited in the system in the latter case
(which induces fluctuations of higher amplitude and collective
radial expansion) and of the shorter growth times associated
with volume instabilities [20].

The corresponding fraction of events that undergo breakup,
Pbreak, is reported in Tables I and II, at the two energies and for
all impact parameters considered. From the estimated breakup
probabilities it is possible to construct the fusion cross section,
σf (b) = (1 − Pbreak)2πbdb, which is displayed in Fig. 7, for
the two energies. We also show, for comparison, the results
obtained within the SMF approach only, where, owing to the
approximate treatment of fluctuations, one gets distributions
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 / 
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fm
)

FIG. 7. (Color online) Fusion cross section, as a function of the
impact parameter b, obtained in the reactions at 9 MeV/nucleon
(black histogram) and 16 MeV/nucleon (gray histogram) with the
Langevin treatment, Eq. (4). Lines correspond to SMF simulations at
9 MeV/nucleon (solid) and 16 MeV/nucleon (dashed).

close to a sharp cutoff (approximated by the sharp cutoff in
the figure). It is interesting that, especially in the case of the
reaction at 9 MeV/nucleon, the fusion cross section is reduced
significantly by the introduction of fluctuations, which, in turn,
help the system to overcome the fission barrier and to breakup.

B. Features of fission fragments

The time tbreak, needed to reach the breakup configuration,
is connected to other interesting features of the reaction dy-
namics, depending on the various entrance-channel conditions.
In fact, owing to the intrinsic spin, the system rotates while
its shape evolves according to Eq. (4). As a consequence,
the direction along which the system separates into pieces is
strictly connected to tbreak. Hence the shape of the angular
distribution of fission fragments can be used as a clock of
the collision, from which one can extract information on the
breakup probability and the underlying reaction mechanism.
This is an appealing issue that can be investigated also
experimentally by looking at the angular distribution of the
emerging reaction products and at the possible existence
of alignment effects [9,10]. In the case of a fast breakup
(fast fission), the angular distribution should exhibit a peak:
owing to the elongated shape of the system, the emission
is not isotropic. Along the separation process, fragments
acquire velocities essentially owing to the Coulomb repulsion,
according to the Viola systematics, as in standard fission, but
with a preferential emission axis. The distribution of the angle
θbreak, corresponding to the rotation (on the plane perpendicular
to the direction of the intrinsic spin of the system) until the
breakup configuration is reached, is shown in Figs. 5 and
6 (right), for the two energies and two impact parameters.
Obviously, the shape of this distribution depends on the fission
probability, but also on the system angular velocity (which in
turn depends on the intrinsic spin). In fact, in the absence
of rotation (vanishing spin) the fragments would always be
emitted along a fixed axis. In the case of the most peripheral
events, a clear peak is observed in the distribution. On the
contrary, for more central impact parameters, the half-life time
is much larger and one essentially gets a flat distribution for
θbreak, similarly to what is expected in the case of standard
statistical fission.

C. Fast fission of projectile-like and targetlike fragments

Several shape, angular momentum, and excitation energy
conditions can be observed also in the case of collisions
between heavy systems, after separation into PLFs and TLFs,
for one (or both) of these products. Thus it is interesting
to investigate fast-fission processes of these objects, leading
to ternary (or quaternary) breaking of the whole system.
For instance, Fig. 8 shows density contour plots obtained in
SMF simulations of semiperipheral collisions of Au + Au at
15 MeV/nucleon, for which aligned ternary and quaternary
breaking has recently been observed experimentally [9]. One
can see that shape configurations similar to those observed
in the reactions investigated here, may appear for PLFs
and TLFs. However, these fragments have a lower angular
momentum (about 20–40 h̄) and excitation energy (of the order
of 100 MeV). The corresponding breakup probability is of the
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FIG. 8. Contour plots of the density projected on the reaction
plane calculated with the SMF for the reaction 197Au + 197Au at
15 MeV/nucleon, b = 6 fm, at several times (fm/c). The size of each
box is 80 fm.

order of 10% and emission times are longer (≈2000 fm/c). The
fast-fission mechanism could explain qualitatively some of the
features observed experimentally, such as alignment effects
and fragment relative velocities and charge distributions.
However, a thorough analysis of the kinematical properties of
the reaction products [9], as well as the rather short estimated
breakup times, suggests the persistence of nonequilibrium
effects in momentum space, that is, the presence of collective
velocities in β2 and/or β3, in addition to the tangential velocity
generated by the intrinsic angular momentum. Collective
velocities, probably underestimated in the SMF calculations,
would speed up the fragmentation process, as the system is
pushed toward more exotic shapes, from which it is easier to
overcome the fission barrier.

IV. CONCLUSIONS

In this article we have investigated the role of shape
fluctuations in the dynamical evolution of excited systems that
can be formed in semiperipheral reactions at low energies
(∼20 MeV/nucleon). Quasistationary composite systems,
with quadrupole and/or octupole deformation, are observed,
for which shape fluctuations are essential to overcome the
fission barrier and eventually break up. This analysis is
performed within a hybrid treatment that couples study of
the early stage of the dynamics, devolved to a microscopic

stochastic transport approach, up to the formation of primary
excited sources, to a full Langevin description of the leading
degrees of freedom of these objects: quadrupole and octupole
moments and angular velocity. For temperature, shape, and
angular momentum conditions obtained in semi-peripheral
reactions, typical time scales of the break-up process are of
the order of 500 fm/c. The fission fragments are emitted along
a preferential direction, which corresponds to the maximum
elongation axis. Because of angular momentum effects, this
direction may rotate while the shape of the system is evolving
toward breakup configurations. Hence a careful analysis of
the angular distribution of the reaction products may give
relevant information on fission probabilities and the time scales
involved, which in turn are closely linked to the mean-field
dynamics and the properties of the nuclear interaction (range,
surface energy, two-body correlations). From this study it is
clear that a good treatment of mean-field fluctuations is a cru-
cial point in the characterization of dissipative reactions. The
model employed here provides a suitable description of surface
modes, parametrized in terms of quadrupole and octupole
oscillations, but it could miss some nonequilibrium effects that
can help the system to break up. In fact, collective velocities
related to shape observables are likely underestimated in the
SMF approach [35] and the role of multipolarities higher than
octupole is neglected in the Langevin treatment.

Moreover, we reiterate the expected relevance in our sepa-
ration dynamics of the interplay between quantum zero-point
and thermal fluctuations; see the end of Sec. II. A consistent
treatment of both will certainly reduce the breakup time, in
the direction of the alignment signal observed in Ref. [9] in
ternary and quaternary events.

A fully microscopic description of the whole process
would be highly desirable, although it is far from being
trivial. Some attempts are represented by improved quantum
molecular dynamics calculations [19]. Stochastic extensions of
time-dependent Hartree-Fock calculations should also provide
a valuable tool to characterize reaction mechanisms in low-
energy collisions [36]. Work in this direction is in progress.
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