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Symmetry energy at subnuclear densities deduced from nuclear masses
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We examine how nuclear masses are related to the density dependence of the symmetry energy. Using
a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of
asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller
symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored.
This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood
from the property of the surface symmetry energy in a compressible liquid-drop picture.
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I. INTRODUCTION

Saturation of the density and binding energy is a funda-
mental property of atomic nuclei. Because of this property,
the nuclear masses can be described well using a liquid-
drop approach. Conventionally, in this approach, the nuclear
binding energy EB is written as function of mass number
A and charge number Z (or neutron number N ) with the
Weizsäcker-Bethe mass formula [1]:

− EB = Evol + Esym + Esurf + ECoul, (1)

where Evol = avolA is the volume energy, Esym =
asym[(N − Z)/A]2A is the symmetry energy, Esurf = asurfA

2/3

is the surface energy, and ECoul = aCoulZ
2/A1/3 is the

Coulomb energy. The sum Evol + Esym corresponds to
the saturation energy of uniform nuclear matter. Because the
matter in a nucleus constitutes a strongly interacting system,
it remains a challenging theoretical problem to understand the
nuclear matter equation of state (EOS) through microscopic
calculations that utilize a model of the nuclear force duly
incorporating low-energy two-nucleon scattering data and
properties of very low-mass nuclei [2]. Furthermore, it is
not straightforward to empirically clarify the EOS, although
constraints on the EOS obtained from nuclear masses and radii
(e.g., Refs. [3–6]), observables in heavy-ion collision experi-
ments performed at intermediate and relativistic energies (e.g.,
Refs. [7,8]), the isoscalar giant monopole resonance in nuclei
(e.g., Ref. [9]), and even x-ray observations of isolated neutron
stars [10] and quiescent low-mass x-ray binaries [11] do exist.
In this work, we will consider such constraints provided by
masses of unstable nuclei.

The energy density of bulk nuclear matter is a function of
nucleon density n and proton fraction x, which are related to
the neutron and proton number densities nn and np as nn =
n(1 − x) and np = nx. We can generally express the energy
per nucleon near the saturation point of symmetric nuclear
matter as [12]

w = w0 + K0

18n2
0

(n − n0)2 +
[
S0 + L

3n0
(n − n0)

]
α2. (2)

Here w0, n0, and K0 are the saturation energy, the saturation
density, and the incompressibility of symmetric nuclear matter,
and α = 1 − 2x is the neutron excess. L and S0 are associated
with the density-dependent symmetry energy coefficient S(n):
S0 is the symmetry energy coefficient at n = n0, and L =
3n0(dS/dn)n=n0 is the symmetry energy density derivative
coefficient (hereafter referred to as the “density symmetry
coefficient”). As the neutron excess increases from zero, the
saturation point moves in the density-versus-energy plane.
This movement is determined mainly by the parameters L

and S0. Up to second order in α, the saturation energy ws and
density ns are given by

ws = w0 + S0α
2, (3)

and

ns = n0 − 3n0L

K0
α2. (4)

The slope, y, of the saturation line near α = 0 (x = 1/2) is
thus expressed as

y = −K0S0

3n0L
. (5)

In our earlier investigations [6], we explored a systematic
way of extracting L and S0 from empirical masses and radii
of nuclei, together with the parameters, n0, w0, and K0,
characterizing the saturation of symmetric nuclear matter. We
first gave an expression for the energy of uniform nuclear
matter, which reduces to the phenomenological form (2) in the
simultaneous limit n → n0 and α → 0 (x → 1/2). Using this
energy expression within a simplified version of the extended
Thomas-Fermi approximation, which permits us to determine
the macroscopic features of the nuclear ground state, we
calculated charges, charge radii, and masses of β-stable nuclei
for fixed A. Comparing these calculations with empirical
values allows us to derive the optimal parameter set for fixed
values of the slope y and the incompressibility K0. We thus
found a strong correlation between L and S0. The next step was
to calculate the root-mean-square (rms) charge and matter radii
of more neutron-rich nuclei that are expected to be produced
in radioactive ion beam facilities. The results suggest that the
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density symmetry coefficient L may be constrained by possible
systematic data for the matter radii in a manner that is nearly
independent of K0.

The reason that we concentrated on radii of unstable nuclei
rather than their masses in Ref. [6] was that we originally
considered the surface and electrostatic properties as well as
shell and pairing effects, which play a role in nuclear masses,
to obscure the derivation of the EOS parameters. Nevertheless,
in the present analysis, we perform a systematic calculation
of nuclear masses from the same framework used for our
previous calculations of nuclear radii. Because experimental
mass data have been accumulated even for unstable nuclei, we
can compare the calculations with the existing data, which is a
great advantage over the case of nuclear radii. Comparison of
the two-proton separation energy [S2p(Z,N) = EB(Z,N ) −
EB(Z − 2, N)] implies that a larger L, corresponding to
smaller symmetry energy at subnuclear densities, is favored.
This tendency is most clearly elucidated from the masses
of light, nondeformed, and neutron-rich nuclei. This can
be understood from a compressible liquid-drop picture of
nuclei in terms of the L dependence of the surface symmetry
energy, which has some relevance to the neutron skin thickness
[13,14].

In Sec. II we summarize a macroscopic model of nuclei
used here. Calculations of nuclear masses and the comparison
with empirical data are illustrated in Sec. III. Our conclusions
are presented in Sec. IV.

II. MACROSCOPIC NUCLEAR MODEL

In this section, we summarize a macroscopic model of
nuclei [6], which was constructed in such a way as to reproduce
the known global properties of stable nuclei and can be used
for describing the masses and radii of unstable nuclei in a
manner that is dependent on the EOS of nuclear matter.

The bulk energy per nucleon is an essential ingredient of
the macroscopic nuclear model. We set this energy as

w = 3h̄2(3π2)2/3

10mnn

(
n5/3

n + n5/3
p

)
+ (1 − α2)vs(n)/n + α2vn(n)/n, (6)

where

vs = a1n
2 + a2n

3

1 + a3n
, (7)

and

vn = b1n
2 + b2n

3

1 + b3n
(8)

are the potential energy densities for symmetric nuclear matter
and pure neutron matter, nn and np are the neutron and
proton number densities, n = nn + np, α = (nn − np)/n is
the neutron excess, and mn is the neutron mass. Expressions
(6)–(8) can well reproduce the microscopic calculations of
symmetric nuclear matter and pure neutron matter by Friedman
and Pandharipande [15] in the variational method. In this
method, the isospin dependence of asymmetric matter EOS is
shown to be well approximated by Eq. (6) [16]. (Replacement

of the proton mass mp by mn in the proton kinetic energy
would make only a negligible difference.) For the later purpose
of roughly describing the nucleon distribution in a nucleus,
we incorporate into the potential energy densities (7) and
(8) a low-density behavior ∝ n2 as expected from a contact
two-nucleon interaction. A set of expressions (6)–(8) is one
of the simplest that reduces to the usual form (2) in the limit
of n → n0 and α → 0. In fact, the parameters a1, . . . , b3 are
related to n0, w0, K0, S0, and L as

S0 = 1

6

(
3π2

2

)2/3
h̄2

mn

n
2/3
0 + (b1 − a1)n0

+
(

b2

1 + b3n0
− a2

1 + a3n0

)
n2

0, (9)

1

3
n0L = 1

9

(
3π2

2

)2/3
h̄2

mn

n
5/3
0 + (b1 − a1)n2

0

+ 2

(
b2

1 + b3n0
− a2

1 + a3n0

)
n3

0

−
[

b2b3

(1 + b3n0)2
− a2a3

(1 + a3n0)2

]
n4

0, (10)

w0 = 3

10

(
3π2

2

)2/3
h̄2

mn

n
2/3
0 + a1n0 + a2n

2
0

1 + a3n0
, (11)

K0 = −3

5

(
3π2

2

)2/3
h̄2

mn

n
2/3
0 + 18a2n

2
0

(1 + a3n0)3
, (12)

0 = 1

5

(
3π2

2

)2/3
h̄2

mn

n
−1/3
0 + a1

+ 2a2n0

1 + a3n0
− a2a3n

2
0

(1 + a3n0)2
. (13)

We determine the parameters a1, . . . , b3 in such a way that
the charge number, charge radius, and mass of stable nuclei
calculated in a macroscopic nuclear model constructed in
Ref. [6] are consistent with the empirical data. In the course of
this determination, we fix b3, which controls the EOS of matter
for large neutron excess and high density, at 1.58632 fm3. This
value was obtained by one of the authors [17] in such a way
as to reproduce the neutron matter energy of Friedman and
Pandharipande [15]. Change in this parameter would make
no significant difference in the determination of the other
parameters and the final results for nuclear masses.

We describe macroscopic nuclear properties in a way
dependent on the EOS parameters a1, . . . , b3 by using a
Thomas-Fermi model [6]. The essential point of this model is
to write down the total energy of a nucleus of mass number A

and charge number Z as a function of the density distributions
nn(r) and np(r) in the form,

E = Eb + Eg + EC + Nmnc
2 + Zmpc2, (14)

where

Eb =
∫

d3rn(r)w[nn(r), np(r)] (15)

is the bulk energy,

Eg = F0

∫
d3r|∇n(r)|2 (16)
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is the gradient energy with adjustable constant F0,

EC = e2

2

∫
d3r

∫
d3r ′ np(r)np(r′)

|r − r′| (17)

is the Coulomb energy, and N = A − Z is the neutron
number. This functional allows us to connect the EOS and
the nuclear binding energy through the bulk energy part Eb.
For simplicity we use the following parametrization for the
nucleon distributions ni(r) (i = n, p):

ni(r) =
{

nin
i

[
1 − (

r
Ri

)ti
]3

, r < Ri,

0, r � Ri.
(18)

This parametrization allows for the central density, half-
density radius, and surface diffuseness for neutrons and
protons separately.

In order to construct the nuclear model in such a way as
to reproduce empirical masses and radii of stable nuclei, we
first extremized the binding energy with respect to the particle
distributions for fixed mass number, five EOS parameters
a1, . . . , b2, and gradient coefficient F0. Next, for various
sets of the incompressibility K0 and the density symmetry
coefficient L, we obtained the remaining three EOS parameters
n0, w0, and S0 and the gradient coefficient F0 by fitting the
calculated optimal values of charge number, mass excess,
rms charge radius to empirical data for stable nuclei on the
smoothed β stability line [17] and by using Eqs. (9)–(13). In the
range of the parameters 0 < L < 160 MeV and 180 MeV <

K0 < 360 MeV, as long as y � −200 MeV fm3, we obtained
a reasonable fitting to such data (see Fig. 1). As a result of this
fitting, the parameters n0, w0, S0, and F0 are constrained as
n0 = 0.14–0.17 fm−3, w0 = −16 ± 1 MeV, S0 = 25–40 MeV,
and F0 = 66 ± 6 MeV fm5. We remark that a negative L is
inconsistent with the fact that the size of A = 17, 20, 31
isobars deduced from the experimental values of the interaction
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FIG. 1. (Color online) The sets of (L, K0) (crosses) consistent
with the mass and radius data for stable nuclei. The thin lines are lines
of constant y. The labels A–I denote the sets for which we performed
detailed calculations of the ground-state properties of inhomogeneous
nuclear matter at subnuclear densities [18]. In this paper we often
focus on the EOS models with the parameter sets C and G. For
comparison, the values calculated from two mean-field models [TM1
(square) and SIII (dot)], which are known to be extreme cases [3], are
plotted. The plot shows that our sets of (L, K0) effectively cover such
extreme cases and constraints on L and K0 from other observables
[19].

cross section tends to increase with neutron/proton excess [20].
This inconsistency can be seen from Eq. (4), which shows
that the saturation density ns increases (and hence the isobar
size decreases) with neutron/proton excess for a negative L.
We also note that the fitting gives rise to a relation nearly
independent of K0,

S0 ≈ B + CL, (19)

where B ≈ 28 MeV and C ≈ 0.075. As we shall see, this linear
relation plays a part in the L dependence of calculated masses
at large neutron excess.

We remark that in the range of the EOS parameters L

and K0 shown in Fig. 1, the calculations agree well with
a more extended data set of nuclear masses for A � 2 [21]
and charge radii for A � 50 [22]. The rms deviations of the
calculated masses from the measured values are ∼3–5 MeV,
which are comparable with the deviations obtained from a
Weizsäcker-Bethe formula, while the rms deviations of the
calculated charge radii from the measured values are about
0.06 fm, which are comparable with the deviations obtained
from the A1/3 law. As we shall see, detailed comparison with
empirical masses in terms of two-proton separation energy
allows us to tell which of the EOS models with large L and
with small L are more favored.

III. NUCLEAR MASSES

We now proceed to evaluate nuclear masses from various
EOS models with the parameter set (L,K0) consistent with the
mass and radius data for stable nuclei by minimizing Eq. (14)
for fixed N and Z. The results are then compared with the ex-
isting data in terms of the two-proton separation energy. We fi-
nally discuss the L dependence of the calculated masses within
the framework of a compressible liquid-drop picture of nuclei.

We begin by illustrating the calculated and experimental
values of the two-proton separation energy S2p for O, Mg, Ca,
Ni, Sn, and Pb isotopes. The two-proton separation energy
is useful partly because the even-odd staggering is essentially
canceled out and partly because the isotope dependence except
for shell gaps is smooth according to the Yamada-Matumoto
systematics [23]. In fact, as can be seen from Fig. 2 in which
the two-proton separation energy minus the one calculated
from a Weizsäcker-Bethe mass formula (1) with the coef-
ficients avol = −15.5391 MeV, asym = 22.7739 MeV, asurf =
16.9666 MeV, and aCoul = 0.703 893 MeV [24] (i.e., S2p −
SWB

2p ) is plotted, the empirical values behave monotonously
with neutron excess except for the vicinity of N = Z and
neutron magic numbers and for the deformed region. Note
that this monotonous behavior is clearer for O, Mg, and Ca
than for Ni, Sn, and Pb.

We remark that the macroscopic nuclear model summarized
in the previous section was originally used for systematic
calculations of charge and matter radii of nuclei of A � 50 [6].
Here, we performed systematic calculations of masses of
nuclei including O, Mg, and Ca isotopes. Applicability to
lighter nuclei can be confirmed from Fig. 2, which shows
that differences between the calculated and empirical values
of S2p for stable nuclei are limited within 3 MeV.
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FIG. 2. (Color online) The two-proton separation energy, having the one calculated from a Weizsäcker-Bethe mass formula [24] subtracted
out, for O, Mg, Ca, Ni, Sn, and Pb isotopes. The empirical values [21], the calculated values from the EOS models G and C, and the values
obtained from a contemporary mass formula [25] are plotted in each panel.

The calculated values of S2p , neither including deformation,
the Wigner term, nor shell corrections, show a smooth
dependence on neutron excess in a way different between
the EOS models G (L = 5.7 MeV) and C (L = 146 MeV).
(The Weizsäcker-Bethe formula, which is based on the incom-
pressible liquid-drop model for nuclei, is independent of the
parameters L and K0 characterizing the density dependence
of the EOS.) In order to examine how the calculated values of

S2p depend on L and K0, we plot in Fig. 3 the results obtained
for 78Ni and 22O from the EOS models with various values of
L and K0 shown in Fig. 1. The results decrease with L almost
linearly, while they are nearly independent of K0. Accordingly,
for various values of L one can predict where S2p − SWB

2p is
located in Fig. 2 by interpolation or extrapolation of the results
from the EOS models G and C. As far as the slope of S2p − SWB

2p

is concerned, the result with the EOS model C seems to
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FIG. 3. (Color online) The two-proton separation energy calculated for 78Ni and 22O as a function of L.
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FIG. 4. (Color online) δVnp for O, Mg, Ca, Ni, Sn, and Pb isotopes. In each panel, the empirical values [21], the values from a contemporary
mass formula [25] and a Weizsäcker-Bethe mass formula [24], and the calculated values from the EOS models C and G are plotted.

be more consistent with the empirical behavior, particularly
for light nuclei.

We also notice from Fig. 2 that there is a roughly uniform
offset between the empirical values and the values calculated
from the EOS model C at N > Z. This offset comes mainly
from the proton shell gaps. In fact, it is effectively canceled
out in a region away from Z = N and neutron magic numbers
by taking a difference, S2p(Z,N) − S2p(Z,N − 2) ≡ 4δVnp,
as can be seen from Fig. 4. In contrast, the empirical behavior
of this difference shows a N = Z and neutron shell structure
in a more exaggerated manner. As discussed in Ref. [26], the
smoothed behavior of δVnp is related to the coefficients asym

and assym affixed to A[(N − Z)/A]2 and A2/3[(N − Z)/A]2 in
the mass formula (1) (with the surface symmetry term added)
by

δVnp ≈ 2(asym + assymA−1/3)/A. (20)

Our results for δVnp suggest that the L dependence lies
in the parameters asym and assym. In fact, this suggestion
can be understood within the framework of a compressible
liquid-drop model in which nuclei in equilibrium are allowed
to have a density different from the saturation density n0 of
symmetric nuclear matter. If one ignores Coulomb and surface

corrections, the equilibrium density and energy per nucleon of
a liquid drop correspond to ns and ws , which are given by
Eqs. (4) and (3) for nearly symmetric nuclear matter. Note that
the parameter asym is characterized by the symmetry energy
coefficient S0, which in turn is related to L by Eq. (19). Because
one obtains a larger asym for larger L, the effect of asym tends
to increase δVnp with L, which is in the wrong direction.
This effect, therefore, has to be dominated by the effect of
assym. This is consistent with the fact that the L dependence
of the calculated S2p is clearer for lighter nuclei and also with
the tendency that the calculated mass decreases with L for
neutron-rich nuclei (see Fig. 5).

The effect of assym can be understood by considering the
density-dependent surface tension [13],

σ (nin, αin) = σ0

[
1 − Csymα2

in + χ

(
nin − n0

n0

)]
, (21)

where nin and αin are the density and neutron excess inside
a liquid drop, σ0 = σ (n0, 0), Csym is the surface symmetry
energy coefficient, and χ = (n0/σ0)∂σ/∂nin|nin=n0,αin=0. By
substituting ns into nin, one obtains

σ (ns, αin) = σ0

[
1 −

(
Csym + 3Lχ

K0

)
α2

in

]
. (22)
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FIG. 5. (Color online) The mass excess calculated for 78Ni and 22O as a function of L.

Thus, assymA2/3 behaves as −4πσ0R
2(Csym + 3Lχ

K0
), with the

liquid-drop radius R. The condition χ > 0, which is suggested
by various nuclear models including the macroscopic one
utilized here [27], is desirable for understanding of the L

dependence of δVnp . We remark that this condition is suggested
by various mean-field models because the calculated neutron
skin thickness, which is basically proportional to −assym,
increases with L [14].

IV. CONCLUSIONS

We have analyzed the influence of the density dependence
of the symmetry energy on nuclear masses by using a
macroscopic nuclear model that depends explicitly on the
EOS of nuclear matter. We find that the L dependence of
the calculated masses comes mainly from the surface property
through the density and neutron excess dependence of the
surface tension.

In making reasonable estimates of L from empirical masses,
we find that empirical two-proton separation energies for
neutron-rich, light nuclei are useful, implying a larger L value.
However, we still have two caveats. First, Eq. (22) suggests
that uncertainties in χ/K0 affect the prediction of the value
L. Second, a smooth isotope dependence of empirical mass
data is hard to derive. Consequently, such estimates of L are
closely connected to determination of the parameters χ and
K0 characterizing the density dependence of the surface and
bulk energy and to understanding of the discrete behavior of
S2p and δVnp [26,28,29].
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