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Analysis of bulk and surface contributions in the neutron skin of nuclei
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Diagonal 647, E-08028 Barcelona, Spain
2Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Skłodowskiej, ul. Radziszewskiego 10, PL-20031 Lublin, Poland

(Received 26 March 2010; published 19 May 2010)

The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple
implications for nuclear and astrophysical studies. However, precision measurements of this observable are
difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface
nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of
nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These
interactions are successful in describing nuclear charge radii and binding energies but predict different values for
neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent
neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than
the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions
in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn
and Pb.
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I. INTRODUCTION

The description of the sizes and shapes of atomic nuclei is
among the oldest problems in nuclear physics. The rms radius
of the charge distribution in nuclei surely is the most prominent
example of this kind of observable. Owing to the high
degree of accuracy achieved by the elastic electron-nucleus
and muon-nucleus scattering experiments, the nuclear charge
radius is nowadays known with uncertainties that are for many
nuclei smaller than 1% [1,2]. In contrast, our knowledge about
the neutron distribution and its rms radius in nuclei is not so
precise. Actually, accurate determinations of the rms radius
of the neutron density are still lacking. This implies that
the so-called neutron skin thickness, generally defined as the
neutron-proton rms radius difference in the atomic nucleus,

�Rnp = 〈r2〉1/2
n − 〈r2〉1/2

p , (1)

is not precisely known either.
The neutron skin thickness observable, Eq. (1), is a very

sensitive probe of the pressure difference that exists between
neutrons and protons in the atomic nucleus. As such, �Rnp

is intimately correlated with the density dependence of the
nuclear symmetry energy and with the equation of state of
pure neutron matter [3–12]. Owing to this fact, the accurate
calibration of �Rnp is a problem of significant implications
for studies that embrace diverse facets of both nuclear physics
and nuclear astrophysics (see, for example, Refs. [13–23]).
It should be mentioned that Eq. (1) is not the only useful
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prescription to characterize the different spatial extension of
the neutron and proton densities in a nucleus. The neutron-
proton radius difference has also been computed using Helm
radii instead of rms radii for the discussion of nuclear halos
in the literature [24,25]. Nevertheless, in the present work we
use the conventional and more frequent definition for �Rnp,
Eq. (1).

Because neutrons are uncharged particles, the measurement
of their spatial distribution in the nucleus is more difficult
than for the positively charged protons (see, e.g., Ref. [26]).
The experimental access to neutron densities and neutron rms
radii usually involves strongly interacting hadronic probes,
for example, in the case of experiments that perform proton-
nucleus elastic scattering [27–31], α-particle elastic scattering
[32], and techniques based on the inelastic scattering excitation
of the giant dipole and spin-dipole resonances [33,34]. The
neutron skin thickness of nuclei has also been investigated
through radiochemical and x-ray techniques in antiprotonic
atoms [35–40], taking advantage of the fact that the nuclear
periphery is very sensitive to antiprotons in the normally
electronic shell. Although the scope of our analysis of neutron
skins is theoretical, in this article we refer to some extent to
the experimental investigations in antiprotonic atoms to set the
stage for our calculations.

A few years ago, Trzcińska et al. [38,39] extracted the
neutron skin thickness of a large set of nuclei in experiments
with antiprotons conducted at the former LEAR facility of
CERN. The measurements were made for 26 stable isotopes
distributed across the mass table, from the light and symmetric
nucleus 40Ca to the heavy and asymmetric nucleus 238U.
Because of the fact that the antiproton-nucleon interaction
is very strong, antiprotons are able to interact with the atomic
nucleus at distances where the nuclear density is much smaller
than its central value. Slow enough antiprotons can form a
hydrogen-like atom with the nucleus. When the antiproton
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annihilates with a nucleon, producing pions that may miss
the nucleus, it leaves a residue that is one neutron or proton
fewer. From the analysis of these yields, information about the
neutron distribution in the nucleus can be obtained [35–39].
A second experimental method measures antiprotonic x rays
from where the atomic level widths and shifts owing to the
strong interaction are determined [38–40]. By combining
the results obtained with these two experimental techniques,
the neutron-proton rms difference �Rnp can be de-
duced provided that the charge density of the nucleus is
known [38–40].

The extraction of �Rnp values from antiprotonic atoms
assumes nucleon densities in the form of two-parameter
Fermi (2pF) distributions. The procedure involves interpreting
whether the difference between the peripheral neutron and
proton densities arises from an increase of the mean location
of the surface of the neutron density (i.e., from an increase
of the bulk radius of neutrons) or, rather, from an increase of
the surface diffuseness of the neutron density. This question is
also instrumental in studies of properties of nuclei by parity-
violating electron scattering [41]. The radiochemical data in
antiprotonic atoms were shown to be in favor of interpreting
�Rnp as an increase of the neutron surface diffuseness [38,39]
but with the caveat that some room existed within assigned
errors for an intermediate situation [38]. Indeed, a comparison
with the droplet model [42] suggests that the neutron skin
sizes of the antiprotonic measurements can be described
similarly well in the droplet model theory by a difference
in the diffuseness as by a difference in the bulk radius of the
neutron and proton densities.

In the present work we theoretically investigate the bulk
and surface components in the neutron skin thickness of
nuclei by parametrizing self-consistently calculated nucleon
densities by 2pF distributions. The 2pF form is also common
in experimental analyses. Our calculations are performed
with some representative effective nuclear forces. These are
the finite-range Gogny D1S interaction and the zero-range
Skyrme SLy4 force from the nonrelativistic framework, and
the NL3 and FSUGold parameter sets from the relativistic
mean-field (RMF) framework. We discuss the predictions that
these mean-field models make for the decomposition of the
neutron skin thickness in bulk and surface contributions for
the set of stable nuclei that were analyzed in the experiments
in antiprotonic atoms. We also study the theoretical predictions
along the isotopic chains of Sn and Pb and the variation of the
results as one moves from the proton to the neutron drip line
in these isotopic chains.

The structure of this article is the following. In Sec. II
we present a brief summary of the experimental methodology
and results in antiprotonic atoms to highlight some interesting
aspects for our study. In Sec. III we discuss the common
definitions of nuclear radii and characterize the bulk and
surface contributions in the neutron skin thickness of nuclei. In
Sec. IV we analyze the theoretical mean-field results in stable
isotopes and the predictions for nuclei across the Sn and Pb
isotopic chains. We present the summary and conclusions in
Sec. V. Some relations for 2pF functions are collected in the
Appendix.

II. SOME ASPECTS OF THE METHODS AND RESULTS IN
ANTIPROTONIC ATOMS

The radiochemical study of antiprotonic atoms
[35–39,43–45] consists of the analysis of the nuclei
with a mass number one unit smaller than the target mass
number At where the antiproton annihilation takes place.
These products that have one less neutron or proton are
short lived and their decay is followed by emission of γ

rays. Standard nuclear spectroscopy methods allow one to
determine the absolute number of these residual nuclei with
mass number At − 1. The probability of producing a cold
product with mass number At − 1 is calculated by using
the antiproton-nucleus optical potential fitted to reproduce
the x-ray experimental data (atomic level shifts and level
widths) [38,40,46]. The probability distribution for obtaining
a nucleus with mass number At − 1 has a maximum located
about 2–3 fm outside the half-density radius R1/2 of the target
nucleus.

To compare the experimental data for any target, it is
convenient to introduce the peripheral halo factor [47]:

f
expt
halo =

[
N (p̄n)

N (p̄p)

Zt

Nt

] / [
Im(δp̄n)

Im(δp̄p)

]
. (2)

The first term in brackets on the right-hand side of this equation
gives the ratio of the p̄ annihilations on peripheral neutrons
to the p̄ annihilations on peripheral protons, normalized with
the Zt/Nt value of the target nucleus. The quantities δp̄n and
δp̄p are the p̄-n and p̄-p scattering amplitudes, respectively,
and the factor F = Im(δp̄n)/Im(δp̄p) gives the ratio of the
p̄ annihilation probabilities on a neutron and on a proton.
Consequently, halo factor (2) essentially measures the change
of the ratio of the neutron-to-proton concentration in the
peripheral region with respect to the bulk value represented
by the Nt/Zt ratio in the target nucleus. A halo factor larger
(smaller) than 1 means an increase of the relative neutron
(proton) concentration in the nuclear periphery. Assuming
the ratio F is known, the measurement of the Nt − 1 and
Zt − 1 product yields allows one to obtain the experimental
value of the halo factor. It was concluded that the comparison
of the results from the antiprotonic x-ray method with the
radiochemical method favors a value of F ≈ 1 [38].

The number of nuclei with one fewer neutron or proton
is proportional to the quantities Im(δp̄n)ρn or Im(δp̄p)ρp,
respectively, integrated over the region where the annihilation
process takes place. Thus, approximately, one can estimate
theoretically the halo factor as [37,48]

f theor
halo (r) ≈ ρn(r)

ρp(r)

Zt

Nt

. (3)

This factor reaches the experimental value f
expt
halo at a distance

r ≈ R1/2 + 2.5 fm beyond the half-density radius of the charge
distribution, where the antiproton annihilation takes place. One
can use this fact to reproduce the neutron density distribution
from some experimental observables.

The charge distribution in many stable nuclei is known very
precisely. Usually the experimental charge density is given in
some analytical form that is or may be converted to a 2pF
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distribution [49,50]. The simple 2pF formula

ρ(r) = ρ0

1 + exp [(r − C)/a]
(4)

has only two free parameters with clear physical meaning: on
the one hand, a describes the diffuseness of the surface of the
density profile; on the other hand, the half density or central
radius C describes the mean location of this surface (i.e., C

is indicative of the extension of the bulk part of the density
distribution). The other, more sophisticated, parametrizations
of the density distributions [49,50] describe better the central
part of the nucleus or modify the surface part with higher-order
terms. We do not use them because the interpretation of the
multiple parameters is harder and less direct.

To study the differences at the nuclear periphery between
the neutron and proton densities in the antiprotonic atoms
experiments, the authors of Ref. [38] used 2pF functions.
They used the notation “neutron skin-type” distribution and
“neutron halo-type” distribution to describe the two extreme
cases of 2pF shapes having either Cn > Cp and an = ap

or Cn = Cp and an > ap, respectively. As we mentioned
in the Introduction, the radiochemical data gave support to
understanding the difference between the neutron and proton
rms radii in the antiprotonic atoms from an increase of an rather
than from an increase of Cn, compared to the ap and Cp values.
Thus, the neutron halo-type distribution (Cn − Cp = 0) was
assumed [38]. (Note that here “halo type” is a useful notation,
but the nuclei in the antiprotonic experiments are stable
isotopes and it is not meant that they have halos like very
light or exotic nuclei, such as 11Li [24,25]). It was noted in
the same work [38] that some room was left, nevertheless,
within the error bars for intermediate cases with Cn > Cp and
an > ap.

The 2pF shape can be applied for the description of
charge, proton, or neutron densities. Indeed, if the charge
density is known in the 2pF form, the corresponding point
proton density can be easily found and it also takes a 2pF
form, with the parameters obtained through the deconvolution
procedure [51,52]. The more relevant expressions are given
in the Appendix. From these proton density profiles, one
can try to deduce the neutron density profiles with some
additional information. For instance, if one knows the Cp

and ap parameters of the proton density and the value of
the neutron skin thickness �Rnp defined in Eq. (1) (e.g.,
from independent experimental measurements), a relationship
between the half-density radius Cn and the diffuseness an of
the neutron 2pF distribution can be found (see the Appendix).
Such a procedure creates a family of neutron density profiles
that depend on one free parameter, which can be chosen to
be either Cn − Cp or an − ap. Now it is possible to check
which set of values of Cn and an reproduces the experimental
halo factor (2). This allows one to determine the 2pF neutron
distribution. Next we apply this idea to the 208Pb nucleus as an
illustrative test case.

In Fig. 1 we display the halo factor, Eq. (3), for the 208Pb
nucleus computed with 2pF density distributions. The 2pF
neutron densities are obtained from the experimental charge
density taken from Ref. [53], which we convert to a 2pF proton
density using the formulas given in the Appendix. We consider
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FIG. 1. (Color online) The halo factor in 208Pb as a function of
the distance from the center of the nucleus, calculated using the
2pF formulas from the experimental charge density [53] assuming
a neutron skin thickness �Rnp = 0.16 fm and different values of
Cn − Cp (thin lines). The results of the theoretical predictions with
the Gogny D1S and Skyrme SLy4 nuclear forces are also shown.
The values of the halo factor deduced from experiment [38,40] are
marked by crosses. The value of the proton half-density radius Cp is
indicated by an arrow.

a family of 2pF neutron densities that differ one from the
other in the half-density radius Cn and diffuseness an, but
they all have the same value for the neutron skin thickness:
�Rnp = 0.16 fm (which corresponds to the value extracted
from the results of the x-ray method in the 208Pb antiprotonic
atom [40]). We allow the difference Cn − Cp to vary in the
range from −0.20 to 0.20 fm. The value of the diffuseness an

of the 2pF neutron density is then obtained using Eq. (A10)
from the Appendix.

The values of the 2pF parameters in our present calculation
are given in Table I. Agreement with the results from previous
experiments [38,40] (indicated by crosses in Fig. 1) is found

TABLE I. The parameters C and a of the 2pF distributions for
208Pb obtained from the experimental charge density [53] as described
in the text and from mean-field calculations. All values are given in
femtometers.

Cq aq Cn − Cp an − ap

Proton 6.704 0.438
Neutron 6.504 0.659 −0.20 0.221

6.604 0.614 −0.10 0.176
6.704 0.565 0.00 0.127
6.804 0.511 0.10 0.073
6.904 0.449 0.20 0.011

Fit to D1S density profile
Proton 6.645 0.467
Neutron 6.686 0.548 0.041 0.081

Fit to SLy4 density profile
Proton 6.683 0.470
Neutron 6.755 0.555 0.072 0.085
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for the parameters of the 2pF distributions in the range from
the values Cn − Cp = 0 fm and an − ap = 0.13 fm to the
values Cn − Cp = 0.10 fm and an − ap = 0.07 fm. In the first
limit, the neutron skin thickness �Rnp is basically due to an
enhancement of the diffuseness of the neutron density, whereas
the second limit corresponds to a mixed configuration where
both the neutron diffuseness and the neutron half-density
radius are larger than the values of the proton density. We
have to stress that even small differences between Cn and Cp

may have a meaningful influence on the value of the neutron
skin thickness. The discussed results indicate an intermediate
character of the neutron skin thickness in 208Pb, but with a
preference for the density pattern where Cn ≈ Cp and an > ap.
A more precise conclusion is difficult because of the large
experimental error bars.

For comparison, in Fig. 1 we also plot the theoretical
halo factor (3) in 208Pb calculated directly from the neutron
and proton densities of the Gogny D1S [54] and Skyrme
SLy4 [55] effective nuclear forces. At the distances relevant
for antiproton annihilation, the halo factor obtained with these
theoretical mean-field densities agrees considerably well with
the experimental data. The numerical values of the half-density
radius C and of the diffuseness parameter a of the D1S and
SLy4 equivalent 2pF neutron and proton densities for 208Pb are
reported in Table I. For either force, one observes that the half-
density radii Cn and Cp of the 2pF distributions are different
and that the values of an and ap are also different. Thus,
the results of these models correspond to some intermediate
situation between the “neutron halo-type” 2pF distribution
(where Cn = Cp and an > ap) and the “neutron skin-type”
2pF distribution (where Cn > Cp and an = ap) discussed in
Ref. [38]. In any case, the two forces, D1S and SLy4, show
some preference, as do the calculations considered earlier,
for the “neutron halo-type” distribution in 208Pb, especially
in the case of the D1S force, where Cn − Cp = 0.04 fm and
an − ap = 0.08 fm.

From the discussions of this section it is easily seen that
the characterization of the “bulk” or “surface” formation of
the neutron skin thickness in nuclei is a nontrivial problem.
In the following, we wish to analyze this question according
to the predictions derived from mean-field models of nuclear
structure that are tested to be successful for charge radii,
binding energies, and a wealth of phenomena in nuclei. First,
we need to establish a prescription to separate bulk and surface
contributions in neutron skins calculated with mean-field
nuclear densities.

III. DISCERNING BULK FROM SURFACE
IN NEUTRON SKINS

Nuclear radii can be defined in several independent ways.
The most popular formulas and their relations are discussed in
the book by Hasse and Myers [49] and we recall and analyze
them in this section. One of the simplest ways to describe the
size of nuclei is to define a central radius C in terms of the
integral of the nuclear density profile ρ(r) (for either neutrons
or protons) as

C = 1

ρ(0)

∫ ∞

0
ρ(r)dr. (5)

Another option is the half-density radius R1/2, which is defined
from the local condition

ρ(R1/2) = 1
2ρ(0). (6)

For density profiles that have a symmetric surface, such as the
2pF distribution defined in Eq. (4), the central radius C and
the half-density radius R1/2 coincide.

The equivalent sharp radius R is the radius of a uniform
sharp distribution that has a constant density equal to the bulk
value of the actual density and that contains the same number
of nucleons as the considered nucleus:

4

3
πR3ρ(bulk) = 4π

∫ ∞

0
ρ(r)r2dr. (7)

For its importance in experimental techniques, the equivalent
rms radius Q is commonly used. It describes a uniform sharp
distribution with the same rms radius as the given density
profile:

3
5Q2 = 〈r2〉. (8)

Because the neutron skin thickness (1) is defined through rms
radii, it can be expressed easily with Q:

�Rnp =
√

3

5
(Qn − Qp). (9)

In uniform, sharp-edge nuclear distributions, all of the
above-mentioned definitions coincide, but in realistic leptoder-
mous density profiles, they give distinct values. The relation
between the C, Q, and R radii can be expressed by expansion
formulas in powers of b/R, where b is the so-called surface
width of the density profile. The latter quantity is defined by

b2 = − 1

ρ(0)

∫ ∞

0
(r − C)2 dρ(r)

dr
dr. (10)

To leading order, one has the relationships [49]

C � R

(
1 − b2

R2

)
(11)

and

Q � R

(
1 + 5

2

b2

R2

)
. (12)

These expansions are useful as long as b/R is small. This
condition is well fulfilled in many nuclei because b ∼ 1 fm
and R ∼ r0A

1/3; therefore, b2/R2 is typically no larger than
A−2/3. Moreover, to consider no further corrective terms in
the above relations of the C and Q radii with R may be quite
accurate for specific shapes. For example, in the case of 2pF
distributions, the first nonvanishing corrections to the terms
within brackets in Eqs. (11) and (12) are of order (b/R)6 and
(b/R)4, respectively.

The multiple definitions of nuclear radii may sometimes
cause misleading conclusions, especially if nuclear properties
sensitive to the nuclear matter distribution in nuclei are
concerned or two different models are compared. Therefore,
one has to be careful about the suitable choice of the radius
definition. To compare the foregoing definitions of radii for
heavy nuclei, in Fig. 2 we plot the neutron densities obtained
in a self-consistent mean-field calculation and the fitted 2pF

054309-4



ANALYSIS OF BULK AND SURFACE CONTRIBUTIONS IN . . . PHYSICAL REVIEW C 81, 054309 (2010)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ρ 
 (

fm
-3

)

100
Sn neutron density

R
Q

C
(a)

86420
r  (fm)

0.00

0.02

0.04

0.06

0.08

0.10

ρ 
 (

fm
-3

)

132
Sn neutron density

R

Q

C
(b)

selfconsistent density
fitted Fermi function
sharp sphere of radius C
sharp sphere of radius R
sharp sphere of radius Q

FIG. 2. (Color online) Comparison of sharp surface density
profiles that have central (C), equivalent sharp (R), and equivalent
rms (Q) radii with the self-consistent and 2pF profiles corresponding
to the neutron density of (a) 100Sn and (b) 132Sn obtained in the RMF
theory (the NL3 interaction [56] has been used).

distributions for the neutron-deficient nucleus 100Sn and the
neutron-rich nucleus 132Sn. These profiles are compared with
sharp-edge density distributions having radii C, R, and Q

calculated from the above expressions with the 2pF function.
The central densities of the sharp surface spheres are fixed to
fulfill the particle number normalization.

Figure 2 illustrates the fact that the central radius C does
not allow the bulk density to be reproduced. A sharp sphere
of radius C overestimates the self-consistent density in the
whole nuclear interior. The equivalent rms radius Q also fails,
because it clearly underestimates the original density in the
bulk. Only the equivalent sharp radius R is able to properly
reproduce the bulk part of the self-consistent and 2pF density
profiles of the nucleus. As discussed in Ref. [49], the equivalent
sharp radius R is the quantity of basic geometric importance
of the three radii C, R, and Q. A sharp distribution of radius
R has the same volume integral as the actual density of the
finite nucleus and differs from it only in the surface region.
Therefore, the radius R appears to be the suitable quantity to
be used to measure the size of the bulk part of the nucleus.

On account of Eq. (9) for the neutron skin thickness and
relationship (12) between Q and R, one obtains the expression

�Rnp =
√

3

5

[
(Rn − Rp) + 5

2

(
b2

n

Rn

− b2
p

Rp

)]
(13)

up to terms of order O(b4/R3). Thus, one can make a
meaningful distinction between a bulk contribution and a
surface (diffuseness) contribution to the neutron skin thickness
of nuclei as follows:

�Rnp = �Rbulk
np + �Rsurf

np , (14)

with

�Rbulk
np ≡

√
3

5
(Rn − Rp) (15)

independent of surface properties and

�Rsurf
np ≡

√
3

5

5

2

(
b2

n

Rn

− b2
p

Rp

)
. (16)

The nucleus may develop a neutron skin by separation of the
bulk radii R of neutrons and protons or by modification of the
diffuseness b of the neutron and proton surfaces. In the general
case, a combination of both effects can be found. To which
degree the different patterns arise in mean-field calculations of
finite nuclei is a question we address in the following sections.

Experimental [50] and theoretical mean-field density dis-
tributions present oscillations in their inner bulk region, which
implies that some suitable average is needed to determine
the bulk density value ρ(bulk) of Eq. (7) to compute the
equivalent sharp radius R. The difficulty may be easily solved
by fitting a Fermi function to the original density, as we have
illustrated in Fig. 2. In this case, the bulk density value,
that is, ρ0/[1 + exp (−C/a)], is, to excellent accuracy, the
ρ0 parameter of the Fermi function. An effect not described
by functions like the 2pF distribution is the occurrence of a
nonsymmetric surface shape, which is possible in real nuclear
densities. However, one plausibly expects that neutron skins
of nuclei are dominated by the difference existing between
neutrons and protons in the location of the surface (i.e.,
R) and/or in the spatial extent of this surface (i.e., b); the
difference in the degree of asymmetry between the shapes
of the neutron and proton surfaces is expected to be a less
important, higher-order correction.

It may be practical to rewrite expressions (15) and (16) for
the bulk and surface contributions to the neutron skin thickness
directly in terms of the parameters of the 2pF function of
Eq. (4). Using the fact that the diffuseness parameter a in a
2pF function is related to the surface width b by the formula

b = π√
3
a (17)

and inverting relation (11) between C and R, one easily finds
to the given order of approximation that Eqs. (15) and (16)
become, respectively,

�Rbulk
np =

√
3

5

[
(Cn − Cp) + π2

3

(
a2

n

Cn

− a2
p

Cp

)]
(18)

and

�Rsurf
np =

√
3

5

5π2

6

(
a2

n

Cn

− a2
p

Cp

)
. (19)
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We note from these results that

�Rbulk
np =

√
3

5
(Cn − Cp) + 2

5
�Rsurf

np ; (20)

that is, the quantities Cn − Cp (easily obtained from the
2pF distributions themselves) and Rn − Rp [obtained through
Eq. (7)] differ by surface diffuseness terms and should not
be mixed. We have seen in Fig. 2 that a sharp sphere
having a radius C significantly distorts the appearance of the
actual nuclear density by overshooting it in the whole bulk
region. It is thus preferable to use

√
3/5(Rn − Rp) rather than√

3/5(Cn − Cp) as a measure of the bulk contribution to the
neutron skin thickness.

IV. DECOMPOSITION OF NEUTRON SKIN THICKNESS
IN SELECTED NUCLEI: MEAN-FIELD RESULTS

A. Nuclei of the experiments in antiprotonic atoms

To get information about the “bulk” or “surface” character
of the thickness of neutron skins in theoretical mean-field
calculations, we parametrize the self-consistently calculated
proton and neutron densities with 2pF distributions. This
procedure can be applied very suitably for many heavy
nuclei and gives a clear distinction between bulk and surface
properties of nuclei. However, there is no universal method
to do this parametrization. A popular prescription is to use
a χ2 minimization of the differences between the density
to be reproduced and the 2pF profile, or of the differences
between their logarithms. These methods may somewhat
depend on conditions given during minimization (number of
mesh points, limits, etc.). We prefer to extract the parameters
of the 2pF profiles by imposing that they reproduce the same
quadratic 〈r2〉 and quartic 〈r4〉 moments of the self-consistent
mean-field densities. These two conditions, together with the
normalization to the proton and neutron numbers, allow us
to determine in a unique way the equivalent 2pF densities.
This method can be applied to any density distribution. Its
focus is on a good reproduction of the surface region of the
original density because the local distributions of the quantities
r2ρ(r) and r4ρ(r) are peaked at the periphery of the nucleus.
As an example of the results of the present determination of
the 2pF profiles, in Fig. 3 we display in logarithmic scale the
self-consistent neutron and proton densities for 208Pb together
with their equivalent 2pF distributions calculated with the NL3
interaction. It can be seen that there is overall good agreement
in the central and surface regions of the nucleus. In particular,
the 2pF densities reproduce the mean-field densities well at
the distances that are relevant for antiproton annihilation.

In this section, we would like to get some insight about the
“bulk” or “surface” character of the neutron skin predicted by
the mean-field approach in the nuclei for which the neutron
skin thickness values were extracted in Refs. [38,39] from the
measurements in antiprotonic atoms. These nuclei range from
40Ca to 238U and all lie along the valley of stability. We carry
out the calculations with the aforementioned nonrelativistic
interactions D1S [54] and SLy4 [55] plus the relativistic
interactions NL3 [56] and FSUGold [57] as representative
examples of successful nuclear mean-field models. We impose
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 neutrons NL3
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neutrons 2pF fit

FIG. 3. (Color online) The proton and neutron densities of 208Pb
calculated with the NL3 parameter set as a function of the distance
from the center of this nucleus in logarithmic scale. The 2pF densities
fitted to the NL3 results are also shown.

spherical symmetry in all nuclei described in this article.
The effect of deformation on the neutron skin thickness was
discussed elsewhere [58]. The two nonrelativistic forces have
a soft symmetry energy [15,18]. On the contrary, the covariant
NL3 parameter set has a stiff symmetry energy, which is usual
in the relativistic models [15,18]. Note that the notation soft
or stiff refers to whether the symmetry energy of the model
increases slowly or rapidly as a function of the nuclear density.
The covariant parameter set FSUGold was devised to have
a softer density dependence of the symmetry energy [57]
than the typical relativistic models. Thus, FSUGold is, in this
aspect, closer to the nonrelativistic models than NL3.

In Fig. 4 we display the experimental data with error
bars determined from the antiprotonic atoms. There is a
relatively clear correlation between the experimental value
of the neutron skin thickness of these 26 stable nuclei and
the overall relative neutron excess I = (N − Z)/A of the
nucleus. This trend has been fitted by the linear relationship
�Rnp = (0.90 ± 0.15)I + (−0.03 ± 0.02) fm with a χ2 factor
of 0.5 [38,39]. In the same figure, we plot the theoretical �Rnp

value calculated according to Eq. (1) using the mean-field
densities of the indicated effective nuclear models for the 23
even-even nuclei that exist in the experimental data set. It
is obvious that the theoretical models make largely different
predictions for the neutron skin thickness. This is especially
visible at large values of I . It is seen that the models that
have a softer symmetry energy give smaller �Rnp values,
whereas the models with a stiffer symmetry energy give larger
�Rnp values [11,12]. Note that as soon as I 	= 0, even when
it is small, discrepancies arise among the �Rnp values of the
models. In contrast, all of the considered interactions make an
almost identical prediction of �Rnp ≈ −0.05 fm for the 40Ca
nucleus.

One observes in Fig. 4 that, similarly to the situation in
the experimental data set, the theoretical neutron skin values
computed with each nuclear interaction show an average linear
behavior as a function of the neutron excess I . Actually, the
linear correlation factor of �Rnp with I in the present models
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FIG. 4. (Color online) The results of the covariant NL3 and
FSUGold parameter sets and of the nonrelativistic Skyrme SLy4
and Gogny D1S forces compared with the experimental neutron
skin values �Rnp deduced from antiprotonic atoms (solid squares
with errorbars) and their linear average �Rnp = (0.90 ± 0.15)I +
(−0.03 ± 0.02) fm (shaded region) [38,39].

is considerably high (between 0.95 and 0.97). The fit of the
neutron skin values calculated with the Skyrme SLy4 force
yields �Rnp = 1.01I − 0.035 fm, whereas �Rnp = 0.88I −
0.04 fm is obtained in the case of the Gogny D1S interaction.
We find a linear fit of �Rnp = 1.20I − 0.03 fm using the
values of the neutron skin thickness computed with the
relativistic FSUGold model. If we consider the relativistic NL3
parameter set, which has a stiffer symmetry energy than the
other models, we find the linear fit �Rnp = 1.50I − 0.03 fm.

Compared with the slope of 0.90 for the fit of the experimental
data [38,39], the slopes in forces like D1S and SLy4 are much
closer to it, whereas the agreement deteriorates as the model
has a stiffer symmetry energy. Thus, one can conclude that the
comparison of the slopes of �Rnp with I between theory and
the antiprotonic measurements for nuclei across the mass table
favors the models that have a soft symmetry energy.

In Fig. 5 we display the bulk and surface contributions to
the theoretical neutron skin thickness that are computed by
applying Eqs. (15) and (16), respectively, against the neutron
excess I . These values are obtained from the 2pF distributions
associated with the mean-field neutron and proton densities
calculated with the D1S force as well as with the Skyrme SLy4
force and the two RMF parameter sets, FSUGold and NL3.
The numerical calculations show that the value of �Rbulk

np +
�Rsurf

np obtained through Eqs. (18) and (19) can be slightly
less accurate in some nuclei [compared to the exact value of
Eq. (1)] than the result obtained through Eqs. (15) and (16). The
small differences, whenever they arise, are due almost entirely
to the replacement of a2

q/Rq by a2
q/Cq (q = n, p) in Eqs. (18)

and (19). Of course, Eqs. (18) and (19) are quite practical
because they do not require the additional calculation of the
Rq values and they can be applied straightforwardly using the
Cq and aq parameters of the 2pF distributions themselves.

The four panels presented in Fig. 5, as a consequence of
the differences between models, predict a slightly different
splitting of the neutron skin thickness into their bulk and
surface contributions for each considered nucleus. Therefore,
the values of the bulk and surface contributions to �Rnp are to
some extent model dependent. The total neutron skin thickness
roughly follows an increasing tendency with the relative
neutron excess I , as discussed previously. This tendency is
also seen in the bulk contribution �Rbulk

np , especially in the
nonrelativistic interactions. However, the surface contribution
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FIG. 5. (Color online) The
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well as its bulk �Rbulk

np and surface
�Rsurf

np parts [given by Eqs. (15)
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clei presented in Fig. 4, calculated
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does not clearly follow the same trend and shows a less definite
behavior as a function of I .

From Fig. 5 we see that, for relatively neutron-rich nuclei
(I � 0.15), the surface part generally contributes 50% or more
to the total neutron skin thickness. If the nuclear model has a
stiff symmetry energy and I is large, the bulk part of �Rnp may
become larger than the surface part, as can be seen in the NL3
panel of Fig. 5 at I > 0.2. More symmetric nuclei (I � 0.15)
do not present a definite tendency. The theoretical calculations
show that in these nuclei the sharp radius is larger for protons
than for neutrons (Rp > Rn), while the surface width is larger
for neutrons than for protons (bn > bp). Consequently, the bulk
contribution to the neutron skin thickness becomes negative,
as can be seen in Fig. 5, and the relatively small value of
the neutron skin thickness is basically because of a strong
cancellation between the bulk and surface parts. In the lightest
nuclei, both contributions are negative and produce a “proton
skin” rather than a neutron skin.

B. Medium and heavy mass isotopic chains

The set of nuclei chosen in Sec. IV A have given us some
insight into the bulk and surface contributions to the neutron
skin thickness in stable isotopes. To investigate in a systematic
way how the bulk and surface contributions evolve with the
neutron number, we study the chains of even-even Sn and Pb
isotopes from the proton to the neutron drip line.

First, Fig. 6 displays the neutron skin thickness �Rnp

along the Sn and Pb isotopic chains computed in the mean-
field approximation with the Gogny D1S and Skyrme SLy4
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FIG. 6. (Color online) The neutron skin �Rnp for (a) Sn and
(b) Pb isotopes calculated with several mean-field models.

forces and using the relativistic mean-field models NL3 and
FSUGold. For small and moderate values of the relative
neutron excess (I � 0.2), the neutron skin thickness grows
almost linearly with I in each isotopic chain, as in the case of
the stable nuclei analyzed in the previous section. However,
�Rnp shows a rather pronounced kink at I ≈ 0.20 − 0.25.
Beyond this value, it increases again almost linearly as a
function of the relative neutron excess, but with a larger slope.
Finally, a new departure from the linear behavior of �Rnp as
a function of I can be observed when the isotopes are on the
edge of the neutron drip line. The kinks and changes of slope in
the neutron skin thickness as a function of the relative neutron
excess are clearly connected with the doubly magic nuclei
132Sn (I ≈ 0.24) and 208Pb (I ≈ 0.21) in the stable nuclei
region and with another two doubly magic nuclei, namely
176Sn (I ≈ 0.43) and 266Pb (I ≈ 0.38), near the neutron drip
line. Therefore, it is obvious that these changes of slope are
produced by quantal effects, which modify the linear trend
of �Rnp as a function of I in a non-negligible way. The
average slope of �Rnp with I for various forces is clearly
different. As has been shown in Refs. [11,12], for each nuclear
model, �Rnp is strongly correlated with the slope of the
symmetry energy with respect to the density computed at
saturation.

As in Sec. IV A, we fit the mean-field proton and neutron
densities by 2pF distributions to investigate the bulk and
surface contributions to the neutron skin. To analyze the
changes that occur in �Rnp, first we look at the parameters
that characterize the 2pF distributions. In Fig. 7 we display
the central density ρ0, the half-density radius C, and the
diffuseness a, which are obtained from the D1S densities along
the Sn and Pb isotopic chains. The 2pF parameters show an
overall smooth behavior as a function of the relative neutron
excess I but with local modulations near the shell closures. The
central density ρ0 grows (for neutrons) or declines (for protons)
almost linearly as a function of I in both isotopic chains. It is
just a simple consequence of the increasing asymmetry along
the isotopic chains. The central radii Cn and Cp both show
a global increasing tendency with the neutron number. One
can notice that Cn grows faster with I than Cp. However,
the an and ap diffuseness parameters behave in a completely
different way. Whereas an grows on average with increasing
neutron excess, ap remains roughly constant with I in the
two isotopic chains. On top of these general trends, we see
that the 2pF parameters associated with the neutron densities
show kinks around the shell closures at N = 82 in Sn and
N = 126 in Pb (that is, in the region I � 0.20 − 0.25), as well
as changes of slope near the neutron drip lines. One observes
that some signature of the neutron shell effect also appears
in the 2pF parameters of the proton densities around magic
neutron numbers.

Figure 8 shows the evolution with I of the 2pF parameters
corresponding to the quantal densities computed with the
SLy4 Skyrme force and with the relativistic mean-field NL3
parameter set. In the two models, the global trends are similar
to the ones discussed before for 2pF parameters of D1S
distribution. However, they show some differences that can
be attributed in part to the different properties of the isovector
channel of the interaction.
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In Figs. 9(a) and 9(b), we display the bulk and the surface
contributions to the nuclear skin thickness calculated with
the D1S force along the Sn and Pb isotopic chains. These
contributions show for Sn isotopes two well-defined regions
as a function of I . One of them covers the neutron major shell
between 100Sn and 132Sn (i.e., 0 � I � 0.25), and the other
region corresponds to the next major shell between 132Sn and
176Sn in the range 0.25 � I � 0.43. For nearly symmetric Sn
isotopes close to 100Sn, which are neutron deficient, Cp is
larger than Cn (see Fig. 7) and, consequently, the bulk part
of the neutron skin is negative or at most it takes very small
positive values. For these values of I , the surface contribution
is positive and relatively small, reducing the opposite effect
of “proton skin” due to negative values of the bulk part.
Looking at more asymmetric isotopes, one can see that, in
the magic nuclei 132Sn and 176Sn, the bulk and the surface
contributions are roughly equal. This implies a rather compact
neutron density distribution with a relatively stiff surface as a
consequence of the kinks exhibited by the neutron diffuseness
parameter an around the neutron magic numbers, which can
be seen in Fig. 7. In the regions between magic numbers, the
surface contribution to the neutron skin thickness is larger
than the bulk contribution. The splitting between the surface
and bulk contributions reaches its maximum value roughly at
midshell. This behavior of the bulk and surface contributions
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FIG. 8. (Color online) The same as in Fig. 7 but for the Skyrme
SLy4 force and relativistic NL3 parameter set.

to the neutron skin thickness points out that Sn isotopes
in the middle of major shells develop a larger surface region
in the density distribution than the magic ones. In other words,
these isotopes with neutron number in between magic values
are more of “halo” type than the limiting magic nuclei which
show a mixed character between “halo” and “neutron skin.”

The bulk and the surface contributions to the neutron skin
of the Pb isotopes calculated with the D1S force show a
similar behavior to the case of the Sn isotopes analyzed before.
However, for this heavy isotopic chain, the bulk part gives a
more important contribution to the total neutron skin for nuclei
in between the magic 208Pb and 266Pb nuclei.

The discussed differences in the behavior of the neutron
skin and its bulk and surface contributions along the neutron-
rich Sn and Pb isotopes can be qualitatively understood as
follows. Within a major shell, the rms radii of the different
single-particle orbits are spread around their average value.
The rms radius of orbits with low angular momentum l are
larger than the average, while the rms radius of orbits with
high l are slightly smaller but close to the average in the shell.
Consequently, the outermost region of the density is basically
provided by the orbits with low l in the last populated major
shell. On the contrary, orbits with high l in this major shell have
their most important contribution at shorter distances from the
center of the nucleus, increasing more the bulk than the surface
part of the nuclear density. Hence, the filling order of the last
single-particle orbits is crucial to determine if the growing of
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Fig. 5 but for Sn and Pb isotopes calculated
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the neutron radius, and consequently the neutron skin, is due
to an increase of the surface or the bulk of the density. In
the case of neutron-rich isotopes of Sn above N = 82, the first
filled orbits are 2f7/2, 3p3/2, and 3p1/2. This ordering produces
an important enhancement of the nuclear surface, which can
be appreciated from Figs. 7 and 9. Once midshell is filled,
the 1h9/2 and 1i13/2 orbits start to be appreciably populated,
increasing the bulk more than the surface of the densities and
hence of the neutron skin, as can be seen in the aforementioned
figures. The situation in Pb isotopes is just the contrary; above
N = 126, the first occupied levels are 2g9/2 and 1j15/2, which
increase the bulk more than the surface. Only near the drip line,
N = 184, are the low-momentum orbits 3d5/2, 4s1/2, and 3d3/2

relevant, increasing the surface and quenching the bulk con-
tributions to the density and consequently of the neutron skin.
This behavior in Pb isotopes can also be seen in Figs. 7 and 9.

In Figs. 9(c)–9(f), we display the results calculated with
the Skyrme SLy4 force and the NL3 parameter set. The bulk
and surface contributions qualitatively behave as the ones
computed with the D1S force discussed previously. Of course,
some differences are found in comparing the results obtained
with the different models because of their different isovector
properties. In models with a stiff density dependence of the
symmetry energy (for instance, NL3), the bulk contribution to
the neutron skin is more important than in models with a soft

symmetry energy, as in the case of the SLy4 and D1S forces.
This tendency can be especially noted in the Pb isotonic chain.

V. CONCLUSIONS

Ground-state properties of stable nuclei, such as charge
radii and binding energies, can be reproduced fairly well by
using mean-field models with effective interactions such as
the Skyrme or Gogny forces and with relativistic Lagrangians.
Although the isoscalar part of these models is well constrained,
their isovector properties are much less determined and the
predictions in this sector can differ considerably, even for
stable nuclei. A typical example is the neutron skin thickness
of nuclei. For this observable, theoretical predictions for 208Pb
using nonrelativistic forces give a value around 0.15 fm while
relativistic mean-field parametrizations predict values that are
almost twice as large.

The neutron skin thickness of a set of 26 nuclei, distributed
over the whole periodic table, has been obtained from the anal-
ysis of experiments with antiprotonic atoms [38,39] combined
with the charge radii obtained from electron scattering data.
One important result of these experiments with antiprotonic
atoms is that there exists a rather clear linear correlation
between the neutron skin thickness and the overall neutron
excess I . Theoretical mean-field calculations of the neutron
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skin also show this tendency even more clearly. It is found
that the relativistic parametrizations systematically predict
larger neutron skins than the ones computed with nonrel-
ativistic interactions. This is because the symmetry energy
is stiffer in the relativistic models than in the nonrelativistic
models.

To analyze the experimental data of antiprotonic atoms, an
ansatz of the nuclear densities is needed. The two-parameter
Fermi distributions have been used often to this end. It is found
that the experimental data can be reproduced by a variety of
these Fermi distributions with different values of Cn − Cp

and an − ap. The experimental values of the halo factor in
208Pb are well reproduced by distributions with Cn ≈ Cp (halo
model) and by Fermi densities with both halo and neutron
skin (an ≈ ap) contributions. This latter scenario is also well
predicted by the nonrelativistic mean-field densities obtained
with the D1S and SLy4 forces.

We have also parametrized the mean-field densities via
two-parameter Fermi distributions. We do this by imposing
that both mean-field and parametrized densities give the same
quadratic and quatric moments. This parametrization of the
mean-field densities also allows the neutron skin thickness to
be split easily into two contributions, namely the bulk part
and the surface part. It is found that the mean-field neutron
skins computed in nuclei with I > 0.1 can be shared between
non-negligible surface and bulk parts. This applies both for
stable nuclei investigated in antiprotonic experiments and for
drip line isotopes in all the theoretical models considered in
this work.

To analyze the neutron skin in neutron-rich nuclei, we have
theoretically studied its variation along the Sn and Pb isotopic
chains up to the neutron drip line using selected mean-field
models. As expected, �Rnp shows a generally linear growing
trend with I . However, shell effects, which are always present
in mean-field calculations, produce noticeable departures
from this linear dependence in nuclei with large neutron
excesses.

Regarding the bulk and surface contributions to the neutron
skin thickness in Sn isotopes, it can be seen that the considered
mean-field models point toward more of a surface character
in stable nuclei. This effect is reinforced in the neutron-rich
region. In the case of the Pb isotopic chain, bulk and surface
contributions have similar values in stable isotopes, whereas
the bulk part is larger than the surface part in the more neutron-
rich region of this isotopic chain.
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APPENDIX

In two-parameter Fermi (2pF) density distributions

ρq(r) = ρ0q

1 + exp [(r − Cq)/aq]
, (A1)

the number of particles and the mean square radii can be
approximated, respectively, by the relationships

Nq = 4

3
πC3

qρ0q

(
1 + π2a2

q

C2
q

)
(A2)

and

〈r2〉q = 3

5
C2

q

(
1 + 7

3

π2a2
q

C2
q

)
, (A3)

where q = n, p, c denotes the neutron, proton, and charge
distributions, respectively. The result of Eq. (A3) can be easily
derived by recalling Eqs. (8), (11), (12), and (17) given in
Sec. III.

From the relation existing between the charge and proton
rms radii,

〈r2〉c = 〈r2〉p + 0.64 fm2, (A4)

together with normalization condition (A2), one can derive the
parameters ap and Cp of the 2pF point proton distribution if the
parameters ac and Cc of the experimental charge distribution
are known (assuming that the central density is the same for
charge and protons). The result for ap is

ap = Cp

π

√
3Z

4πC3
c ρ0c

− 1 (A5)

and Cp is obtained as

Cp = S1 + S2, (A6)

where S1 and S2 are given by the equations

S3
1 = T1 +

√
T 2

1 + T 3
2 , (A7)

S3
2 = T1 −

√
T 2

1 + T 3
2 , (A8)

with

T1 = 21Z

32πρ0c

, T2 = 5

12
(〈r2〉c − 0.64 fm2). (A9)

Once ap, Cp, and the rms radius of the point proton
density are available, the following relationship between the
parameters an and Cn of the neutron distribution can be
applied:

a2
n = 5

7π2

(
�Rnp + 〈r2〉1/2

p

)2 − 3

7

C2
n

π2
. (A10)

This expression is obtained by inserting the neutron skin
thickness �Rnp = 〈r2〉1/2

n − 〈r2〉1/2
p of the nucleus in Eq. (A3)

for q = n. Therefore, for the same 〈r2〉1/2
p and �Rnp values,

one has a degenerate family of 2pF neutron densities depending
on one parameter, which can be taken to be either Cn − Cp

or an − ap (recall that Cp and ap are known). Alternatively,
if the values of 〈r2〉1/2

p and Cn − Cp are given, one obtains a
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family of �Rnp values depending on the parameter an − ap.
As mentioned in the main text, the experiments in antiprotonic

atoms were shown to preferentially support the situation of
2pF density distributions having Cn − Cp ≈ 0 [38,39].
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T. Czosnyka, J. Jastrzȩbski, M. Kisieliński, P. Lubiński,
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