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The nuclear breathing-mode giant monopole resonance is studied within an improved relativistic Boltzmann-
Uehling-Uhlenbeck (BUU) transport approach. As a new feature, the numerical treatment of ground-state nuclei
and their phase-space evolution is realized with the same semiclassical energy-density functional. With this
new method a very good stability of ground-state nuclei in BUU simulations is achieved. This is important in
extracting clear breathing-mode signals for the excitation energy and, in particular, for the lifetime from transport
theoretical studies including mean-field and collisional effects.
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I. INTRODUCTION

A giant monopole resonance (GMR), that is, a collective
isoscalar 0+ excitation of a nucleus, has been extensively
investigated in the past few decades, both theoretically and
experimentally (see Ref. [1] for the most recent review). It
is nowadays well established, that the GMR is a nuclear
compression mode governed mostly by the incompressibility
modulus K∞ of nuclear matter [2], which is the key quantity
for the description of nuclei, supernovae explosions, neutron
stars, and heavy-ion collisions.

Many microscopic models have been developed for the the-
oretical description of giant resonances. They can be divided
into two groups: purely quantum mechanical approaches and
semiclassical dynamical models.

The former group includes the models based on the
nonrelativistic [3,4] or relativistic [5,6] static Hartree-Fock
plus random phase approximation (RPA) method. The RPA
technique can be derived from a more general time-dependent
Hartree-Fock (TDHF) theory (cf. [7,8]) in the case of small-
amplitude excitations. The damping of a collective mode in a
pure mean-field RPA picture originates from the coupling to
the particle-hole excitations (Landau damping or fragmenta-
tion width) and from coupling to the continuum states, which
is equivalent to the particle loss in TDHF calculations [7].
Also, constrained relativistic mean-field approaches have been
developed and applied in the case of a GMR [8–10]. The
collective nature of the GMR in these quantum mechanical
prescriptions manifests itself from a coherent superposition
of many single-particle transitions from one major shell to
another [11]. Generally, within uncertainties of an underlying
energy-density functional, the fully quantum approaches are
able to describe the GMR energies for various sets of nuclei.
However, the conclusions of different authors on the GMR
total width are clearly different. Sagawa et al. [4] claim that the
Landau damping and coupling to the continuum states explain
the major part of the total GMR width for the 208Pb nucleus
and Sn isotopes. However, Piekarewicz and Centelles [6] state
that the RPA calculation fails to account for the spreading
component of the full escape-plus-spreading width because of
the lack of coupling to the more-complex-than-particle-hole
configurations.

The second group of models [12–21] solves the BUU(-like)
or Vlasov(-like) equations, which are the semiclassical limits
of a quantum kinetic equation [22]. An advantage of the
kinetic transport equation with respect to the TDHF theory
is that binary collisions are naturally included, apart from
the interaction between the particles owing to the classical
nuclear mean field. In the classical picture, a GMR can
be qualitatively understood in terms of a radial collective
vibration of a nucleus: Protons and neutrons oscillate in
phase with a certain amplitude, which is damped owing to
dissipation. For this reason, the GMR is often referred to as
a “breathing mode.” The frequency of the breathing mode
characterizes the excitation energy and the temporal damping
of the amplitude—the lifetime of the resonance.

Semiclassical treatments of a GMR in finite nuclei have
been so far restricted to pure Vlasov dynamics [18,20,21],
where any collisional effects are completely neglected. Thus,
these models predicted the excitation energy of the breathing
mode appropriately well, but not the width. Alternatively, the
collisional effects in the semiclassical description of the GMR
were modeled within a linearized Landau-Vlasov equation
[17], which, however, takes into account the finite size effects
only very approximately. There are several works where
the Boltzmann-Nordheim-Vlasov approach—which takes into
account the self-consistent nucleon mean field and nucleon-
nucleon collisions—has been applied to the collective dipole
[23,24] and quadrupole [25] motions excited in heavy-ion
collisions at low energies.

The present work is an attempt to describe simultaneously
the centroid energy and the width of a GMR in finite nuclei.
To this aim, we perform the full BUU calculations taking into
account both the mean field and the collision term. The results
of the full BUU calculations are then compared with the results
of the solution of the Vlasov equation to make the quantitative
conclusions on the contribution of two-body collisions to the
total GMR width.

The numerical solution of a BUU equation for the case
of a small-amplitude collective vibration excited in a finite
nuclear system is extremely difficult. It requires a very good
stability of the ground-state configurations, which is difficult
to reach in a test-particle technique underlying any numerical
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method to solve the BUU equation. So far, empirical density
distributions have been used to initialize ground-state nuclei in
transport theoretical simulations, which might be not always
consistent with the energy-density functional used for the
propagation of the system. Another well-known problem (see,
e.g., discussions in Refs. [12–14]) is related to the calculation
of Pauli blocking factors in the Uehling-Uhlenbeck collision
integral for the small-amplitude Fermi surface distortions.

We thus have improved the relativistic transport approach
[26–28] based on the Giessen Boltzmann-Uehling-Uhlenbeck
(GiBUU) transport model [29] by performing relativistic
Thomas-Fermi (RTF) calculations with the same energy-
density functional as that used in the dynamical evolution. In
this context, the isovector-vector ρ meson field, together with
its gradient terms, have been included in the calculations of the
present work. The initialization of neutron and proton densities
according to the RTF calculation largely improves the ground-
state stability in numerical simulations of the Vlasov and BUU
dynamics. We have also worked to improve the numerical
treatment of the Pauli blocking in test-particle simulations
of the small-amplitude nuclear motions, in-particular, in the
nuclear surface regions.

The structure of the work is as follows: The standard
theoretical background is presented in Sec. II. The modified
initialization procedure and numerical treatment of the Pauli
blocking are then presented in Sec. III. In Sec. IV, results of the
ground-state simulations are discussed, before the calculations
of the GMR excitations are presented. Finally, conclusions and
outlook are presented in Sec. V.

II. THE RELATIVISTIC TRANSPORT EQUATION

The baryonic mean field is modeled within the nonlinear
Walecka model (mean-field approximation of the quan-
tum hadrodynamics) [30,31]. The nonlinear Walecka model
Lagrangian includes the nucleon field ψ , the isoscalar-scalar
σ meson field, isoscalar-vector ω meson field, isovector-vector
�ρ meson field, and the electromagnetic field A and reads
(� = c = 1) as

L = ψ̄

[
γµ

(
i∂µ − gωωµ − gρ �τ �ρµ − e

1 + τ3

2
Aµ

)

− (m + gσσ )

]
ψ + 1

2
∂µσ∂µσ − U (σ )

− 1

4
�µν�

µν + 1

2
m2

ωω2

− 1

4
�Rµν

�Rµν + 1

2
m2

ρ �ρ2 − 1

4
FµνF

µν, (1)

where �µν = ∂µων − ∂νωµ, �Rµν = ∂µ �ρν − ∂ν �ρµ, and Fµν =
∂µAν − ∂νAµ are the field tensors. In Eq. (1), the arrow above
a symbol indicates the isovector character of the corresponding
field. The term U (σ ) = 1

2m2
σ σ 2 + 1

3g2σ
3 + 1

4g3σ
4 contains

the self-interactions of the σ field, added according to
Ref. [31]. The bare hadron masses m, mσ , mω, and mρ , cou-
pling constants gσ , gω, and gρ , and the nonlinear parameters g2

and g3 have been adopted from the NL3∗ parametrization of
the nonlinear Walecka model, which gives reasonable values

for the incompressibility modulus, K∞ = 258 MeV, and the
nucleon Dirac effective mass m∗ = 0.594 m at the saturation
density ρ0 = 0.150 fm−3 of nuclear matter [32]. The NL3∗
parametrization is the modification of the well-known NL3
set of parameters [33] adjusted to describe the ground-state
properties of both spherical and deformed nuclei, as well as the
GMR energies of heavy nuclei. The momentum dependence
of the proton-nucleus optical potential, studied recently in
Ref. [34], is of minor importance here.

The theoretical description of heavy-ion collisions is
realized within the GiBUU transport approach [29], which is
based on a relativistic kinetic equation. Thorough derivations
of the transport equation from an effective hadron-meson field
theory [30] can be found elsewhere [35]. The relativistic kinetic
equation reads

(p∗0)−1[p∗µ∂x
µ +

(
p∗

µF
kµ

i + m∗∂k
xm∗

)
∂

p∗
k

]
fi(x, p∗)

=
∑

j=n,p

Iij , (2)

with µ = 0, 1, 2, 3 and k = 1, 2, 3. The left-hand side of
Eq. (2) describes the classical Vlasov propagation of a one-
body phase space distribution function fi(x, p∗) for protons
and neutrons (i = p, n) in the mean meson fields. This is
expressed in terms of a kinetic four-momentum p∗ = pi − Vi ,
where pi is the canonical four-momentum, of the field tensor
F

µν

i = ∂µV ν
i − ∂νV

µ

i , and of the Dirac effective mass m∗ =
m + S. Here V

µ

i and S are the vector1 and scalar field,
respectively,

V
µ

i = gωωµ + gρτ
3
i ρ3µ + e

2

(
1 + τ 3

i

)
Aµ, (3)

S = gσσ, (4)

where τ 3
i = +(−)1 for i = p(n).

The particles are assumed to be on the Dirac effective mass
shell; that is,

p∗0 =
√

m∗2 + p∗2. (5)

In fact, the GiBUU model propagates not only nucleons, but
also all resonances up to the mass of 2 GeV, as well as mesons,
for example, pions and kaons. However, in the present study we
concentrate only on the nucleonic degrees of freedom. In this
case, the collision terms in the right-hand side of Eq. (2) are
the Uehling-Uhlenbeck collision integrals describing elastic
nucleon-nucleon scattering:

Iij =
∫

2d3p

2

(2π )3

∫
dσij (p∗

1, p∗
2; p∗

1′ , p∗
2′ )v12

× [fi(p∗
1′)fj (p∗

2′ )f̄i(p∗
1)f̄j (p∗

2)

− fi(p∗
1)fj (p∗

2)f̄i(p∗
1′ )f̄j (p∗

2′)], (6)

where the time-space argument x of the distribution functions
is dropped for brevity and p∗

1 ≡ p∗. The hole distribution
functions are denoted as f̄i(p∗) ≡ [1 − fi(p∗)]. Thus, the

1Assuming that there is no mixing between proton and neutron
states, the first and second isospin components of the ρ-meson fields
vanish.
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final-state Pauli blocking is explicitly included in Eq. (6).
The collision integral (6) depends on the differential elastic
scattering cross section dσij (p∗

1, p∗
2; p∗

1′ , p∗
2′ ) with initial mo-

menta p∗
1, p∗

2 and final momenta p∗
1′ , p∗

2′ and on the relative
velocity v12 of colliding nucleons. We use in this work the
energy- and angular-dependent vacuum nucleon-nucleon cross
sections (see [26] for details).

An exact solution of the set of the coupled transport
equations for the different hadrons is not possible. Therefore,
the commonly used test-particle method for the Vlasov part
is applied, whereas the collision integral is modeled in a
parallel-ensemble Monte-Carlo algorithm. The GiBUU trans-
port model has not been applied to low-energy reactions so far.
An important requirement here is a very good description of
the ground state of a nucleus in test-particle method, which is
the topic of the next section.

III. IMPROVED METHOD FOR NUCLEAR
GROUND STATES IN GIBUU

Practically all existing nuclear kinetic transport models
based on the test-particle technique (cf. [20,21,23,29] and
references therein), including GiBUU, use the same method
of the nuclear ground-state preparation. Typically, the coor-
dinates of test particles are sampled according to empirical
Woods-Saxon or even uniform density profiles, while the
test-particle momenta are distributed with the help of a local-
density approximation. The standard numerical treatment of
the transport equation works well for high-energy reactions,
in which several collective flow observables are described
quantitatively well [36]. However, in low-energy reactions
the memory of the exit channel to the initial configuration
is important. A disadvantage of standard numerical treatments
is that the initial distribution functions of protons and neutrons
deviate from the corresponding static solutions of the Vlasov
equation. Therefore, nuclei are not initialized in their proper
ground states. This makes their dynamical propagation unsta-
ble. Another source of spurious instability is the numerical
treatment of the Pauli blocking, which mainly influences the
momentum space of the test particles in full BUU simulations.

A. Phase space initialization

We improve the phase space initialization of ground-state
nuclei in the transport model in the following way: The nuclear
ground state is described in a semiclassical treatment, in which
the density distribution of a spherical ground-state nucleus is
obtained by minimizing the energy functional. In relativistic
mean field (RMF), the energy functional corresponds to the
relativistic Hamiltonian density, which is obtained from the
T 00 component of the energy-momentum tensor. The same
functional is then used for the propagation of the system.
In calculations of the time evolution, we neglect the time
derivatives of the mean mesonic fields and of the electro-
magnetic field in the Lagrangian (1). For the mean mesonic
fields, this should be a reasonable approximation, because the
time scale of the GMR motion ∼40–80 fm/c (cf. Fig. 7) is
much larger than the time scale of the free field oscillations

∼1/mmes = 0.2–0.4 fm/c, where mmes ∼ 0.5–0.8 GeV is a
meson mass. For the electromagnetic field, neglecting time
derivatives corresponds to disregarding a radiation. The last
could be, in principle, treated in terms of a quantum transition
probability. However, in the specific case of 0+ transitions,
the electromagnetic radiation is suppressed [37]. The space
components of the electromagnetic field are also neglected;
that is, A ≡ (A0, 0, 0, 0). In the most calculations, to save
CPU time, we also drop the space components of the vector
meson fields. However, for completeness, the formalism below
takes into account these components.

The RMF Hamiltonian density of the nonlinear Walecka
model reads:

ε ≡ T 00

= 2

(2π )3

∑
i=p,n

∫
d3p∗p0

i (x, p∗)fi(x, p∗) + 1

2
(∇σ )2 + U (σ )

− 1

2

[∇ωµ∇ωµ + m2
ωω2 + ∇ρ3µ∇ρ3

µ

+ m2
ρ(ρ3)2 + (∇A0)2] . (7)

The Hamiltonian density (7) takes into account the gra-
dients of the meson fields in coordinate space according to
Ref. [27]. This is important for description of surface effects,
which is impossible in the usual local density approximation
neglecting the gradient terms (cf. [21,26]). In distinction to the
previous GiBUU calculations in the RMF mode, the isovector
ρ-meson field and the Coulomb fieldA0 are explicitly included
now.

The meson and electromagnetic field equations have the
following form:[

−� + ∂U (σ )

∂σ

]
σ = −gσρS, (8)

(−� + m2
ω

)
ωµ = gωj

µ

B , (9)(−� + m2
ρ

)
ρ3µ = gρj

µ

I , (10)

−�Aµ = ejµ
p . (11)

The source densities and currents in the right-hand sides
of Eqs. (8)–(11) are expressed in terms of the distribution
functions as follows:

ρS(x) = 2

(2π )3

∑
i=p,n

∫
d3p∗ m∗

p∗0
fi(x, p∗), (12)

j
µ

i (x) = 2

(2π )3

∫
d3p∗ p∗µ

p∗0
fi(x, p∗) (i = p, n), (13)

j
µ

B (x) = jµ
p (x) + jµ

n (x), (14)

j
µ

I (x) = jµ
p (x) − jµ

n (x). (15)

In the static case, the distribution functions are Fermi
distributions:

f static
i (r, p∗) = 
[pFi

(r) − |p∗|]. (16)

The space components of the source currents (13)–(15) as well
as those of the mesonic and electromagnetic fields disappear
in a static system. Therefore, the Hamiltonian density (7)
becomes a functional of proton and neutron densities ρp,n =
j 0
p,n only.
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The RTF equations for a static nucleus with Z protons, N

neutrons, and A = N + Z nucleons are obtained by applying
a variational principle to the total energy E = ∫

ε[ρp, ρn]d3r

under the constraint of particle-number conservation:

δ

∫
{ε[ρp, ρn] − µpρp(r) − µnρn(r)} d3r = 0. (17)

The chemical potentials for protons and neutrons, µp,n, are
fixed by the conditions

Z =
∫

ρp(r)d3r, N =
∫

ρn(r)d3r. (18)

Substituting the Hamiltonian density functional (7) in Eq. (17)
leads to the RTF equations for protons and neutrons,

gωω0 + gρρ
30 + eA0 + E∗

Fp
= µp, (19)

gωω0 − gρρ
30 + E∗

Fn
= µn, (20)

where E∗
Fp,n

=
√

p2
Fp,n

+ m∗2. For a spherical nucleus, the

RTF Eqs. (19) and (20) together with the field Eqs. (8)–(11)
completely determine the radial dependence of the proton and
neutron densities and fields, that is, ρp,n(r), σ (r), ω0(r), ρ30(r),
and A0(r). The densities are obtained as the self-consistent
solution of Eqs. (8)–(11) and (18)–(20), with pFi

= (3π2ρi)1/3

(i = p, n) according to the local-density approximation. This
method then yields a consistent description of the ground state.
The densities are realistic but somewhat too steep in the surface
region.

The solution of the RTF equations gives the nuclear density
ρi(r) and the local Fermi momentum pFi

(r) (i = p, n). The
test particles for the numerical solution of the transport
equation are distributed according to these functions. The
propagation of the system is described by the test-particle
equations of motion, which directly follow from the transport
equation (2) by putting its right-hand side equal to zero and
read (j = 1, . . . , A · N , with N being the number of test
particles per nucleon)

ṙj = p∗
j

p∗0
j

, (21)

ṗ∗k
j = p∗

jµ

p∗0
j

F
kµ

j + m∗
j

p∗0
j

∂km∗
j . (22)

At each time step of the simulation, the scalar density (12) and
currents (13)–(15) are calculated on a grid in coordinate space.
Using these quantities, the equations of motion for the meson
and Coulomb fields (8)–(11) are solved numerically. Note, that
the solution of Eq. (8) requires some more iterations, because
the scalar density ρS in its right-hand side depends itself on
the σ meson field via the effective mass m∗.

The collision term in the right-hand side of Eq. (2)
is simulated by explicit two-body collisions between test
particles using the geometrical collision criterium (cf. [26] for
details). An important feature here is the numerical treatment
of the Pauli blocking, which is discussed in detail below.

B. Pauli blocking

The frequency of two-body collisions in a Fermi gas
depends on the occupancies of the scattering final states
via the hole distribution functions f̄i [see Eq. (6)]. By the
energy and momentum conservation, no collisions take place
at zero temperature, when fi(r, p
) = θ [pFi

(r) − |p
|]. In
test-particle simulations, however, it is impossible to model
the exact T = 0 Fermi distribution. This causes some spurious
two-body collisions even in the ground-state nucleus. The
magnitude of this spurious effect crucially depends on a
numerical technique of the Pauli blocking calculation. In the
standard GiBUU [29,38], the occupation number fi(r, p
) is
calculated by counting the number of test particles in the phase
space volume element composed of small spherical volumes
�Vr with radius rr centered at r in coordinate space and �Vp

with radius rp centered at p
 in momentum space,

fi(r, p
) =
∑

j :p

j ∈�Vp

1

κ(2πσ 2)3/2

×
∫

�Vr ,|r−rj |<rc

d3r exp

{
− (r − rj )2

2σ 2

}
, (23)

where

κ = 2�Vr�VpN
(2π )3

4π

(2πσ 2)3/2

∫ rc

0
dr r2 exp

{
− r2

2σ 2

}
(24)

is a normalization factor. In Eq. (23), the sum is taken over
all test particles j of the type i = p, n whose momenta
belong to the volume �Vp. In the coordinate space, the
test particles are represented by Gaussians of the width
σ cut off at the radial distance rc. The default values of
parameters are rp = 80 MeV/c, rr = 1.86 fm, σ = 1 fm, and
rc = 2.2 fm. This set of parameters is a compromise between
the quality of the Pauli blocking in the ground state and the
smallness of statistical fluctuations in the case of simulations
with N ∼ 200 test particles per nucleon. Typically, this is
good enough for modeling the heavy-ion collisions at the
beam energies above ∼100 MeV/nucleon. In the case of
a small-amplitude dynamics near nuclear ground state, the
accuracy provided by Eqs. (23) and (24) is not enough when the
default parameters are used. The main reason is the constant,
that is, momentum-independent radius rp, which introduces a
spurious temperature of the order of several MeV. To reduce
this effect, we have introduced the coordinate- and momentum-
dependent radius of the momentum space volume �Vp as
rp(r, |p
|) = max[20 MeV/c, pFi

(r) − |p
|], which provides
a sharper momentum dependence near Fermi momentum. The
calculations of the present work are performed with N =
1000–10000. This allows us to use the reduced parameters
also in the coordinate space: rr = 0.9–1.86 fm, σ = 0.5 fm,
rc = 1.1 fm. The calculations with the default and modified
set of parameters for the Pauli blocking are compared in the
Sec. IV.

IV. RESULTS

We study first the influence of the initialization method on
the temporal evolution of nuclei in their ground states. The

054316-4



BREATHING MODE IN AN IMPROVED TRANSPORT APPROACH PHYSICAL REVIEW C 81, 054316 (2010)

0 25 50 75 100 125 150
7.4

7.6

7.8

8

8.2

8.4

E
B
/A

 (
M

eV
)

0 25 50 75 100 125 150
time (fm/c)

4.4

4.5

4.6

4.7

rm
s 

ra
di

us
 (

fm
) 100

Sn

100
Sn

FIG. 1. (Color online) Time evolution of the bind-
ing energy per nucleon (top) and root mean square
(rms) radius (bottom) for a ground-state 100Sn nucleus.
Vlasov calculations using the (dashed) standard ini-
tialization and the (solid) improved initialization are
shown. The filled circle in the top panel at t = 0 fm/c

gives the RTF value of the binding energy.

improved transport model is applied then to the dynamics of
low-energy nuclear excitations, which are simulated by initial-
izing slightly expanded nuclei. We present results from pure
Vlasov and full BUU calculations for different nuclei. If not
indicated elsewhere, for the Vlasov calculations 10000 test par-
ticles per nucleon were used. The full BUU calculations were
performed with 1000 test particles owing to time limitations.

A. Stability of the ground state

Figure 1 shows the time evolution of the binding energy per
nucleon and the root mean square (rms) radius of a ground-
state 100Sn nucleus. The standard initialization method using
the empirical Woods-Saxon density distribution produces the
binding energy smaller by 0.3–0.4 MeV/nucleon with respect
to the RTF value of EB/A 
 8.1 MeV. This is expected,
because the minimum of the total energy is not reached by

the standard initialization. The binding energy varies with
time owing to numerical errors in the solution of the time
evolution Eqs. (21) and (22) and field Eqs. (8)–(11). For
the standard initialization, the rms radius reveals quite strong
fluctuations, comparable in the amplitude with the true GMR
vibrations (see Fig. 6). These artificial temporal oscillations
lead also to a significant particle loss with increasing time,
if collisions are included (see later in this article). Applying
the improved initialization, in which the same Hamiltonian
density functional is used for both the initialization of the
nucleus and its temporal propagation, the situation becomes
considerably better. At t = 0 fm/c the value of the binding
energy per nucleon agrees with the corresponding RTF value,
and the rms radius stays almost constant in time.

A more detailed picture of the Vlasov calculations with the
standard and the improved initialization method is shown in
Fig. 2 in terms of the proton and neutron density distributions.
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RTF

RTF

0 2 4 6 8 10

0 2 4 6 8 10
distance (fm)

FIG. 2. (Color online) Density profiles of protons (top panels) and neutrons (bottom panels) for the same nucleus as in Fig. 1. The thick
curves are RTF calculations. The other curves show density distributions from the Vlasov dynamics at different times (as indicated) using the
standard initialization (left panels) and the improved one (right panels).

054316-5



T. GAITANOS, A. B. LARIONOV, H. LENSKE, AND U. MOSEL PHYSICAL REVIEW C 81, 054316 (2010)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-100

-80

-60

-40

-20

0

V
+

S
 (

M
eV

)

-10 -8 -6 -4 -2 0 2 4 6 8 10
distance (fm)

-100

-80

-60

-40

-20

0

V
+

S
 (

M
eV

) t=0 fm/c
t=25 fm/c
t=50 fm/c
t=75 fm/c
t=100 fm/c
t=125 fm/c
t=150 fm/c

FIG. 3. (Color online) The proton mean-field potential V 0 + S

[see Eqs. (3) and (4)] along the z axis passing through the center of
the 100Sn nucleus. The different curves show the Vlasov results at
different times (as indicated) using the improved initialization (top)
and the standard one (bottom).

Using the standard initialization (left panels), the initial (t =
0 fm/c) density profiles do not fit that of RTF. This leads to
significant density oscillations around the true ground-state
density profiles (RTF) with the result of spurious oscillations
in the rms radius of the system (see again Fig. 1). A consistent
treatment between the ground-state nucleus and its propagation
leads to very good stable configurations (right panels).

We remind the reader that in relativistic transport studies
the central mean-field potential arises from the sum of the
large negative Lorentz scalar and large positive Lorentz vector
potentials. Thus, small spurious variations in density cause
strong numerical fluctuations in the mean-field potential. This
is demonstrated in Fig. 3, where the mean-field potential is
displayed as a function of the coordinate along the central
z axis. The Vlasov calculations with the standard initialization
(bottom panel) show large fluctuations on the order of 10%,
while these fluctuations almost vanish in the calculations using
the improved initialization method.

Including two-body collisions requires a careful imple-
mentation of the Pauli blocking to prevent the ground state
from being destroyed. To give an impression of how well
it is working in our test-particle calculations, Fig. 4 shows
the momentum (left) and radial (right) dependence of the
proton occupation numbers, which are used in the evaluation
of the Pauli blocking factors, for 12C and 100Sn nuclei. The
calculation with the default parameters of a Pauli blocking
produces a rather diffuse momentum dependence, especially
for the light 12C nucleus. Using the momentum-dependent
radius rp and the reduced width of a Gaussian, as explained
in Sec. III B, largely improves the momentum dependence of
occupation numbers near the Fermi momentum. The radial
dependence of the occupation numbers also becomes closer
to the step function when the calculation is done with the
modified Pauli blocking parameters.

To demonstrate the effect of Pauli blocking parameters on
the ground-state evolution, in Fig. 5, we present the time
dependence of the rms radius of a nucleus (left) and of the
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FIG. 4. (Color online) Momentum dependence of the proton
occupation number fproton in the center of 12C and 100Sn nuclei is
shown in the top left and bottom left panels, respectively. Radial
dependence of fproton at the zero momentum for 12C and 100Sn
is depicted in the top right and bottom right panels, respectively.
The results are presented for the standard (thin solid lines) and
momentum-dependent (thick solid lines) radius rp . The fluctuations
of fproton near Fermi momentum pF 
 250 MeV/c are attributable
to a finite number of test particles per nucleon which was set to
10000 in this calculation. The nucleon density in units of ρ0 is shown
additionally by dashed lines in the right panels. We see that at the
half-central-density radius, the proton occupation number is only
about 10% below unity.

number of particles in the high-density, ρ > ρmin, space region
(right) for the carbon and tin nuclei. Explicitly, these quantities
have been calculated as

Npart =
∫

ρ>ρmin

d3r ρ(r), (25)

〈r2〉 = N−1
part

∫
ρ>ρmin

d3r r2ρ(r), (26)

with ρmin = 0.1ρ0. Vlasov calculations practically conserve
the number of particles in the high-density region and produce
almost constant-in-time rms radii. The spurious effect of two-
body collisions in the ground-state nuclei leads to the particle
emission to vacuum, which amounts after 200 fm/c to about
10% of the total mass number in the case of standard Pauli
blocking parameters and ∼5% in the case of the modified
parameters. Correspondingly, the rms radius gets reduced. This
spurious reduction has to be excluded in the calculation of the
rms radius in full BUU simulations, as discussed later in this
article. In what follows, we always apply the modified Pauli
blocking parameters as explained in Sec. III B.
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FIG. 5. (Color online) The nuclear rms radius Eq. (26) (left
panels) and the number of particles in the high-density region Eq. (25)
(right panels) as a function of time for the ground-state 12C and
100Sn nuclei. The Vlasov calculations are represented by dashed lines.
The full BUU results with the standard and modified Pauli blocking
parameters are shown by thin and thick solid lines, respectively.

B. Giant monopole resonance: GiBUU calculations

The different methods of initialization of nuclear ground
states influence the dynamical calculations of excited nuclei.
We model the low-energy nuclear giant monopole collective
excitations by initializing an expanded nucleus at t = 0 fm/c.
This is realized by rescaling the coordinates of the test particles
such that the corresponding excitation energy is close to
the experimental values. The relation between the scaling
parameter and the excitation energy is obtained by expanding
the energy per nucleon E/A around saturation density or the
ground-state radius R0:

E/A(R) � E0/A + 1

2
K∞

(
R − R0

R0

)2

. (27)

With K∞ = 258 MeV and using the experimental values
[2] for the excitation energy �E = E − E0, one obtains
scaling parameters �R/R = (R − R0)/R0 in the range of
≈0.03–0.05 for A ∈ (56, 208). The system is then propagated
either without (Vlasov mode) or with (BUU mode) collisions
between the nucleons of the excited nucleus.

Figure 6 shows the time evolution of a 100Sn nucleus using
the different prescriptions of initialization.

The standard method does not provide stable solutions and
the rms radius of the 100Sn-nucleus explodes for t > 200 fm/c

owing to strong particle loss. The situation is considerably
improved in the new initialization. A clear oscillation signal
can be seen with a particle emission for very late times (t >

275 fm/c), which is, however, only moderate. Emitted particles
increase the rms radius of the total nuclear system, which
hinders the true oscillation signal. They have to be excluded,
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FIG. 6. Time dependence of the rms radius for the excited 100Sn
nucleus. The meaning of the different curves is explained in the text.
The calculations are done in the Vlasov mode.

therefore, in the calculation of the rms radius of an oscillating
nucleus when extracting the excitation energy and width of the
GMR. We thus consider only particles at densities higher than
0.1ρ0 according to Eqs. (25) and (26). After this correction
we obtain a clear signal for the resonance. The period of the
oscillation characterizes the frequency and thus the excitation
energy of the resonance and an exponential damping (see later
in this article)—its finite lifetime.

We have performed pure Vlasov-mode calculations for
different excited nuclei and analyzed the results in terms of
the time dependence of the rms radius, as seen in Fig. 7.
With increasing mass number, the frequency of the oscillation
decreases and thus also the excitation energy. An exponential
damping is visible, even without the inclusion of collisional
effects. This effect has been interpreted as a wall friction
[39,40], and it is discussed later. An important feature in the
study of nuclear collective excitations is the calculation of the
lifetime or the width of the different multipole modes of the
nuclear excitation. TDHF theory and Vlasov dynamics do not
include any collisional broadening effects.

The nuclear collective dynamics of giant multipole vibra-
tions in the ground-state nuclei has not been so far investigated
within the full BUU equation, mainly owing to the reasons
of a ground-state instability. With the improved initialization
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different nuclei, as indicated. (Solid) Vlasov calculations; (dashed)
fit according to Eq. (29).
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to Eqs. (25) and (26) for a 56Ni nucleus. Dashed lines, ground-state
BUU calculation; solid lines, BUU calculation for an excited 56Ni
nucleus in the GMR mode.

method the Vlasov propagation of a ground state is almost
perfect. The numerical procedure of the Pauli blocking in a
full BUU ground-state simulation is improved by applying
the modifying method but is still far from being exact. This
situation leads to a spurious particle emission in ground-state
BUU calculations and thus to a spurious escape width �es,
which impedes the determination of the total width.

The spurious contribution to the total width has therefore
to be excluded, as shown in Fig. 8, where the time evolution of
bound particles for a nucleus in its ground state (dashed curve)
and in the GMR mode (solid curve) is shown. Already in the
ground state, particles leave the nucleus owing to spurious
two-body collisions resulting in a spurious escape width �es.
However, the BUU simulation for the excited nucleus contains
also an escape width that is very similar to that of the ground
state. Asumming �es to be the same for both the ground state
and the excited state, we can make the following Ansatz:

Ngs(t) = N0 exp(−�est) for the ground state,

Nexc(t) = N0 exp(−�est)F (t) for the excited GMR state,

(28)

where N0 is the number of particles at t = 0 fm/c and F (t)
is a fit function for the oscillation signal, which contains the
stochastic collisional width:

F (t) = α + β cos(ωt + δ) exp(−γ t). (29)

The spurious width can be excluded by taking the ratio of Ngs

and Nexc, or their difference in the case of a very small value of
�es. The latter method is applied here in extracting the GMR
width, because �es ∼ 0.044 and 0.045 MeV for a ground state
and an excited nucleus, respectively. Thus, the physical escape
width (relative to that in the ground state) is almost negligible,
and we obtain the total width in full BUU calculations using
a fit according Eq. (29) to the so-called corrected rms radius
defined as〈

r2
corr

〉1/2
(t) = 〈

r2
exc

〉1/2
(t) − 〈

r2
gs

〉1/2
(t) + 〈

r2
gs

〉1/2
(0), (30)
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FIG. 9. (Color online) The corrected rms radius of Eq. (30)
plotted as a function of time for different nuclei (solid lines).
Calculations are done in the full BUU mode. The fit according to
Eq. (29) is shown by dashed lines.

where the depletion owing to spurious particle loss is sub-
tracted. However, the damping rate γ of the corrected rms
radius oscillations is still somewhat influenced by an imperfect
Pauli blocking procedure, which makes some uncertainty in
our calculations of the GMR width. We also have checked the
consistency of the extracted results on E∗ and � obtained with
the subtraction method by performing additional Fourier anal-
yses of 〈r2〉1/2(t) before and after the correction. Lorentzian fits
to the Fourier spectra lead to values for the width, which are the
same with those extracted with the subtraction method. Also,
the excitation energy is not essentially affected. However,
the excitation energy in full BUU calculations is slightly
above the corresponding values in Vlasov mode. This effect
is attributable to the spurious particle emission in full BUU
calculations, which is furthermore related to the collective
response of a smaller system.

The results for the corrected rms radius produced by full
BUU calculations for different nuclei are shown in Fig. 9.
Again, a clear oscillation signal is visible, however, owing
to the inclusion of collisions, a significant damping of the
oscillations of the rms radii appears, as compared to the pure
Vlasov calculations of Fig. 7. We note that in the case of a pure
Vlasov mode calculation, the difference between corrected and
not-corrected rms radii is negligibly small.

We have performed a fit to the results displayed in Figs. 7
and 9 according to Eq. (29) to obtain the centroid energies
and the total width of the breathing mode. The results are
summarized in Fig. 10 in terms of the excitation energy E
 = ω

and the damping width � = 2γ of the GMR as a function of
the mass number. The factor of two in the preceding formula
is motivated by our intention to report the full width at half
maximum (FWHM) of the GMR strength [17]. The gray band
in the transport calculations for the width is an estimation
related to the numerical uncertainty of the Pauli blocking
factors. We first discuss the results obtained for E
 and then
those for the width.
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FIG. 10. (Color online) Excitation energy (top) and width
(bottom) of the GMR as a function of the mass number. Vlasov and
full GiBUU results (as indicated) are compared with experimental
data (open diamonds). The solid line in the top panel shows the fit by
Eq. (31) with η = 90. In the bottom panel, the dashed line depicts the
fit of the Vlasov calculation using the wall formula (33) with ξ = 20,
while the solid line shows the full width � = −2ωI [see Eq. (35)]
taking into account both the wall and the collisional contributions.
Experimental data are from Ref. [48].

C. Giant monopole resonance: Discussion

The theoretical Vlasov calculations for the excitation
energy scale with A−1/3 and overestimate moderately the
experimental data. The mass dependence is also consistent
with TDHF calculations and with microscopic RPA studies [2].
Similar results for the excitation energy are obtained using full
BUU calculations. The question of why relativistic structure
calculations can explain the excitation energies of GMR with
a higher value of the incompressibility modulus K∞ = 250–
270 MeV (cf. Refs. [10,32,41,42]) than K∞ 
 220 MeV
deduced from nonrelativistic approaches [2] is well known. It
has been shown in Ref. [41], that this is at least partly related
to a stiffer density behavior of the symmetry energy in RMF
models with respect to the Skyrme-type effective interactions.
However, the calculations of Ref. [10] have revealed the
influence of differences in the surface compressibility in
different RMF models on the GMR frequency. There is also
another possible reason for differences between RMF and
nonrelativistic approaches, which we address in what follows.

Our calculations have been performed without nuclear
Lorentz force, that is, without taking into account the spacelike
components of the vector field.

We expect that a nonrelativistic Vlasov calculation, employ-
ing the same energy-density functional suitably parameterized,
for example, in a Skyrme form, will produce very similar
results. To study the influence of the nuclear Lorentz force
on the excitation energy (and the width) of the GMR, a
Vlasov calculation explicitly taking into account the spacelike
components of the vector field has been performed for the lead-
208 nucleus. The results are shown in Table I and compared
with other theoretical models of nuclear structure. First of all,
the effect of the Lorentz force is negligible for the GMR width
(not shown in the table). The excitation energy is moderately

TABLE I. Excitation energy E
 for a 208Pb nucleus in different
models: (Vlasov wLF) Vlasov calculation including the Lorentz
force, (Vlasov) Vlasov calculation without the Lorentz force, (RPA)
RPA calculations by Lalazissis et al. [32]. All the results are given in
the case of the NL3∗ model (K∞ = 258 MeV).

Model Vlasov Vlasov wLF RPA Exp.

E
 (MeV) 15.2 14.2 13.9 13.7 ± 0.5

affected. In particular, a decrease of E
 by ∼6.5% toward the
experimental data and the relativistic structure calculations is
observed when the Lorentz force is included in the Vlasov
calculation. We note that the same value for the compression
modulus has been used in both Vlasov calculations. This result
indicates the importance of the genuine relativistic effects
when extracting the incompressibility modulus from GMR
studies.

Another feature of interest in the transport results using both
modes, full BUU and Vlasov, is the moderate decrease of the
monopole frequencies with increasing neutron excess, as one
can see in the results for E∗ of Fig. 10 (top panel) for the Sn
isotopes. Such a trend is also supported experimentally [43]. It
is well known that the monopole frequencies are affected by the
slope of the symmetry energy around saturation, as discussed
in detail in Ref. [44]. It would be a challenge to extend this
transport study to particularly isospin asymmetric systems,
such as the Sn isotopes, where systematic experimental studies
exist [43], and to investigate more exotic collective modes in
neutron-rich systems.

To understand the GiBUU results on the mass dependence
of the GMR centroid energy on a qualitative level, we have
performed some simple estimations. As is well known from
empirical GMR systematics [1], the centroid energy of the
GMR follows the A−1/3 law:

E
 = ηA−1/3. (31)

This behavior can be understood as a consequence of a
soundlike excitation in a finite system, that is, E
 = vsk,
where vs is a sound velocity and k = π/R is the eigen-
value of the lowest compressional mode determined from
the disappearance of the pressure at the free surface [45],
where R = 1.2A1/3 is the nuclear radius. The hydrodynamical
model [45] would give vs = (K∞/9m)1/2 
 0.17, which
is the first sound velocity. Here we have used the value
of the incompressibility modulus K∞ = 258 MeV provided
by the NL3∗ model. The dependence η ∝ K

1/2
A , where KA is,

however, the incompressibility modulus of the finite nucleus,
is also provided by the scaling model of the GMR [2].
This model is usually applied in extraction of KA from
experimental data on GMR energy (cf. [43]) by using the
relation E
 =

√
KA/m〈r2〉, where 〈r2〉 
 3R2/5 is the rms

radius of the nucleus.
However, according to the Fermi liquid theory [46] the

low-temperature collective excitations in the infinite system
are of the zero-sound type. It is well known that the propa-
gating zero-sound-type solutions of the dispersion relation for
collisionless Fermi liquid at zero temperature exist only for the
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repulsive particle-hole interactions (cf. [2]), which is not the
case for the NL3∗ interaction used in the present work (see
later in this article). The introduction of finite temperature,
generally, restores the collectivity for attractive particle-hole
interactions, although it was proved only for momentum-
independent interactions [47]. It is quite difficult, therefore, to
actually identify the GMR vibration as the zero-sound mode.
Assuming, nevertheless, the nuclear-matter zero-sound nature
of the GMR vibration, we can estimate the sound velocity
as vs 
 vF = pF /m


L 
 0.42, where pF = 257 MeV/c is the
Fermi momentum at the nuclear-matter saturation density and
m∗

L = √
m∗2 + p2

F = 0.65 m is the Landau effective mass in
the case of the NL3∗ model.

As a result, one gets the values 90, 111, and 223 for the
coefficient η in Eq. (31) for the hydrodynamical, scaling, and
zero-sound pictures of the GMR, respectively. In the case of
the scaling model, we assumed that KA = K∞, which is a
quite rough assumption. Generally, one has KA < K∞ mostly
owing to the surface contribution [10]. It turns out (see the top
panel in Fig. 10) that Eq. (31) with the “hydrodynamical” value
of η = 90 well fits the Vlasov results for large mass numbers
A � 100, although the reason for this is not fully clear to us.

For light nuclei, as one can see from Fig. 10, the transport
calculations overestimate the experimental data on E
. This is
the region where the RTF method becomes unreliable because
the surface properties are not well described. However, the
experimental determination of the GMR parameters in light
nuclei is rather uncertain owing to strong fragmentation of the
0+ strength [1].

The situation for the width is more involved. Pure Vlasov
calculations predict a very small value for the GMR width and
do not fit the data, as expected. The inclusion of collisions in
the full BUU calculations improves the comparison between
theory and experiment considerably. The underprediction of
the theoretical calculations to the data becomes smaller, but an
exact agreement is not achieved. For a deeper interpretation of
the GiBUU results on the mass dependence of the GMR width,
several additional analytical calculations were performed.

The width of a collective vibration is related to the dissipa-
tion processes. Within a pure mean-field Vlasov calculation,
the only damping mechanism is the one-body dissipation
governed by a coupling of the single-particle and collective
motions. Specifically for finite systems, damping arises owing
to collisions of particles with a moving wall. This one-body
dissipation leads to the following “wall” formula for the
collective energy dissipation rate [39]:

Ė = mρv

∮
ṅ2dσ, (32)

where ρ = ρp + ρn is the nucleon density, ṅ is the normal
component of the wall velocity, and the integral is taken over
the surface of a vessel. v is the average speed of particles in the
vessel. For cold nuclear matter, one has v = 3

4vF . The formula
(32) is derived under strong simplifying assumptions of the
gas at rest inside the vessel and of a sharp potential wall driven
through the vessel. These conditions are usually assumed to
be valid for small surface vibrations of the incompressible
nuclear droplet [39], possibly with some modifications [40]
(see also [17] and references therein). Application of the wall

formula to the compressional modes is more questionable.
Nevertheless, by performing a rather simple calculation for the
GMR mode within the liquid-drop model with a free surface,
we arrived at the usual formula for the one-body relaxation
time (cf. [17,39]),

τwall = 2R

v
ξ, (33)

with ξ = 0.5, which means an extremely strong dissipation.
For example, for 208Pb we obtain the wall dissipation contribu-
tion to the GMR width �wall = 2/τwall 
 17 MeV. This result
has to be considered as an extremely rough approximation. The
self-consistency corrections, that is, the collective motion of
nucleons near the surface region [40] will modify Eq. (32) and
τwall. Other effects like the surface diffuseness and curvature
are not taken into account by the wall formula at all. Having
these reservations in mind, we treat ξ in Eq. (33) as a free
parameter and determine it from comparison with the results
of calculations in a Vlasov mode. This produces the value
ξ 
 20 as demonstrated in the bottom panel of Fig. 10.

We now discuss the two-body dissipation. It follows from
the Uehling-Uhlenbeck collision integral that the two-body
collisions take place only in the case of local deviations
of the Fermi surface from a spherical shape or/and in the
case of a finite temperature. Moreover, the relaxation rate
of a nonequilibrated Fermi gas toward thermal equilibrium
depends mainly on the total excitation energy and not on
the concrete shape of a Fermi surface deformation [49]. In
particular, in the linear approximation with respect to the
deviation of a distribution function from the local equilibrium
the relaxation rate is proportional to T 2 [46,50]. This means
that collisional damping of small Fermi surface distortions
practically vanishes at T = 0.

Thus, collisional damping of a vibrational motion excited
in the ground-state nuclear system is practically absent at the
beginning of time evolution and gradually switches on as
some part of the collective vibrational energy is transferred
to the heat. In Refs. [13,14], an “apparent temperature” has
been introduced in the calculation of the collisional widths
of the giant quadrupole and giant dipole vibrations built on
the ground-state nuclei. The “apparent temperature” has been
extracted in [13,14] by subtracting the collective energy Ecoll

of a vibrational mode from the total excitation energy E
: T =√
(E
 − Ecoll)/a, where a is a level density parameter. This

“temperature” has real physical meaning only when the system
reaches a complete thermal equilibrium. Because the Pauli
blocking factors in the Uehling-Uhlenbeck collision integral
depend crucially on temperature, calculations taking into
account the time-dependent “apparent temperature” strongly
increase the spreading width of a collective mode [13,14] to a
good agreement with experiment. In our estimates of the two-
body dissipation we use the upper limit for the “temperature”
by putting Ecoll = 0. For the level density parameter we use
the Fermi gas expression a = π2A/4EF .

The GMR mode can be considered as a soundlike excitation
inducing the Fermi surface distortions of all multipolarities
l � 2 [17]. At T � EF the relaxation time of a small-
amplitude Fermi surface distortion with multipolarity l � 2 is
(cf. [17,46,50]) τl = κl/T 2, where κl depends on the NN cross
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sections. The parameters κl have been computed in [19,51] for
both isovector and isoscalar vibrations for various choices of
the NN cross sections. In the case of realistic energy and
angular-dependent vacuum NN cross sections, this resulted
in the following values of the isoscalar parameters: κl = 868,
881, and 401 MeV2 fm/c for l = 2, 3, and +∞, respectively.
The case l = +∞ corresponds to the relaxation of a single
particle-hole configuration. For simplicity, we set the same
collisional relaxation time τcoll for all multipolarities l � 2:
τcoll = κ/T 2, where κ = 3/(κ−1

2 + κ−1
3 + κ−1

∞ ) = 628 MeV2

fm/c. In the limit of large relaxation times, the interrelationship
between various sources of dissipation can be ignored [17] and
one can treat also the wall dissipation as an additional source
in the collision term by defining the total relaxation time as

τ−1 = τ−1
coll + τ−1

wall. (34)

Here we neglected the particle emission from an excited
nucleus.

Applying the formalism of the linearized Landau-Vlasov
equation in the relaxation time approximation [17,25] leads to
the following approximate expression for the imaginary part
ωI of the giant multipole resonance frequency ω = ωR + iωI :

ωI 
 −qωR

ωRτ

1 + q(ωRτ )2
, (35)

where the factor q is related with the Landau parameter
F0 as q = 2/5(1 + F0). Equation (35) is, in fact, a suitable
interpolation between the two well-known limits [46] of rare
collisions ωRτ � 1 (zero sound) with ωI 
 −1/τ and of
frequent collisions ωRτ � 1 (first sound) with ωI 
 −qω2

Rτ .
The Landau parameter F0 can be expressed via the

nuclear-matter incompressibility K∞ and Fermi energy EF =
p2

F /2m∗
L as K∞ = 6EF (1 + F0). The Landau effective mass

m∗
L is connected to the Landau parameter F1 as m∗

L = m(1 +
1
3F1). Using the NL3∗ parameter set of the RMF model we
obtain F0 = −0.20 and F1 = −1.04.

We have applied Eq. (35) with ωR = E
 to compute
the GMR width � = −2ωI . The result is shown by the
solid line in the bottom panel of Fig. 10. We observe that
Eq. (35) gives a reasonable estimate of the magnitude of the
collisional broadening for heavy nuclei. However, the GMR
width computed by using Eq. (35) is too large for medium and
light nuclei. This is expected, given the fact that we have used
the upper limit of the “apparent temperature,” which becomes
unphysically high for small mass numbers.

We have to point out that the zero-sound damping con-
ditions are valid for medium-to-heavy mass region A > 50,
where we have ωRτ > 6. This creates a puzzle, because, as
we have seen, the nuclear-matter zero-sound model would
strongly overestimate the experimental GMR centroid ener-
gies. The answer could be that the finite size effects essentially
modify the zero-sound mode in a real nucleus.

The GMR damping mechanism has been a long-winded
problem in quantal structure calculations in the spirit of the
RPA [52] and GCM calculations [10]. It is not the scope
of this work to list all the various structure calculations and
discuss their details; however, they can serve for a qualitative
comparison with our calculations. For more details, we refer
the reader to review articles [53,54]. Figure 11 displays again
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FIG. 11. (Color online) Width of the GMR as a function of
the mass number. Vlasov and full GiBUU results (filled circles
and gray band, respectively) are compared with experimental data
(open diamonds) taken from [48]. The solid-circle and solid-square
curves shows the (Q)RPA and QTBA results, respectively, taken from
Ref. [55].

the GMR width in the Vlasov approach and the full BUU
transport model and shows a comparison with the two sets of
calculations from Ref. [55].

The (Q)RPA calculations, except for the contribution
from pairing effects in open-shell nuclei, can be considered
as the quantum analog of our semiclassical Vlasov-mode
calculations. Collective response is a superposition of 1p-1h
excitations in the both types of calculations. The difference
between (Q)RPA and Vlasov results for the GMR width
stems from missing the quantum-fragmentation- (Landau
damping-) width contribution in our calculations.2 Including
a quasiparticle-phonon coupling in the quasiparticle time-
blocking approximation (QTBA) [55] can be regarded as a
coupling to the 2p-2h configurations [56], which leads to
the strong increase of the total GMR width. We observe a
similar effect in our full BUU calculations, because nucleon-
nucleon collisions in the Uehling-Uhlenbeck collision term
also generate 2p-2h excited states. Moreover, the difference
between QTBA and (Q)RPA results is quite close to the
difference between full BUU and Vlasov results. This again
indicates the importance of the correct description of the
fragmentation width contribution.

In the spirit of Refs. [15,16], where the authors argue that the
Markovian approximation (i.e., a standard Uehling-Uhlenbeck
collision term) is not able to produce any broadening of the gi-
ant multipole vibrations at zero temperature owing to severe re-
strictions of the available phase space for two-body collisions,
our result on the width enhancement by two-body collisions
looks quite surprising. In Ref. [16], the authors explain about
25–30% of the observed GMR width by taking into account
the memory effects in the collision term (non-Markovian
approach). However, the analytical models [15–17,19]
are based on the linearized kinetic equation violating the
energy conservation. In particular, the temperature increase

2In the analytical models based on the BUU equation [17,19], the
quantum-fragmentation-width contribution has been included as an
additional source term in kinetic equations. However, this is a purely
phenomenological way of describing the damping width of giant
multipole resonances in the ground-state nuclei.
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owing to the damping of collective motion is completely
neglected in these approaches. We stress that the solution of
the full nonlinear BUU equation in a finite system leads to
much stronger collisional broadening than expected from the
linearized models.

V. CONCLUSIONS AND OUTLOOK

The aim of the present work has been to study theoret-
ically the excitation energy and the width of the GMR in
the framework of a semiclassical transport model. For this
purpose, a description of nuclear ground states and their phase-
space evolution within a unified semiclassical framework is
indispensable. Nuclear ground states are described by the RTF
method using a relativistic Hamiltonian density functional
which, in particular, contains the space derivatives of the
mean meson fields. The proton and neutron densities from
the RTF calculations serve to generate initial test-particle
configurations of different nuclei. The time evolution of the
nuclear system is calculated by solving the kinetic equations
which employ the mean-field potentials consistent with those
used in RTF. The improved transport model gives a perfect
stability of different ground-state nuclei over long time scales
in pure Vlasov dynamics.

The improved initialization method was found to be
important to generate a clear signal of the breathing mode.
Except for light nuclei, pure Vlasov calculations predict a
mass dependence of the excitation energy which is consistent
with available experimental data and with a simple liquid-drop
model. The situation is, however, more complex concerning
the lifetime of the breathing mode. Vlasov simulations strongly
underpredict the experimental data on the GMR spreading
width. The GMR width calculated by using the Vlasov
equation behaves as ∝ A−1/3, which is consistent with the
(modified) wall formula.

To better understand the GMR damping mechanism, the full
transport calculations of the GMR mode have been performed
for the first time. The inclusion of two-body collisions strongly
enhances the total GMR width to a better agreement with
experimental data. The strong damping of the GMR including
the collision term can be understood in terms of analytical
models for one-body and two-body dissipation taking into
account the temperature increase owing to the dissipation of
the GMR motion.

The Pauli blocking strongly influences the dynamics in
full BUU calculations. Thus, it has been treated as precise as
possible in the present work. The spurious particle emission
owing to incomplete (numerical) Pauli blocking destroys the
stability of nuclei on the long time scales of the order of ten
periods of GMR oscillations and has been subtracted. This,
however, produces a systematic error of about 30% in our
results on the GMR damping width.

Overall, the full BUU calculation underestimates the total
GMR width by about 30–50%. This might be related to the
missed Landau damping contribution in our semiclassical
approach, as the comparison between Vlasov and RPA
calculations may indicate. Moreover, the memory effects in
a collision integral neglected in our calculations also increase
the widths of giant multipole resonances.

In conclusion, the breathing-mode energies and widths in
medium-to-heavy nuclei are reasonably well described within
the GiBUU approach, when the same Hamiltonian energy
functional is consistently used in the initialization procedure
of nuclear ground states and their phase-space evolution.
Thus, an extension of the present work to investigate other
modes of collective excitation, such as isovector dipole and
isoscalar quadrupole resonances, seems possible and would
be a helpful tool in understanding better the dynamics in
low-energy reaction physics. Future transport applications to
fusion and deep-inelastic collisions for isospin asymmetric
systems to investigate exotic collective modes in neutron-rich
finite systems, such as the pygmy dipole resonance, seem
possible. Furthermore, the improved transport model may
be a better tool in theoretically describing hadron-induced
reactions, in particular the proton-induced reactions leading
to nuclear fragmentation, and very peripheral heavy-ion
collisions, in which the stability of nuclear ground states is
essential.
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