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Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both
high- and low-lying excited states in 16O. The coupling between one particle-one hole and two particle-two hole as
well as that between two particle-two hole configurations among themselves are fully taken into account, and the
residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where
only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond
the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for
these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature
of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found
with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided
by the second RPA owing to the huge number of two particle–two hole configurations. A better description of
the excitation energies of the low-lying 0+ and 2+ states is obtained with the second RPA than with the RPA.
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I. INTRODUCTION

The random-phase approximation (RPA) is currently used
to describe the excitation spectrum of a quantum many-body
system. Its success in nuclear physics is well established, and
the method has been applied for many years to describe giant
resonances and low-lying excitation modes. However, this
approach presents some well-known limitations. Extensions
and procedures to go beyond the RPA and to improve the
treatment of the correlations present in a many-body system
have been introduced in the past decades. A first natural
extension is the quasiparticle RPA (QRPA), where pairing
correlations are included by defining quasiparticle states
through the unitary Bogoliubov transformations [1]. This
allows a description of the excitation modes in superfluid
open-shell nuclei.

Other types of correlation may be introduced in a different
framework. A weak point in the formal development of the
RPA is related to the use of the quasiboson approximation
(QBA) which implies a violation of the Pauli principle as well
as a severe approximation on the reference state: the uncorre-
lated Hartree-Fock (HF) ground state is used in place of the cor-
related one. An explicitly correlated ground state as reference
state is employed in those extensions of the RPA where either
the use of the QBA is avoided or its effects are cured. Several
examples of these beyond-RPA methods have been discussed
in recent decades (see, e.g., [2] and references therein).

Another natural extension of the RPA, also based on the
QBA, is the second RPA (SRPA) method where two particle–
two hole (2p2h) excitations are included together with the
usual RPA one particle–one hole (1p1h) configurations,
providing in this way a richer description of the excitation
modes. The SRPA equations have been well known for

*Danilo.Gambacurta@ct.infn.it

many years and have been derived by following different
procedures. Some examples are the derivation within the
equations-of-motion method [3] and the procedures employing
a variational approach [4] or the small-amplitude limit of
the time-dependent density matrix [5,6]. However, until very
recently, the SRPA equations have never been fully and
self-consistently solved because of the heavy numerical effort
they require. Some approximations have been adopted in
the past; namely, the SRPA equations have been reduced to
a simpler second Tamm-Dancoff model (i.e., the matrix B

is put equal to zero; see, for instance, [7–10]) and/or the
equations have been solved with uncorrelated 2p2h states:
the residual interaction terms in the matrix that couples
2p2h configurations among themselves have been neglected
(diagonal approximation) [11–17]. Very recently, this problem
has regained a new interest; it is becoming numerically more
accessible now, and the SRPA equations have been solved
for closed-shell nuclei using an interaction derived from the
Argonne V18 potential (with the unitary correlation operator
method) [18,19] and for small metallic clusters in the jellium
approximation [20].

The increasing interest in the context of nuclear structure
is also justified by the manifestation of new phenomena in
unstable nuclei. For instance, pygmy resonances represent
exotic low-lying excitation modes related to the presence of
a skin in neutron-rich nuclei. The necessity to go beyond the
standard mean field to describe these resonances has been
demonstrated by the important effects found when particle-
vibration coupling is included [22].

In the SRPA, the coupling of the 1p1h configurations with
the 2p2h ones is fully considered, providing thus a more
general description of excited states than the one obtained
in the standard RPA. Some excitations like the giant or pygmy
resonances may already be described at the RPA level by
using the standard 1p1h configurations. The introduction
of 2p2h configurations is expected in these cases to enrich
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the theoretical description, providing an eventual shift of the
excitation energy and a proper treatment of the widths. Other
states, like the first 0+ or 2+ states in magic nuclei, are not
reproduced by the standard RPA model because configurations
beyond 1p1h are needed to describe them. Finally, 2p2h

configurations would allow one to study in a proper way
the double-phonon excitation modes that are experimentally
well known in nuclei [23] and have been the object of
several theoretical analyses. Most of these studies have so far
been based on boson mapping procedures, which, however,
require high-order expansions in order to take into account
the corrections owing to the Pauli principle (see Ref. [24]
and references therein). In many of the above-mentioned
collective excitations, the 2p2h components might have a very
important role, and thus interesting results are expected from
the application of the SRPA, including all kinds of coupling
between 1p1h and 2p2h elementary excitations.

The most often employed phenomenological interactions
currently in nuclear mean-field models are density-dependent
forces of Skyrme or Gogny type. It is well known that,
with density-dependent forces, the residual interaction used to
evaluate the RPA matrices A and B contains a rearrangement
term coming from the derivative with respect to the density
of the mean-field Hamiltonian (the second derivative of the
energy density functional). A first formal aspect to consider
in the SRPA problem with density-dependent forces is the
determination of the residual interaction that has to be used
in the matrix elements that are new with respect to the RPA.
To our knowledge, this aspect has not yet been clarified in
the literature. A prescription is introduced in Ref. [25], and
rearrangement terms appear in the matrix elements beyond the
RPA. However, in more recent calculations [26], the same
authors did not actually use that prescription and did not
include those rearrangement terms. For the results shown here,
we have explored two possibilities: (i) We have not included
rearrangement terms in beyond-RPA matrix elements; (ii) we
have calculated them with the usual RPA prescription. In a
forthcoming paper, we will discuss in more detail the formal
derivation of the residual interaction in the context of the SRPA
with density-dependent interactions.

To our knowledge, current versions of the SRPA are
based on noninteracting 2p2h configurations, and only the
interaction between 2p2h and 1p1h comfigurations has
generally been taken into account, in the so-called diagonal
approximation. In this work, we present full (the diagonal
approximation is not employed and the matrix B is different
from zero) Skyrme-SRPA results obtained for the doubly
magic nucleus 16O. In Sec. II the formal scheme of the SRPA
is briefly summarized, and the use of the QBA in the context
of the SRPA is commented on. Numerical checks on stability
and sum rules are presented in Sec. III. Results are shown in
Sec. IV, and a comparison between RPA and SRPA excitation
spectra is made for both giant resonances and low-lying states
in 16O. In particular, for the giant resonances, the transition
densities are analyzed and the radial distributions related
to the main peaks are shown for the RPA and SRPA. For
the low-lying states, special interest is devoted to the first
0+ and 2+ excitation modes. They are mainly composed of
2p2h configurations and, for this reason, cannot be correctly

predicted by the RPA. A comparison of the full SRPA results
with those obtained in the diagonal approximation is also
presented. Conclusions and perspectives are finally discussed
in Sec. V.

II. FORMAL SCHEME

We briefly recall the main formal aspects of the SRPA
that can be found in several articles (see, for instance,
Ref. [3]). The SRPA is a natural extension of the RPA where
the excitation operators Q+

ν are a superposition of 1p1h and
2p2h configurations:

Q†
ν =

∑
ph

(
Xν

pha
†
pah − Y ν

pha
†
hap

)

+
∑

p<p′,h<h′

(
Xν

php′h′a
†
paha

†
p′ah′ − Y ν

php′h′a
†
hapa

†
h′ap′

)
.

(1)

The X’s and Y ’s are solutions of the equations(
A B

−B∗ −A∗

) (
X ν

Yν

)
= ων

(
X ν

Yν

)
, (2)

where

A =
(

A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
,

X ν =
(

Xν
1

Xν
2

)
, Yν =

(
Y ν

1

Y ν
2

)
.

The indices 1 and 2 are a shorthand notation for the 1p1h and
2p2h configurations, respectively. The usual RPA matrices are
denoted A11 and B11, A12 and B12 are the matrices coupling
1p1h with 2p2h configurations, and A22 and B22 are the
matrices coupling 2p2h configurations among themselves. If
the QBA is used and the HF ground state is thus employed to
evaluate these matrix elements, it can be shown that B12, B21,
and B22 are zero. The other matrix elements are equal to

A12 = Aph,p1p2h1h2

= 〈HF|[a†
hap,

[
H, a†

p1
a†

p2
ah2ah1

]]|HF〉
= χ (h1, h2)V̄h1pp1p2δhh2 − χ (p1, p2)V̄h1h1p1hδpp2 ,

(3)

A22 = Ap1h1p2h2,p
′
1h

′
1p

′
2h

′
2

= 〈HF|[a†
h1

a
†
h2

ap1ap2 ,
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H, a

†
p′

2
a
†
p′

1
ah′

2
ah′

1

]]|HF〉
= (

εp1 + εp2 − εh1 − εh2

)
χ (p1, p2)χ (h1, h2)

× δh1h
′
1
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′
1
δh2h

′
2
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′
2
+ χ (h1, h2)V̄p1p2p

′
1p

′
2
δh1h

′
1
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′
2

+χ (p1, p2)V̄h1h2h
′
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′
2
δp1p

′
1
δp2p

′
2

+χ (p1, p2)χ (h1, h2)χ (p′
1, p

′
2)χ (h′

1, h
′
2)

× V̄p1h
′
1h1p

′
1
δh2h

′
2
δp2p

′
2
, (4)

where the ε’s are the HF single-particle energies, V̄ is the
residual interaction, and χ (ij ) is the antisymmetrizer for the
indices i,j .
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It can be shown [4,14], that the SRPA problem can
be reduced to an energy-dependent, RPA-like, eigenvalue
problem but where the A11 RPA matrix depends on the
excitation energies,

A1,1′ (ω) = A1,1′ +
∑
2,2′

A1,2(ω + iη − A2,2′ )−1A2′,1′ . (5)

To calculate this energy-dependent part, one has to invert
the A22 matrix defined in Eq. (4), whose dimensions are
generally very large, requiring thus a strong numerical effort.
However, if the terms depending on the residual interaction are
neglected, resorting to the so-called diagonal approximation,
the inversion is algebraic. This approximation, often used in
SRPA calculations, will be analyzed in Sec. IV.

Expressions (3) and (4) are valid in cases where the
interaction is not density dependent. Rearrangement terms
should be included in the case of density-dependent forces. To
obtain the results discussed in Sec IV, (i) we have calculated
the matrix elements (3) and (4) with V = V (ρ0) (ρ0 being
the HF density) without any rearrangement terms, and (ii) we
have evaluated them by adding the usual RPA rearrangement
contributions also in the A12 and A22 matrices.

It can be shown that the energy-weighted sum rules
(EWSRs) are satisfied in the SRPA [3]. Moreover, the first
moment

m1 =
∑

ν

ων |〈ν|F |0〉|2 (6)

for a generic one-body operator is found to be the same in
the RPA and SRPA [27]. A numerical check of this feature is
provided in the next section.

Some comments about the use of the QBA in the SRPA
can be found in the literature [20,28,29]: it is said that the
use of the QBA in the SRPA is a more drastic and severe
approximation than in the RPA. This can be easily understood
within the variational derivation of the SRPA provided by
Providencia [4]. The usual way of writing the RPA ground
state is

|�〉 = eŜ |	〉, (7)

where

Ŝ =
∑
ph

Cph(t)a†
pah, (8)

the operator Ŝ being a superposition of 1p1h configurations
built on top of the HF ground state |	〉. The expression of the
SRPA ground state in Ref. [4] is the same as that in Eq. (7),
where now the operator Ŝ also contains 2p2h terms:

Ŝ =
∑
ph

Cph(t)a†
pah + 1

2

∑
php′h′

Ĉpp′hh′(t)a†
pa

†
p′ahah′ . (9)

This means that the ground state is no longer a Slater
determinant. Because of this, the use of the HF ground
state to calculate the matrix elements (QBA) is a stronger
approximation than in the RPA. Extensions to cure this
problem in the context of the SRPA have been proposed and
applied to a simple model [29] and to metal clusters [20].
Future applications to nuclei are in progress.

III. STABILITY OF THE RESULTS AND SUM RULES

In this section we briefly discuss some technical details of
the calculations, paying particular attention to the convergence
of the results. As a first step, we solved the HF equation in the
coordinate space, by using a 20-fm box. In RPA and SRPA
calculations we consider the first n = 7 single-particle (s.p.)
states for each l, with l up to 6. The s.p. wave functions have
been represented as linear superpositions of square-well ones.
The SGII [21] parametrization of the effective interaction has
been used in the present calculations. Since Coulomb and
spin-orbit interactions are not taken into account in the residual
interaction, our calculations are not fully self-consistent and
thus violations of the EWSRs are found (at worst of 5%).
The s.p. space has been chosen large enough to assure that the
EWSRs are stable. In the following, we will focus our attention
on the excitation spectrum up to 50 MeV.

In RPA calculations, 1p1h configurations with unperturbed
energy up to 100 MeV are considered, while in the SRPA
we have considered all the 2p2h configurations with an
unperturbed energy lower than an energy cutoff Ecut.

In the SRPA, matrix elements of the residual interaction
with three particle–one hole or four-particle indices appear in
A12 and A22, respectively. Because of the zero-range nature of
the interaction, matrix elements involving high-energy single-
particle states can also have non-negligible values. We have,
however, checked that they do not change too drastically in
the energy regions we are interested in. In order to study the
stability of the results with respect to the cutoff, we have
analyzed how the strength distributions change on increasing
Ecut from 80 up to 120 MeV.

It is well known that each excitation mode is characterized
by an escape (
↑) and a spreading (
↓) width as well as by a
Landau damping (see, for instance, Ref. [30]). The latter can
already be described by a standard discrete RPA calculation.
The spreading width cannot be described by the standard RPA,
while the SRPA model can take it into account by treating
the doorway states as 2p2h configurations (providing in this
way at least a partial description of the physical widths);
the huge number of 2p2h configurations makes the SRPA
discrete strength distributions much denser than the RPA ones
(see Fig. 5). The (
↑) width is obviously not included in
any calculation in a discrete basis. The continuous strength
distributions shown in this work are obtained by folding
the discrete spectra coming out of our calculations with a
Lorentzian having a width of 1 MeV, which is just a smoothing
parameter introduced to make easier the comparison between
different results. It is not strictly related to the physical width,
whose calculation is beyond the scope of the present work.

In Figs. 1 and 2 we show the monopole and quadrupole
strength distributions, respectively, for different choices of Ecut

(indicated in MeV in parentheses in the figures). The multipole
transition operators used are

F IS
λ =

∑
rn
i Yλ0(r̂i), (10)

F IV
λ =

∑
rn
i Yλ0(r̂i)τz(i) (11)

in the isoscalar and isovector channels, respectively, where
n = λ except for λ = 0 where n = 2. From the figures, we see
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FIG. 1. (Color online) Isoscalar (upper panel) and isovector
(lower panel) strength distributions for monopole states obtained in
the SRPA for increasing values of the energy cutoff, indicated in MeV
in parentheses in the figure, on the 2p2h configurations.

that a cutoff equal to 120 MeV is suitable to have stable results.
Similar stability checks have been systematically made for all
the results shown in the following.

As mentioned above, the EWSRs are satisfied in the SRPA
and the first moment (6) is the same in the RPA and SRPA.
For a generic one-body operator,

F =
∑
α,β

〈α|F |β〉a†
αaβ, (12)

the transition amplitudes are easily calculated, and they have
the same expression in both the RPA and SRPA, namely,

〈0|[Qν, F ]|0〉 ≈ 〈HF|[Qν, F ]|HF〉
=

∑
ph

{
Xν∗

ph〈p|F |h〉 + Y ν∗
ph〈h|F |p〉}. (13)
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FIG. 2. (Color online) As Fig. 1 but for the quadrupole case.

TABLE I. Evolution of the monopole isoscalar and isovector
first moments obtained in the SRPA, (second and third columns,
respectively) as a function of the ωmax parameter in MeV [see
Eq. (14)]. In the last row, the corresponding RPA values are reported
with ωmax = 100 MeV.

ωmax m1(T = 0) m1(T = 1)
SRPA SRPA

40 626.4381 115.4153
50 648.9699 147.8026
60 661.0194 182.7364
70 664.3803 193.7896
80 669.7185 197.6874
90 671.4575 200.6472
100 671.6515 201.2473
110 671.6515 201.2473
RPA 671.6516 201.2494

We note that only the p-h components of the transition operator
are selected and that, in the case of the SRPA also, only the
1p1h amplitudes appear in the above equation.

In the present work, when an energy cutoff Ecut =
120 MeV is used on the 2p2h configuration, SRPA calcula-
tions involve the diagonalization of large matrices, of the order
of N = (5–6) × 104. A Krylov-Schur iteration procedure from
the SLEPC package [31] has been used. Since we are interested
in the low part of the spectrum, in order to reduce the time of
calculation only the first n eigenvalues [with n ∼ (1–2) × 103]
are calculated. In the evaluation of the first moment (6) we need
to know all the excited states, and SRPA calculations with
high energy cutoff for 2p2h configurations would require a
very long calculation time. Therefore, we have done some
calculations with a smaller energy cutoff, that is, Ecut =
60 MeV, so that the whole energy spectrum can be calculated.
In Table I we report, for the monopole case, the isoscalar and
isovector values (second and third columns, respectively) of
the SRPA first moment

m1 =
ωmax∑

ν

ων |〈ν|F |0〉|2 (14)

obtained by including all the states with an excitation energy
lower than ωmax, whose increasing values are shown in the first
column of the table. In the last row, the corresponding RPA
values are reported with ωmax = 100 MeV. We see that, with
increase of the value of the parameter ωmax, the SRPA values
of the first moment become close to the RPA ones. Similar
results have also been obtained in the quadrupole and dipole
cases.

We stress that, for even smaller values of the energy cutoff
Ecut, a similar (almost identical) agreement of the SRPA m1

with the RPA value is found. Indeed, a change in the energy
cutoff Ecut causes only a redistribution of the strength while
the total strength is the same and is equal to the RPA value.
This is related on the one hand to the fact that only the 1p1h

amplitudes appear in the transition amplitudes and on the other
hand to the formal properties of the SRPA equations [27].

A similar behavior is found when SRPA calculations are
performed with the rearrangement terms as they are defined in
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TABLE II. As in Table I but SRPA results include also the
rearrangement terms.

ωmax m1(T = 0) m1(T = 1)
SRPA∗ SRPA∗

40 616.6714 119.7808
50 650.1523 155.1027
60 663.9445 181.1740
70 670.0688 185.2818
80 670.2844 197.3268
90 671.5175 200.6471
100 671.6515 201.2493
110 671.6515 201.2493
RPA 671.6516 201.2494

RPA included. In Table II are shown the results so obtained. In
this case we see also that the total SRPA moments, that is, the
ones corresponding to the largest value of the parameter ωmax,
are the same as the ones shown in Table I. At the same time,
we stress that a different distribution with respect to the ωmax

energy is found (see also Fig. 6).

IV. SECOND RANDOM-PHASE APPROXIMATION
EXCITATION SPECTRUM IN 16O

In this section, we present the nuclear strength distributions
obtained in the SRPA for different multipolarities and compare
them with the RPA ones. The doubly magic nucleus 16O has
been chosen for these first applications of the Skyrme SRPA. In
the SRPA different levels of approximation will be considered.
As discussed previously, in the case of density-dependent
interactions it is not clear how to define the residual interaction
appearing in the matrix elements beyond the RPA, in particular
as far as the rearrangement terms are concerned. Work is in
progress to derive the proper expressions to be used in matrix
elements beyond the RPA; however, we believe that useful
information can be obtained by using two different choices:
(i) The interaction is used without rearrangement terms in
matrix elements beyond the RPA; (ii) rearrangement terms are
included also in matrix elements beyond the RPA, calculated
with the usual RPA prescription.

Furthermore, the full SRPA calculations are compared with
those obtained when the diagonal approximation is used.

A. Monopole and quadrupole strength distributions

In this section, we focus our attention on the monopole and
quadrupole strength distributions. Unless otherwise stated, no
rearrangement terms are included in SRPA calculations. In
Fig. 3 we show the RPA (dashed black lines) and SRPA (full
red lines) results for the isoscalar (upper panel) and isovector
(lower panel) monopole strength distributions. In the SRPA
all the 2p2h configurations with an unperturbed energy lower
than an energy cutoff Ecut = 120 MeV are included.

In both isoscalar and isovector cases, the strongest effect in
the SRPA is a several-MeV shift of the strength distribution to
lower energies with respect to the RPA. This result seems to
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FIG. 3. (Color online) RPA [dashed (black) lines] and SRPA [full
(red) lines] for the isoscalar (upper panel) and isovector (lower panel)
monopole strength distributions.

be a general feature of the SRPA and has been found also in
different SRPA calculations [18–20]. Looking at the figures,
however, one sees that the profiles of the strength distributions
are not very much changed, except for this shift. The same
remarks are valid also for the quadrupole case displayed in
Fig. 4. Figure 5 gives an idea of the detail in which the
SRPA describes the fine structure of the response: a very
dense distribution of discrete contributions can be seen for the
SRPA case owing to the existence of many 2p2h elementary
excitations in addition to the standard RPA 1p1h ones.

Figures 6 and 7 represent the same quantities as Figs. 3 and
4, respectively. However, this time the SRPA results obtained
with rearrangement terms in beyond-RPA matrix elements
(SRPA(∗)) are also presented in order to evaluate their effect.

For the isoscalar monopole case (top panel of Fig. 6),
the residual interaction seems to be more repulsive when
rearrangement terms are added, providing a smaller energy
shift to lower energies with respect to the RPA. In all the
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FIG. 4. (Color online) As Fig. 3 but for the quadrupole case.
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FIG. 5. (Color online) As Fig. 3 but using a logarithmic scale in
the ordinate.

other cases shown in Figs. 6 and 7, the strength distribution
appears very strongly fragmented when rearrangement terms
are included in all matrix elements. We know that the usually
adopted way to evaluate the rearrangement terms in beyond-
RPA matrix elements is not the correct one even if it is currently
used. Work is in progress to obtain the correct expressions; the
fact that the SRPA(∗) results are so different from the SRPA
ones underlines that this is a very delicate point and indicates
that the proper expressions are needed.

In Figs. 8 and 9 the comparison is made with the
diagonal approximation. The results are quite different,
and this suggests that the residual interaction should
not be neglected in the matrix A22 in Skyrme-SRPA
calculations.

Finally, Figs. 10–13 display the transition densities. In
Fig. 10 (for the monopole isoscalar response) the SRPA
transition density refers to the peak at ∼17 MeV while the RPA
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FIG. 7. (Color online) As Fig. 6 but for the quadrupole case.

transition density is evaluated for the peak at ∼21 MeV in the
top panel of Fig. 3. The profiles are not very different, meaning
that the nature of these RPA and SRPA excited states is not very
different in terms of the spatial distributions of wave functions
contributing to them. The same considerations can be made
for the results shown in Fig. 12 (referring to the quadrupole
isoscalar response). In this figure, the RPA (SRPA) transition
density is calculated for the peak at ∼22 MeV (13 MeV) in
the top panel of Fig. 4.

The case for the isovector responses is different. In Fig. 11
the RPA (SRPA) transition density, for the monopole response,
is calculated for the peak at ∼29 MeV (25 MeV) shown
in the bottom panel of Fig. 3. For the quadrupole case, the
transition densities obtained in the RPA (SRPA) for the peak at
∼32 MeV (25 MeV) (see lower panel of Fig. 4) are shown
in Fig. 13. Important differences are visible between RPA
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and isovector (lower panel) monopole strength distributions are
shown.
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and SRPA results, suggesting that the nature of SRPA and
RPA excited states in terms of the radial distribution of wave
functions contributing to the excitation is quite different.
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FIG. 11. (Color online) As Fig. 10 but for the monopole isovector
states.

B. Dipole strength distributions

The Thouless theorem on the EWSRs [32] is a very
important feature of the RPA and it holds also in the SRPA
[3]. It guarantees that spurious excitations corresponding to
broken symmetries separate out and are orthogonal to the
physical states. In Ref. [33] a detailed discussion about the
treatment of single and double spurious modes in the RPA and
extended RPA theories has been presented. In particular, it has
been shown that, when an approximate ground state is used
and/or 2p2h configurations are included, all the single-particle
amplitudes have to be taken into account for the construction
of the elementary configurations in order to have single and
double spurious modes lying at zero energy. In a self-consistent
RPA, that is, when the same interaction is used at HF and RPA
level, the motion of the center of mass (associated with the
translational invariance) appears at zero energy and is thus
exactly separated from the physical spectrum. As we have
mentioned, our RPA approach is not fully self-consistent and
the spurious state lies at about 1 MeV, exhausting more than
96% of the isoscalar EWSRs. In the SRPA, as a consequence
of the coupling with the 2p2h configurations, the spurious
state is found to be at imaginary energy. We stress that in a
self-consistent SRPA approach this state should appear at zero
energy as in the RPA. In order to study the possible mixing
with spurious components, we have examined the isoscalar
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dipole strength distribution using a transition operator of the
radial form (∼r3) and its corrected form (∼r3 − 5

3 〈r2〉r). The
results are shown in the upper panel of Fig. 14. We can see that
some differences between the two cases appear, especially in
the lowest part of the spectrum, while the mixing with spurious
components is smaller in the energy region around and beyond
the isovector dipole giant resonance. Recall that a prescription
often used in the literature for the treatment of the spurious
mode consists in multiplying the residual interaction by a
renormalizing factor such that the spurious mode is found at
zero energy. In our RPA calculations, the spurious state is found
at 1.02 MeV, and by use of a renormalizing factor of 1.006
its energy goes down to 0.02 MeV; the rest of the isoscalar
and isovector distributions remain practically unchanged. The
same prescription has not been used in the SRPA since the use
of a renormalizing factor does not solve the problem of the
appearance of imaginary solutions, even when larger values of
the renormalizing factor are used.

In the lower panel of Fig. 14 we plot the results for the
isovector case. We observe that, in going from the RPA to the
SRPA, as in the monopole and quadrupole cases, there is a
strong shift toward lower energies of the strength distribution.
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FIG. 13. (Color online) As Fig. 12 but for the quadrupole
isovector case.

In Fig. 15, we show the results when the diagonal
approximation is used. In the upper panel of the figure, the
isoscalar strength distributions obtained using the corrected
and uncorrected transition operators are shown, and we see
that, as in the previous case, very small differences are present
when the two different operators are used. In the lower panel of
the same figure, the isovector distributions obtained in the RPA
(dashed black line), the SRPA in the diagonal approximation
(dot-dashed blue line), and the full SRPA (full red line) are
shown. It is interesting to note that the results obtained in the
diagonal approximation are different from the ones obtained
in the full SRPA, the differences, however, being smaller than
the ones found in the monopole and quadrupole cases.

As far as the rearrangement terms are concerned, we have
found in the dipole case that, even when small values of the
2p2h energy cutoff Ecut are used (60–80 MeV), the SRPA
equations give imaginary solutions if the rearrangement terms
are included in all matrix elements. Moreover, a comparison
in this case of the isoscalar strength distributions obtained
by using the corrected and uncorrected transition operators
shows very large differences, especially in the low-energy part
of the spectrum, indicating that a strong mixing with spurious
components is present in this case. In the isovector channel,
the position of the main peak is not very different from the
one obtained when no rearrangement terms are used (lower
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panel of Fig. 14), but the height of the peak is strongly reduced
(more than 50%).

In Fig. 16 the RPA (SRPA) transition density, for the
isovector dipole response, is calculated for the peak at
∼20 MeV (14 MeV) shown in the bottom panel of Fig. 14.
We see that in the dipole case the transition densities in the
RPA and SRPA are quite similar. This behavior is at variance
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take into account c.m. corrections. Lower panel: RPA [dashed (black)
line], SRPA in the diagonal approximation [dot-dashed (blue) line],
and full SRPA [full (red) line] isovector dipole strength distribution
obtained using the standard dipole transition operator of radial
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FIG. 16. (Color online) As Fig. 12 but for the dipole isovector
case.

with what we found in the monopole and quadrupole cases, as
shown in Figs. 11 and 13, respectively.

C. Low-lying 0+ and 2+ states

The results for the 0+ and 2+ low-lying states obtained in
the SRPA are shown in Tables III and IV. These states are
mainly composed by 2p2h configurations.

The largest 1p1h configuration in the 0+ state is (2p1/2,

1p1/2)π with an unperturbed energy of 16.17 MeV when no
rearrangement terms are considered and (3p1/2, 1p1/2)ν with
an unperturbed energy of 24.03 MeV when rearrangement

TABLE III. Energy of the lowest 0+ state obtained in the
RPA and SRPA, compared with the experimental value [34]. The
results identified with the star are obtained by taking into account
rearrangement terms (last two rows). By “SRPA-D” we indicate the
SRPA results when the diagonal approximation is used (fourth and
sixth rows). The SRPA result in the diagonal approximation with
rearrangement terms gives an imaginary solution (last row).

Low-lying 0+ energy (MeV)

Expt. RPA SRPA SRPA-D SRPA∗ SRPA∗-D

∼6 16.19 6.43 11.23 5.29 Imaginary
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TABLE IV. As Table III but for the 2+ state.

Low-lying 2+ energy (MeV)

Expt. RPA SRPA SRPA-D SRPA∗ SRPA∗-D

∼7 16.03 7.16 12.44 4.70 Imaginary

terms are included. In both cases, the lowest 2p2h configura-
tion is [(1d5/2, 1p1/2)3[(1d5/2, 1p1/2)3]0

π with an unperturbed
energy of E =15.26 MeV.

For the 2+ state, the most important 1p1h configu-
ration is (2d5/2, 1s1/2)π with an unperturbed energy of
28.28 MeV when rearrangement terms are not considered.
When rearrangement terms are included, the most important
configuration is (2p3/2, 1p1/2)ν with an unperturbed energy of
21.71 MeV. The lowest 2p2h configuration is, in both cases,
[(1d5/2, 1p1/2)3[(1d5/2, 1p1/2)3]2

π with an unperturbed energy
of 15.26 MeV.

Several conclusions may be drawn about these results. First,
the RPA is not able to describe these low-lying states at all,
simply because beyond-1p1h configurations are necessary to
construct them. The RPA energies are indeed far too high in
both cases.

It is striking that the SRPA energies are very close to the
experimental results. The residual interaction seems to be very
important for describing these states: The first unperturbed
2p2h configuration is actually located at about 15 MeV, and
the residual interaction is thus responsible for the strong
shift to lower energies in the response. When rearrangement
terms are included, the shift is even stronger. The diagonal
approximation looks very poor for the treatment of these
low-energy states, indicating that the interaction between 2p2h

configurations is very important for providing the correct
excitation energies.

Finally, it is interesting to compare the SRPA results
with those from other types of analysis. As an illustration,
let us consider the energy of the first 0+ excited state. Ab
initio coupled-cluster investigations do not reproduce at all
the energy of this state, providing an excitation energy of
19.8 MeV [35]. Brown and Green have described the low-lying
states in 16O by mixing spherical and deformed states [36].
The shell model can nicely describe these states owing to the
configuration mixing [37]. Cluster models are also able to well
describe this state by assuming an α+12C or a 4α structure for
the nucleus 16O (see Ref. [38] and references therein). The
SRPA is the only RPA-like approach in spherical symmetry
that reproduces this energy without any special modelization
for the structure of the nucleus 16O.

It is worth mentioning, however, that a complete analysis
of these low-energy states would need also the evaluation
of the B(Eλ) values. Work is in progress in this direction
to evaluate the transition probabilities in these cases, where

the excitations are mainly composed of 2p2h configurations
and thus a transition operator containing also a two-body part
should be more suitable, as in Ref. [19] in the case of the
double dipole resonance.

V. CONCLUSIONS

We have performed Skyrme-SRPA calculations for describ-
ing collective and low-lying excited states in 16O. The Skyrme
interaction SGII is used. The SRPA scheme is fully treated
without employing the currently used second Tamm-Dancoff
or diagonal approximations. The rearrangement terms of the
residual interaction are treated in this work (i) by neglecting
them in the matrix elements beyond the RPA; (ii) by calculating
them with the usual RPA procedure for all the matrix elements.
Work is in progress to derive the proper expressions to be used
in beyond-RPA matrix elements.

A general feature of the SRPA strength distributions for
giant resonances is a several-MeV shift to lower energies
with respect to RPA distributions. This shift is very strong, so
Skyrme-SRPA energies of giant resonances are typically too
low with respect to the experimental response (Skyrme-RPA
results are in general in good agreement with the experimental
data for these excitations). However, the SRPA energies of
the low-lying 0+ and 2+ states are in very good agreement
with the experimental results. Actually, these excitations are
totally missing in the RPA spectrum because they are mainly
composed of 2p-2h configurations. The situation is thus
very different from the case of giant resonances, where the
excited modes are in any case mainly composed of 1p1h

configurations and can be described by both models.
To cure the problem of the strong energy shift for giant

resonances, we plan to explore the possibility of using an
extended SRPA scheme along the lines of Refs. [20,39]. Since
the giant resonances and the low-lying states treated here
are basically very different (composed of 1p1h and 2p2h

excitations, respectively) and are related to different kinds
of matrix elements, one can eventually expect an extended
SRPA model to solve the problem of the strong shift of giant
resonances, preserving at the same time the good quality of
the low-lying states. A longer-term project is to look for some
new parametrization of the effective interaction, adjusted so as
to make it suitable for SRPA calculations.

Finally, after this first numerical application of the method,
we plan in future work to explore with the SRPA heavier or
more exotic nuclei and to check the model dependence of the
results by employing other Skyrme parametrizations also.
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[30] G. Colò, N. Van Giai, P. F. Bortignon, and R. A. Broglia, Phys.
Rev. C 50, 1496 (1994).

[31] V. Hernandez, J. E. Roman, and V. Vidal, ACM Trans. Math.
Softw. 31, 351 (2005), [http://www.grycap.upv.es/slepc].

[32] D. J. Thouless, Nucl. Phys. 21, 225 (1960).
[33] M. Tohyama and P. Schuck, Eur. Phys. J. A 19, 203

(2004).
[34] F. Ajzenberg-Selove, Nucl. Phys. A 375, 1 (1982); O. Sorlin and

M. G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).
[35] M. Wloch, D. J. Dean, J. R. Gour, M. Hjorth-Jensen,

K. Kowalski, T. Papenbrock, and P. Piecuch, Phys. Rev. Lett.
94, 212501 (2005).

[36] G. E. Brown and A. M. Green, Nucl. Phys. 75, 401 (1966).
[37] A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. 21,

39 (1968).
[38] Y. Funaki, T. Yamada, H. I. Horiuchi, G. Ropke, P. Schuck, and

A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008).
[39] D. Gambacurta and F. Catara, Phys. Rev. B 81, 085418

(2010).

054312-11

http://dx.doi.org/10.1016/0029-5582(65)90937-5
http://dx.doi.org/10.1007/BF01295456
http://dx.doi.org/10.1016/j.ppnp.2004.02.002
http://dx.doi.org/10.1016/j.ppnp.2004.02.002
http://dx.doi.org/10.1103/PhysRevLett.37.266
http://dx.doi.org/10.1007/BF01437703
http://dx.doi.org/10.1016/0370-2693(95)00229-E
http://dx.doi.org/10.1103/PhysRevC.57.1515
http://dx.doi.org/10.1016/0375-9474(78)90311-1
http://dx.doi.org/10.1016/0370-2693(84)90977-8
http://dx.doi.org/10.1016/0375-9474(84)90107-6
http://dx.doi.org/10.1016/0375-9474(86)90238-1
http://dx.doi.org/10.1016/0375-9474(86)90238-1
http://dx.doi.org/10.1016/0370-2693(86)91146-9
http://dx.doi.org/10.1016/0370-2693(86)91146-9
http://dx.doi.org/10.1016/0375-9474(83)90104-5
http://dx.doi.org/10.1016/0375-9474(83)90104-5
http://dx.doi.org/10.1016/0375-9474(86)90343-X
http://dx.doi.org/10.1016/j.physletb.2008.12.037
http://dx.doi.org/10.1103/PhysRevC.81.024317
http://dx.doi.org/10.1103/PhysRevC.81.024317
http://dx.doi.org/10.1103/PhysRevB.79.085403
http://dx.doi.org/10.1016/0370-2693(81)90646-8
http://dx.doi.org/10.1016/0375-9474(81)90741-7
http://dx.doi.org/10.1016/0375-9474(81)90741-7
http://dx.doi.org/10.1103/PhysRevC.78.014312
http://dx.doi.org/10.1103/PhysRevC.78.014312
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.077
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.077
http://dx.doi.org/10.1103/PhysRevC.57.3049
http://dx.doi.org/10.1103/PhysRevC.50.1496
http://dx.doi.org/10.1016/0370-1573(94)00079-I
http://dx.doi.org/10.1103/PhysRevC.68.024317
http://dx.doi.org/10.1016/j.nuclphysa.2003.10.001
http://dx.doi.org/10.1103/PhysRevC.79.054615
http://dx.doi.org/10.1016/0370-2693(79)90497-0
http://dx.doi.org/10.1016/0370-2693(79)90497-0
http://dx.doi.org/10.1016/0375-9474(87)90379-4
http://dx.doi.org/10.1016/0375-9474(87)90379-4
http://dx.doi.org/10.1016/0375-9474(88)90006-1
http://dx.doi.org/10.1016/0375-9474(88)90006-1
http://dx.doi.org/10.1016/0375-9474(90)90425-L
http://dx.doi.org/10.1016/0375-9474(88)90319-3
http://dx.doi.org/10.1103/PhysRevC.49.2824
http://dx.doi.org/10.1103/PhysRevC.49.2824
http://dx.doi.org/10.1103/PhysRevC.73.024319
http://dx.doi.org/10.1103/PhysRevC.73.024319
http://dx.doi.org/10.1103/PhysRevC.50.1496
http://dx.doi.org/10.1103/PhysRevC.50.1496
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://www.grycap.upv.es/slepc
http://dx.doi.org/10.1016/0029-5582(60)90048-1
http://dx.doi.org/10.1140/epja/i2003-10110-7
http://dx.doi.org/10.1140/epja/i2003-10110-7
http://dx.doi.org/10.1016/0375-9474(82)90538-3
http://dx.doi.org/10.1016/j.ppnp.2008.05.001
http://dx.doi.org/10.1103/PhysRevLett.94.212501
http://dx.doi.org/10.1103/PhysRevLett.94.212501
http://dx.doi.org/10.1016/0029-5582(66)90771-1
http://dx.doi.org/10.1103/PhysRevLett.21.39
http://dx.doi.org/10.1103/PhysRevLett.21.39
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevB.81.085418
http://dx.doi.org/10.1103/PhysRevB.81.085418

