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Shear viscosity to entropy density ratio in nuclear multifragmentation
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Nuclear multifragmentation in intermediate-energy heavy-ion collisions has long been associated with liquid-
gas phase transition. We calculate the shear viscosity to entropy density ratio η/s for an equilibrated system of
nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model.
The temperature dependence of η/s exhibits behavior surprisingly similar to that of H2O. In the coexistence
phase of fragments and light particles, the ratio η/s reaches a minimum of depth comparable to that for water
in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and
surface symmetry energy on η/s in multifragmentation are studied.

DOI: 10.1103/PhysRevC.81.051601 PACS number(s): 25.70.Pq, 24.60.−k, 25.70.Mn

Understanding the behavior of nuclear matter under ex-
treme conditions has been one of the most important challenges
in heavy-ion physics. Multifragmentation in intermediate-
energy heavy-ion collisions provides a key mechanism to
address this issue; it occurs when an excited nucleus expands
and breaks up into various fragments and light particles [1–3].
The final yield distribution is quite sensitive to the internal
excitation, breakup density of the nucleus, and the symmetry
energy part of the binding energy of the fragments [4–8].

Due to van der Waals nature of the nucleon-nucleon
interaction, it is expected that multifragmentation may exhibit
features of liquid-gas phase transition [1,2]. Evidence of this
is provided by the observation of the nuclear caloric curve
relating excitation energy to the temperature of the breakup
source [9–11]. Extensive studies have been carried out to
understand the dependence of the caloric curve on the system
size and particularly on the density dependence of nuclear
symmetry energy, which is poorly constrained [12].

However, multifragmentation studies are mostly confined
to the effects of the state variables on the thermodynamic
properties of the system, whereas transport properties of
the dynamically evolving system of nucleons and fragments
formed in fragmentation have received little attention. Since
the transport coefficients characterize the dynamics of fluc-
tuation of the dissipative fluxes in a medium [13], their
knowledge is essential for a better understanding of the
fragmentation observables. Recently, considerable attention
has been focused primarily on the shear viscosity coefficient
that involves the transport of momentum due to the velocity
gradient in an anisotropic medium. Empirical observation [14]
of the temperature dependence of the shear viscosity to entropy
density ratio η/s for water (as well as for He and Ne2) reveals
a minimum in the vicinity of the critical temperature Tc for
liquid-gas phase transition. Furthermore, a lower bound of
η/s � 1/4π, obtained by Kovtun-Son-Starinets (KSS) [15] in
certain gauge theories, has been speculated [15] to be valid for
several substances in nature.

In heavy-ion collisions at energy Elab � 1000 MeV/

nucleon, the shear viscosity coefficient has been estimated for
nucleon transport in the Uhlenbeck-Uehling equations [16].
Analysis of the observed transverse flow of nucleons in the

microscopic Quantum Molecular Dynamics (QMD) model in
Au + Au, Nb + Nb, and Ca + Ca central collisions at energy
Elab = 400–1200 MeV/nucleons requires shear viscosity of
30 < η < 60 MeV/(fm2 c) [17]. Since the degrees of freedom
in these studies involve only nucleons, the η estimate is relevant
only in the early stages of the reaction. Fragments formed due
to correlations and fluctuations of the system that go beyond
the mean field dynamics of nucleon transport should result
in a different shear viscosity. At freeze-out, the momentum
transport and thereby the shear viscosity is mostly effected by
long-range Coulomb interaction between the charged particles.

In this article, we estimate the shear viscosity to entropy
density ratio η/s of an equilibrated system of fragments and/or
light particles produced from multifragmentation within a
modified microcanonical statistical multifragmentation model
(SMM) [2] that has successfully reproduced several observ-
ables [2–4,18]. We show that η/s decreases as a function
of temperature of the system, exhibits a minimum at the
coexisting liquid-gas phase composed of intermediate-mass
fragments and light particles, and increases again at high
temperature in a system of light particles. The estimated
minimum of η/s is comparable to that for water in the vicinity
of a critical point for liquid-gas phase transition.

In the SMM, a hot source with mass and charge (A0, Z0)
at temperature T expands to a freeze-out volume V = (1 +
χ )V0 and undergoes prompt statistical breakup; here V0 is the
normal nuclear volume and χ � 0 is input parameter. We start
with the grand-canonical version of SMM, which consists of
minimizing the free energy F of the system

F (T ) =
∑
A,Z

NA,Z

[
f tr

A,Z + f ∗
A,Z

] + Fc, (1)

under conservation of mass A0 = ∑
A,Z NA,ZA and charge

Z0 = ∑
A,Z NA,ZZ. The translational energy of a nuclear

species with mass and charge (A,Z) is

f tr
A,Z = −T

[
log

(
gA,ZVf A3/2

λ3
T

)
− log(NA,Z!)

NA,Z

]
, (2)

where the thermal wavelength is λT =
√

2πh̄2/mT and m is
the nucleon mass. The spin degeneracy is denoted by gA,Z ,
and the free volume is Vf = V − V0. The multiplicity NA,Z

0556-2813/2010/81(5)/051601(5) 051601-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.051601


RAPID COMMUNICATIONS

SUBRATA PAL PHYSICAL REVIEW C 81, 051601(R) (2010)

of the fragment (A,Z) is then given by [2,8]

NA,Z = gA,ZVf A3/2

λ3
T

exp

{
−

[
f ∗

A,Z − µBA − µQZ

+ 2CcZZ0

(1 + χ )1/3A
1/3
0

− CcAZ2
0

3(1 + χ )1/3A
4/3
0

] /
T

}
.

(3)

The baryon and charge chemical potentials µB and µQ are
obtained from mass and charge conservation. The internal free
energy of the species (A,Z) is

f ∗
A,Z = −BA,Z − T 2

ε0
A + β0A

2/3

[(
T 2

c − T 2

T 2
c + T 2

)5/4

− 1

]

− CcZ
2

(1 + χ )1/3A1/3
, (4)

where the parameters are ε0 = 16 MeV, β0 = 18 MeV, and
Tc = 18 MeV. The fragments here are assumed to be at normal
density. The Coulomb repulsion between the fragment Fc

in Eq. (1) is evaluated in the Wigner-Seitz approximation
and corresponds to the last term in Eq. (4). The Coulomb
self-energy of a fragment is included in its binding energy
BA,Z . The last two terms in Eq. (3) stem from homogeneous
term of the Wigner-Seitz approximation [2,8]. Light nuclei
with A < 5 are considered point particles with no internal
degrees of freedom, so that the bulk and surface contributions
to internal free energy f ∗

A,Z [second and third terms of Eq. (4),
respectively] are neglected, except for α particle, where the
bulk contribution is retained as usual [2]. For these light nuclei,
experimental values for binding energy are used. For heavier
nuclei A � 5, the spin degeneracy gA,Z = 1, and for binding
energy BA,Z , the computed liquid drop mass (LDM) formula
of Ref. [8] is used:

BA,Z = CvA − CsA
2/3 − Cc

Z2

A1/3
+ Cd

Z2

A
, (5)

where Ci = ai[1 − ki(A − 2Z)2/A2] and i = v, s correspond
to the volume and surface terms, respectively. The volume
and surface contributions to symmetry energy give Esym =
Csym(A − 2Z)2/A2, where Csym = avkv − asks/A

1/3. Two
versions of the LDM formula are used here, dubbed as LDM1
and LDM2 [8], to study surface symmetry energy effects on
the η/s ratio. The simpler LDM1 has ks = 0 (also Cd = 0) and
thus neglects the surface corrections to the symmetry energy.
The complete LDM2 formula preserves all the terms.

The energy conservation of the fragmenting source leads to

Egs
sour + E∗ = Etr(T ) +

∑
A,Z

NA,Z[−BA,Z + ε∗
A,Z]

+ Cc

(1 + χ )1/3

Z2
0

A
1/3
0

− Cc

(1 + χ )1/3

×
∑
A,Z

NA,Z

Z2

A1/3
, (6)

where E
gs
sour is the ground-state energy of the source and

ε∗
A,Z(T ) denotes the excitation energy of the fragment (A,Z)
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FIG. 1. (Color online) Charge distribution in the breakup of the
150Sm nucleus at various temperatures T at a freeze-out volume of
V = 6V0 in the LDM1 (thin lines) and LDM2 (thick lines) mass
formulas.

at temperature T with a translational energy εtr
A,Z = 3T/2.

Equation (6) allows us to extract the excitation energy E∗
of the source at a given T and thereby construct the nuclear
caloric curve.

In the grand-canonical SMM, the probability distribution of
the fragment yield, PA,Z = NA,Z/

∑
A,Z NA,Z , allows one to

generate [19] a Monte Carlo microcanonical ensemble of frag-
ments with exact conservations of mass A0, charge Z0 and total
energy of the source. The fragments in a microcanonical en-
semble are placed in a nonoverlapping fashion within a spher-
ical freeze-out volume V . These particles are then allowed to
evolve in time under Coulomb repulsion within the freeze-out
volume with periodic boundary conditions in the configuration
space. Finally, collision between the fragments enforce kinetic
equilibration when the system is found to approach momentum
isotropization [20]. The shear viscosity of this dynamically
evolving equilibrated system is then estimated.

In Fig. 1, we show the charge distribution for the breakup
of 150Sm at T = 3, 4, 6 MeV in the LDM1 and LDM2 mass
formulas. At low temperature, T = 3 MeV, the system is
characterized by few light particles and a massive nucleus
(liquid phase) close to the source charge. The minimum of
the free energy F = E − T S is essentially controlled by
the surface term in Eq. (4) that favors one massive nucleus
instead of small fragments with a larger total surface. With
increasing temperature, more intermediate-mass fragments
(IMFs; 3 � Z � 15) are produced. Here, the −T S term in free
energy, dominated by binding energy and Coulomb repulsion,
favors the breakup into small fragments [3]. Eventually at large
T , only light particles are produced (gas phase). Compared to
the LDM1 set, the inclusion of surface symmetry energy in
LDM2 that is important for light nuclei of mass A < 25 [8]
leads to the suppression of isospin symmetric IMFs and an
enhancement of neutron-rich heavier nuclei.

In order to gain insight into the quantitative effects from
the two mass formulas, we show the multiplicity of different
species as a function of temperature in Fig. 2. At T < 3 MeV,
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FIG. 2. (Color online) Temperature dependence of multiplicity
of (a) all particles, Ntot, (b) IMFs, NIMF, (c) light particles with
A < 5 except α, Nlp, and (d) α, Nα , in the breakup of the 150Sm
nucleus in LDM1 (triangles) and LDM2 (solid circles) mass formulas
at a freeze-out volume of V = 6V0 and in LDM2 (open circles) at
V = 3V0.

where the yield is dominated by a massive fragment, the
symmetry energy effects are imperceptible in the LDM1
(triangles) and LDM2 (solid circles) sets at the same freeze-out
volume V = 6V0. At moderate and high temperatures, the
total multiplicity Ntot in the LDM2 set is reduced as surface
symmetry energy favors heavier nuclei with large neutron-
proton asymmetry. This leads to a reduction in the yields of
more isospin symmetric IMFs, NIMF, and light nuclei, Nlp, in
comparison to the LDM1 set. Also shown in Fig. 2, the particle
abundances in the LDM2 set at a smaller freeze-out volume
V = 3V0, where, as expected, the yields are reduced.

The nuclear caloric curve [2,9–11] associated with the
fragmentation of 150Sm nucleus is shown in Fig. 3. At
3 � E∗/A � 8 MeV, the caloric curve exhibits a slow but
monotonous increase of temperature with excitation energy
[10,21,22], which may be a signature of liquid-gas phase
transition. This behavior stems from the energy-conservation
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FIG. 3. (Color online) Caloric curve expressing excitation energy
per nucleon E∗/A vs temperature T for the breakup of the 150Sm
nucleus in LDM1 (triangles) and LDM2 (solid circles) mass formulas
at a freeze-out volume of V = 6V0 and in LDM2 (open circles) at
V = 3V0.

constraint of Eq. (6), when an appreciable amount of energy
is used to produce abundant IMFs and light particles. The
experimentally observed plateau [10,11] in the caloric curve
may result if the breakup occurs at a fixed pressure (i.e.,
multifragmentation is an isobaric process) [21,23,24], in
contrast to the fixed freeze-out volume employed here, or if
the fragments are expanded [25], unlike the fragments here
assumed to be at normal nuclear density. Note that in this
excitation range, the massive fragments with large binding
and internal excitation in the LDM2 set (solid circles) lead
to slightly higher temperatures (or conversely smaller E∗/A)
compared to the LDM1 set (triangles). At E∗/A > 8 MeV,
the smaller multiplicity of light particles, which have no
internal degrees of freedom, in the LDM2 set results in lower
temperatures relative to the LDM1 set. At freeze-out volume
V = 3V0 in LDM2, the breakup temperature is consistently
higher, as more massive and fewer fragments are produced.

The entropy S = −dF/dT in the microcanonical ensemble
of fragments is determined using the conventional thermody-
namic relation [2,3]

S = log
∏
A,Z

(2gA,Z + 1) + log
∏
A,Z

A3/2 − ln A
3/2
0

− log

(∏
A,Z

(NA,Z!)

)
+ (M − 1) log

(
Vf

/
λ3

T

)
+ 1.5(M − 1) −

∑
A,Z

∂f ∗
A,Z/∂T , (7)

where the total multiplicity in an event is M = ∑
A,Z NA,Z

and the last term corresponds to entropy contribution from the
bulk and surface terms in the internal free energy of Eq. (4).

In Fig. 4(a), the entropy per nucleon S/A is shown as a
function of temperature for the fragmentation of 150Sm. In
the temperature range 4 � T � 6 MeV, associated with the
liquid-gas mixed phase in the caloric curve, the entropy shows
a rapid increase with temperature. In this region, abundant
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FIG. 4. (Color online) (a) Entropy per nucleon S/A and (b) shear
viscosity coefficient η as a function of temperature for the breakup
of the 150Sm nucleus in LDM1 (triangles) and LDM2 (solid circles)
mass formulas at a freeze-out volume of V = 6V0 and in LDM2 (open
circles) at V = 3V0. Shear viscosity in nucleon transport calculation
[16] is shown by the diamonds.
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IMFs are produced in the LDM1 set (triangles) with smaller
internal degrees of freedom that leads to somewhat higher
entropy than in the LDM2 set (solid circles) with more massive
fragments. At V = 3V0 in LDM2, suppression of particle yield
leads to a reduction in entropy.

For time-evolving system of fragments in equilibrium, the
shear viscosity due to momentum transport (via Coulomb
scattering between the fragments) can be computed from the
Kubo relation [20,26] or the classical kinetic theory [27]. The
Kubo formula employs the linear-response theory to relate
the transport coefficients as correlations of dissipative fluxes.
However, it provides the total viscosity of the system, not
from individual species. On the other hand, in the kinetic
theory, the total shear viscosity of a multicomponent system
can be expressed as the sum from individual contribution as
η � (1/3)

∑
i ni〈pi〉λi , where ni is the number density, 〈pi〉

is the average momentum, and λi is the mean free path of
the ith species. Moreover, λi = 1/

∑
j njσij , where σij is

the collisional cross section which is taken as that for the
usual Coulomb scattering. The average thermal momentum
of the particle in the nonrelativistic limit is 〈pi〉 = mi〈vi〉 =√

8miT /π . The results presented here are in the kinetic theory
limit; we have checked the total η and obtained matches with
that from the Kubo formalism.

In Fig. 4(b), we present the shear viscosity η for an equili-
brated ensemble from fragmentation of 150Sm. At temperatures
T < 3 MeV (corresponding to the liquid phase), the shear
viscosity is found to rapidly increase with decreasing T . For
the dilute system comprising a large nucleus and a few light
particles, the mean free path λ is large. Thus, a fragment
can transport momentum over a large distance, resulting in
large η. At intermediate T ∼ 3–6 MeV (corresponding to the
coexistence region), the magnitude of viscosity is determined
by competing effects between the size and multiplicity of the
fragments in the system. The Coulomb repulsion forces the
two colliding nuclei to occupy the available free space (void),
which in turn will collide with the neighboring nucleus and
so on. This procedure can effectively transport momentum
over a large distance and produce a large viscosity [14]; the
coefficient grows with temperature as η ∼ T 1/2. In general, the
viscosity ηA,Z of a species (A,Z) was found to progressively
increase from heavier to lighter particles that have larger Z/A

ratios. Compared to LDM1 at V = 6V0, the heavier fragments
in LDM2 in the liquid-gas mixed phase and somewhat higher
temperature (see also Figs. 2 and 3) are more effective for
momentum transport, resulting in an increased η. This is due to
ηA,Z values being ∼30% higher in the LDM2 than in the LDM1
formula at a given T . At a smaller freeze-out volume V = 3V0,
fewer fragment collisions as well as smaller density of voids
inhibit momentum transport and thereby reduce dissipation in
the medium.

For orientation, we also show in Fig. 4(b) the shear
viscosity from analytical fit to the numerical evaluation of
η, obtained by Danielewicz [16], in the Uhlenbeck-Uehling
transport equations within a first-order Chapman-Enskog
approximation:

η = (1700/T 2)(n/n0)2 + [22/(1 + 10−3T 2)](n/n0)0.7

+ 5.8T 1/2/(1 + 160T 2). (8)
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FIG. 5. (Color online) Shear viscosity to entropy density ratio
η/s as a function of temperature T for the breakup of 150Sm nucleus
in LDM1 (triangles) and LDM2 (solid circles) mass formulas at
a freeze-out volume of V = 6V0 and in LDM2 (open circles) at
V = 3V0. The η/s from nucleon transport is shown by the diamonds.
The inset shows η/s vs T for water from Ref. [14] for an isobar at
the critical pressure, Pc = 22.6 MPa (dashed lines), one below it at
P = 10 MPa (solid line), and the other above it at P = 100 MPa
(dotted line).

In this microscopic calculation, where the relevant degrees
of freedom are nucleons in the colliding nucleus, significant
momentum transport by the nucleons in the early stages of
reactions (not considered in our study) leads to faster growth
in viscosity at small T ∼ 1–2 MeV. In contrast, at T �
4 MeV, the present study clearly underscores the importance
of finite-sized fragments from multifragmentation (missing in
the transport calculations [16]) that substantially enhance the
viscosity in the medium.

Figure 5 shows the shear viscosity to entropy density ratio
η/s as a function of temperature in multifragmentation of
150Sm. The η/s value gradually decreases as a function of
rising temperature up to T ∼ 4 MeV in the liquid phase
(system dominated by a massive nucleus) and then increases
again at T � 6 MeV in the gas phase (system of light
particles). At T ≈ 5 MeV, that is, close to the critical
temperature for multifragmentation (liquid-gas coexistence
phase) [1–4,9], the η/s reaches a minimum. In the LDM2
mass formula at a freeze-out of V = 6V0, a minimum of
(η/s)min ≈ 2.1 is obtained. In the absence of surface symmetry
energy in LDM1, the (η/s)min turns to be somewhat smaller.
While at a smaller freeze-out volume of V = 3V0, the η/s

magnitude is even smaller. However, the (η/s)min estimated
in multifragmentation is significantly above the conjectured
KSS lower bound of 1/4π [15]. If we adopt the entropy of the
LDM2 set with V = 6V0 and η of Eq. (8) for nucleon transport
[16], then η/s is seen (Fig. 5) to decrease continuously with
increasing T .

Interestingly, the (η/s)min obtained in multifragmentation
is comparable to the minimum value for isobars passing in the
vicinity of the critical temperature Tc for liquid-gas phase
transition in water [14]. For H2O, when an isobar passes
through the critical point (shown in the inset of Fig. 5), the
(η/s)min forms a cusp at Tc. When the isobar passes below
Pc, the minimum is at T < Tc with a discontinuous change
across the phase transition. For an isobar passing above Pc,
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a broad minimum is found at a T slightly above Tc. In fact,
the smallest value of η/s corresponds to the most difficult
condition for the transport of momentum. In analogy to this
observation, if multifragmentation is at a fixed freeze-out
volume, the hot system samples a range of η/s corresponding
to different values of pressures at different temperatures. If
the breakup volume varies, the different values of η/s found
at V/V0 = 3 and 6 in Fig. 5 imply that the system samples
a large range of η/s in the (P, V ) plane to give an average.
On the other hand, if freeze-out is reached at a fixed pressure
[23,24] (and close to Pc), this would result in a rapid increase
in η/s at |T − Tc| > 0 comparable to the rise observed for
H2O [14].

In summary, we have studied the thermodynamic and
transport properties in fragmentation of a nucleus within a
statistical multifragmentation model. For the equilibrated sys-
tem of fragments and light particles evolving under Coulomb
repulsion, we find the shear viscosity to entropy density ratio
η/s exhibits a minimum at a temperature of T ≈ 5 MeV
in the coexistence phase of intermediate-mass fragments
and light particles. The minimum value of (η/s)min � 2
in multifragmentation is comparable to that at the critical
point for liquid-gas phase transition in H2O. The temperature
dependence of η/s is somewhat sensitive to the surface effects
on symmetry energy and depends rather strongly on the
freeze-out volume.
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