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Shell structure in neutron-rich Ca and Ni nuclei under semi-realistic mean fields
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Shell structure in the neutron-rich Ca and Ni nuclei is investigated by the spherical Hartree-Fock calculations
with semi-realistic NN interactions. Specific ingredients of the effective interaction, particularly the tensor force,
often play a key role in the Z dependence of the neutron shell structure. Such examples are found in N = 32
and N = 40; N = 32 becomes magic or submagic in 52Ca while its magicity is broken in 60Ni, and N = 40 is
submagic (though not magic) in 68Ni but not in 60Ca. Comments are given on the doubly magic nature of 78Ni.
We point out that the loose binding can lead to a submagic number N = 58 in 86Ni, assisted by the weak pair
coupling.
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Introduction. The shell structure, which is typically mani-
fested in magic numbers, is one of the fundamental concepts
in the nuclear structure physics. The shell structure of nuclei is
of importance also in astrophysics; e.g., it provides the waiting
point of the s- and r-processes. As abundant experimental data
have been obtained in unstable nuclei, it has been clarified [1]
that the shell structure may depend on Z or N more strongly
than expected from most conventional theories. As well as
the disappearance of the N = 8 and 20 magic numbers, the
new magic numbers N = 16 and 32 have been indicated in
neutron-rich nuclei [2,3]. This discovery has stimulated to
reexamine and refine theories with respect to the nuclear shell
structure. The new experimental facilities [4] are expected
to access heavier unstable nuclei in the coming years. It is
desirable to give predictions on the shell structure from refined
theories, which could be a good guidance to new experiments
and will eventually be tested by them.

Concerning the Z or N dependence of the shell structure
(which is sometimes called “shell evolution”), two mecha-
nisms have been argued. The absent or low centrifugal barrier
in low-� orbits may influence the shell structure near the
neutron drip line [2]. Whereas the N = 8 magic number is
eroded because of this mechanism, there has been no clear
evidence for new magic numbers owing directly to the loose
binding. Since the nuclear shell structure is formed under
the average field composed of the nucleon-nucleon (NN )
interaction, the effective NN interaction may also affect the
shell structure. In particular, it has been pointed out that the
tensor force plays a significant role in the Z or N dependence
of the shell structure [5]. For full understanding of the shell
structure in unstable nuclei, it will be necessary to take both
possibilities into account.

The mean-field (MF) theories provide us with a good tool
to study the nuclear shell structure from the nucleonic degrees
of freedom. While it is yet difficult to describe structure of
medium- to heavy-mass nuclei with the fully microscopic
NN interaction to good accuracy, the author has recently
developed semi-realistic NN interactions [6–8], in which
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the Michigan three-range Yukawa (M3Y) interaction [9] is
modified so as to reproduce basic observed properties such
as the saturation and the �s splitting. The longest-range
part of the central channels is maintained to be the central force
in the one-pion exchange potential v

(C)
OPEP. The tensor channels

in the M3Y-Paris interaction [10] are contained in the parame-
ter set M3Y-P5′ without any change. Since the significant part
of the tensor force comes from the pions, M3Y-P5′ takes well
account of the leading-order effects of the chiral symmetry
breaking. The tensor channels are dropped in the set M3Y-P4′,
which is useful to investigate role of the tensor force.

Shell structure of the neutron-rich Ca and Ni nuclei is an
interesting topic. The N = 32 new magic number has been
indicated by the experiments in 52Ca [3,11]. A shell model
calculation suggests that magic nature is stronger in N = 34
than in N = 32 [12] because of the tensor force, although the
data on 56Ti show no signature of the N = 34 magicity [13].
Whereas N = 40 behaves like a magic number in 68Ni [14],
contradictory predictions have been given for 60Ca [7,8,15].
The Z = 28 magicity has been argued in 78Ni [1,5]. It could
also be interesting whether a new magic or submagic number
exists beyond N = 50 in the Ni isotopes. In this Rapid
Communication we shall investigate shell structure of the
neutron-rich Ca and Ni nuclei by applying the self-consistent
Hartree-Fock (HF) calculations with the semi-realistic NN

interactions.
Effective Hamiltonian. Our effective NN interactions have

the following form:

vij = v
(C)
ij + v

(LS)
ij + v

(TN)
ij + v

(DD)
ij ,

v
(C)
ij =

∑

n

(
t (SE)
n PSE + t (TE)

n PTE + t (SO)
n PSO

+ t (TO)
n PTO

)
f (C)

n (rij ),

v
(LS)
ij =

∑

n

(
t (LSE)
n PTE + t (LSO)

n PTO
)
f (LS)

n (rij ) Lij · (si + sj ),

v
(TN)
ij =

∑

n

(
t (TNE)
n PTE + t (TNO)

n PTO
)
f (TN)

n (rij ) r2
ij Sij ,

v
(DD)
ij = (

t (SE)
ρ PSE · [ρ(ri)]

α(SE) + t (TE)
ρ PTE · [ρ(ri)]

α(TE))
δ(rij ),

(1)
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where rij = ri − rj , rij = |rij |, pij = (pi − pj )/2, Lij =
rij × pij , Sij = 4 [3(si · r̂ij )(sj · r̂ij ) − si · sj ], r̂ij = rij /rij ,
with i and j representing the indices of nucleons, and
ρ(r) is the nucleon density. PSE, PTE, PSO, and PTO denote
the projection operators on the singlet-even, triplet-even,
singlet-odd, and triplet-odd two-particle states. In the M3Y-
type semi-realistic interactions [6–8], the Yukawa function
f (X)

n (r) = e−µ
(X)
n r/µ(X)

n r is employed (X = C, LS, and TN).
The density-dependent contact force v(DD) is introduced to
realize the saturation. The parameter sets M3Y-P4′ and P5′ are
presented in Ref. [8]. We note again that M3Y-P4′ contains
v

(C)
OPEP but with assuming v(TN) = 0, while both v

(C)
OPEP and v(TN)

of the M3Y-Paris interaction are untouched in M3Y-P5′. For
comparison, we use the D1S parameter set [16] of the Gogny
interaction, in which f (C)

n (r) = e−(µ(C)
n r)2

, the contact form for
v(LS), and v(TN) = 0 are adopted.

It is reasonably assumed that the spherical symmetry
holds in the neutron-rich Ca and Ni nuclei. Although the
quadrupole deformation cannot always be discarded for
precise studies, we focus on the spherical shell structure in
this Rapid Communication, which is crucial to understand
structure of these nuclei. The spherical HF calculations are
implemented by using the Gaussian expansion method [17–20]
and adopting the Hamiltonian H = HN + VC − Hc.m., where
HN (=∑

i p2
i /2M + ∑

i<j vij ), VC and Hc.m. denote the
effective nuclear Hamiltonian, the Coulomb interaction and
the center-of-mass Hamiltonian, respectively. The exchange
term of VC is treated exactly. Both the one- and the two-body
terms of Hc.m. are subtracted before iteration.

It is noted that, although the D1S interaction does not
contain v

(C)
OPEP and v(TN) explicitly, a part of their contribution

is incorporated in the other channels in an effective manner.
The same holds for M3Y-P4′ that lacks v(TN). It has still been
recognized [5,7,21,22] that the Z or N dependence of the shell
structure is difficult to be described without explicit inclusion
of v

(C)
OPEP and v(TN).

Results and discussions. For the Ca and Ni nuclei, the
main correlations beyond the spherical HF solution should
be the neutron pairing. Therefore the pair energy is a good
measure for the neutron shell closure. The difference between
the HF and the Hartree-Fock-Bogolyubov (HFB) energies
has been presented in Refs. [7,8]. In Ref. [15] the neutron
pairing gaps have been shown for the Skyrme energy density
functionals SLy4 and SkM∗. We further investigate the shell
structure of the neutron-rich Ca and Ni nuclei, particularly the
magic or submagic numbers of N , based on the spherical HF
results.

A. Single neutron levels. The neutron single-particle (s.p.)
energies εn(j ) around the Fermi level are depicted in Fig. 1
for the Ca isotopes, and in Fig. 2 for the Ni isotopes. The HF
results obtained from D1S, M3Y-P4′, and P5′ are compared
with one another. To keep the figures visible, εn(j ) is shifted
by a linear function of N in the vertical axes, so that the Fermi
energies do not largely deviate from the origin. The dashed
lines indicate positive εn(j ), which may correspond to the
single neutron resonance and is shown for reference, although
the correct boundary condition for the resonances is not taken
in the present calculations.

FIG. 1. (Color) εn(j ) of the Ca isotopes. Blue, green, and red lines
represent the results with the D1S, M3Y-P4′, and P5′ interactions,
respectively. Dashed lines are used for positive-energy levels.

Because of the small difference of the symmetry energy
[8], the slope of εn(j ) in the D1S result is slightly less steep
than those in the M3Y-P4′ and P5′ results. A notable point is
that εn(0g9/2) significantly depends on the interactions in the
Ca isotopes, but not in the Ni isotopes. It is also noteworthy
that the neutron shell structure above N = 50 in the highly
neutron-rich Ni isotopes is different from the β stable region.
The level sequence is 1d5/2, 2s1/2, 1d3/2, and 0g7/2 from the
lower to the higher.

B. N = 32 and 34. It is helpful to view Z dependence of
the neutron shell structure in order to pin down what gives rise
to the difference between Ca and Ni. In Fig. 13 of Ref. [7], the
single neutron energies relative to 1p3/2, �εn(j ) = εn(j ) −
εn(1p3/2), have been depicted for the N = 32 isotones as a
function of Z, calculated with the interactions M3Y-P4 and P5.
These �εn(j ) values are relevant to the N = 32 magicity. We
here display �εn(j ) = εn(j ) − εn(1p3/2) for j = 0f5/2 and
1p1/2 calculated with M3Y-P4′ and P5′ in Fig. 3, in comparison
with those with D1S. Because of the level inversion, the
N = 32 shell gap corresponds to �εn(0f5/2) in 60Ni, but to
�εn(1p1/2) in 52Ca, for the M3Y-P4′ and P5′ results. In the
D1S case �εn(1p1/2) represents the shell gap both in 60Ni and
52Ca. Contributions of v(TN) and v

(C)
OPEP to �εn(0f5/2) in the

M3Y-P5′ result are also presented. Because we are interested
in the Z dependence which cannot be compensated by the
other channels, the v(TN) and v

(C)
OPEP contributions are shifted

by their values at Z = 28.
With the M3Y-P5′ interaction we obtain considerable

Z-dependence in �εn(0f5/2). This is already recognized by

FIG. 2. (Color) εn(j ) of the Ni isotopes. See Fig. 1 for conventions.
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FIG. 3. (Color) �εn(0f5/2) = εn(0f5/2) − εn(1p3/2) (solid lines)
and �εn(1p1/2) = εn(1p1/2) − εn(1p3/2) (dot-dashed lines) for the
N = 32 isotones. See Fig. 1 for conventions of colors. Thin red solid
and dashed lines represent relative contributions of v(TN) and v

(C)
OPEP

to �εn(0f5/2) in the M3Y-P5′ result, after shifting by their values at
60Ni.

comparing Figs. 1 and 2. This Z-dependence originates in
v

(C)
OPEP [22] and v(TN) [7], both of which act attractively on

n0f5/2 as p0f7/2 is occupied, via the mechanism discussed
in Refs. [5,21]. Note that, though the same mechanism is
present also for n1p1/2, the effects are much smaller and
do not lead to significant Z dependence. Not including these
parts explicitly, the D1S interaction does not provide strong
Z-dependence in �εn(0f5/2). Having v

(C)
OPEP but not v(TN),

M3Y-P4′ gives moderate Z-dependence. The shell gaps in
52Ca are comparable among all the interactions. The pair
energies shown in Refs. [8,15] confirm that 52Ca is nearly
a doubly-magic nucleus, as is consistent with the measured
Ex(2+

1 ) value [11]. On the contrary, the experimental data
in 60Ni show no enhancement of Ex(2+

1 ) [23], suggesting
meltdown of the N = 32 magicity. The effects of the tensor
force on the mean fields, together with those of v

(C)
OPEP, well

account for the Z-dependence of the N = 32 magicity.
Unlike the N = 32 shell gap, the difference between

εn(0f5/2) and εn(1p1/2) is not remarkable at Z = 20 in the
present calculations. As a result 54Ca has a certain amount of
the pair excitation, as shown in Ref. [8]. It is emphasized that
this consequence is obtained even with M3Y-P5′ that includes
reasonably strong tensor force. Thus the N = 34 magicity
cannot be concluded only from the tensor force, and influence
of the other parts of the interaction (e.g., the central channels)
on εn(0f5/2) − εn(1p1/2) is important as well.

C. N = 40. As viewed in Refs. [7,8,15], the magic or
submagic nature of N = 40 predicted by the MF calculations
significantly depends on the input effective interactions. While
the pair excitation is hindered both in 68Ni and 60Ca if we use
SLy4, D1S or M3Y-P4′, there is no signature of the N = 40
magicity with SkM∗. All of these interactions do not contain
the explicit tensor force. If we apply M3Y-P5′ that contains
realistic tensor force, the pair excitation is highly suppressed
in 68Ni but not in 60Ca. These results are traced back to the s.p.
energy of n0g9/2 relative to n0f5/2 and n1p1/2. We present the

FIG. 4. (Color) �εn(0g9/2) = εn(0g9/2) − εn(0f5/2) (solid lines)
and �εn(1p1/2) = εn(1p1/2) − εn(0f5/2) (dot-dashed lines) for the
N = 40 isotones. For thick lines, the same colors as in Fig. 1 are
used. Thin black lines are the results of the SkM∗ interaction. Relative
contribution of v(TN) to �εn(0g9/2) in the M3Y-P5′ result is shown by
the thin red line, with shifting by its value at 60Ca.

Z dependence of �εn(j ) = εn(j ) − εn(0f5/2) (j = 0g9/2 and
1p1/2) for the N = 40 isotones in Fig. 4. The N = 40 shell
gap is represented by �εn(0g9/2) when �εn(1p1/2) is negative,
and by �εn(0g9/2) − �εn(1p1/2) when �εn(1p1/2) is positive.

As mentioned above, the �εn(0g9/2) values obtained with
D1S, M3Y-P4′, and SkM∗ do not strongly depend on Z. It has
experimentally been suggested that 68Ni looks like a doubly
magic nucleus [14]. The D1S interaction, which gives strongly
suppressed pairing, describes Ex(2+

1 ) and B(E2) of 68Ni to
good accuracy within the quasiparticle version of the random-
phase approximation (RPA) [26]. The sizable pair excitation
with SkM∗ is ascribed to the small �εn(0g9/2). It would be
difficult to reproduce the experimental data on Ex(2+

1 ) and
B(E2) in 68Ni with this small �εn(0g9/2). If we use M3Y-
P5′ that includes realistic tensor force, the N = 40 shell gap
is comparable to those with D1S and M3Y-P4′ in 68Ni, but
�εn(0g9/2) significantly depends on Z. This Z-dependence
is predominantly carried by the tensor force, as clarified in
Fig. 4. Contribution of v

(C)
OPEP is not important in this case. The

N = 40 shell gap comes minimum at Z = 20, and this leads
to sizable pair excitation in 60Ca [8]. As long as we rely on
the shell gap in 68Ni, it is likely that the N = 40 magicity is
significantly broken in 60Ca, since the tensor force certainly
exists in the NN interaction. This prediction will be tested
by future experiments on systematics of the binding energies
and/or of the first excited states.

There have been arguments on the N = 40 magicity in
68Ni [25,27,28]. Although the pair energy is quite small, the
neutrons are still in the superfluid phase in the HFB results
of 68Ni, with any of D1S, M3Y-P4′, and M3Y-P5′. Moreover,
the experimental data show that the magicity is lost quickly
as Z departs from 28 [23]. This situation reminds us of the
protons in 146Gd [24], and it could be more reasonable to call
N = 40 around 68Ni a submagic number rather than a new
magic number.
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TABLE I. Ex(2+
1 ) and B(E2; 2+

1 → 0+
1 ) in 78Ni, predicted by the

HF + RPA calculations.

D1S D1M M3Y-P4′ M3Y-P5′

Ex(2+
1 ) (MeV) 3.15 3.00 3.28 3.25

B(E2; 2+
1 → 0+

1 ) (e2fm4) 84.4 83.4 87.6 84.4

A small shell gap may induce quadrupole deformation. The
quadrupole deformation in the N = 40 isotones, as is known
for 80Zr, has been investigated in Ref. [25], by using the D1S
interaction. Though beyond the scope of this paper, it will be
of interest to study deformation effects with the semi-realistic
interactions.

D. 78Ni. In the present MF calculations, the magic number
N = 50 is maintained both for 70Ca and 78Ni, irrespective of
the effective interactions. The shell gap between n0g9/2 and
the upper levels is large enough to prevent the neutrons from
being excited in the HFB calculations.

It has been suggested [1,5] that the Z = 28 magic nature
could be eroded in 78Ni, because p0f5/2 comes down via
the attraction from the protons occupying p0f7/2. In the HF
calculation with M3Y-P5′, such attraction is realized because
the tensor force is included, and p0f5/2 becomes the lowest
unoccupied proton orbit. However, it is not sufficient to violate
the Z = 28 shell gap, which amounts to 5.8 MeV, via the
pair excitation. Since the magic nature is usually linked to
properties of the first excited state, we present the values of
Ex(2+

1 ) and B(E2) predicted by the HF + RPA calculations
in Table I. As well as those of D1S and the semi-realistic
interactions, the results of the new parameter set of the Gogny
interaction D1M [29] are displayed. A comparison with future
experiments is desired.

E. N = 58. References [8,15] show that the pair correlation
is greatly suppressed in 86Ni, suggesting the submagic nature
of N = 58 near the neutron drip line. To examine the neutron
shell structure around N = 58, �εn(j ) = εn(j ) − εn(1d5/2) is
depicted for j = 2s1/2 and 1d3/2 in Fig. 5. Basically the interval
between 2s1/2 and 1d3/2 corresponds to the N = 58 shell gap.
However, being mostly positive while not satisfying the correct

FIG. 5. (Color) �εn(2s1/2) = εn(2s1/2) − εn(1d5/2) (solid lines)
and �εn(1d3/2) = εn(1d3/2) − εn(1d5/2) (dot-dashed lines) for the
N = 58 isotones. See Fig. 1 for conventions of colors.

boundary condition, εn(1d3/2) would not precisely represent
resonances. Nevertheless the calculated energies of n1d3/2 are
useful in interpreting the current HFB and RPA results of 86Ni,
in which influence of the continuum is efficiently taken into
account [18,20].

In this region we do not find remarkable interaction
dependence in the neutron shell structure. As approaching
the neutron drip line (i.e., for decreasing Z), the lower-�
orbit has relatively lower energy because its wave function
feels the weaker centrifugal repulsion and thereby easily
extends in the coordinate space. The main correlation which
may break the N = 58 shell gap is the pair excitation
out of n2s1/2 to n1d3/2. The coupling between these two
orbits via the pairing is not strong, primarily because their
degeneracy (2j + 1) is small. Indeed, the coupling matrix
element 〈(n1d3/2)2 J = 0|vij |(n2s1/2)2 J = 0〉 is ≈ 0.3 MeV if
evaluated by the M3Y-P5′ interaction, appreciably smaller than
2[εn(1d3/2) − εn(2s1/2)] ≈ 3 MeV. Thus, the loose binding,
assisted by the weak coupling, leads to the N = 58 submagic
nature in 86Ni, although the pair excitation remains within the
HFB regime.

Because the weak coupling plays a certain role, the
submagic number N = 58 at 86Ni does not imply high Ex(2+

1 ).
On the other hand, it could be manifested by suppressed
B(E2; 2+

1 → 0+
1 ). The 2+

1 state is not easily handled in numer-
ical calculations, because it is located just above the neutron
threshold. Though the boundary condition should be treated
more carefully to get precise values, we note for reference
that the HF+RPA calculations using the Gaussian expansion
method [20] give Ex(2+

1 ) ∼ 1 MeV and B(E2; 2+
1 → 0+

1 ) =
10–20 e2 fm4.

Summary. We have investigated shell structure of the
neutron-rich Ca and Ni nuclei by the spherical Hartree-Fock
calculations mainly with the semi-realistic NN interaction
M3Y-P5′. In Z dependence of the neutron magic or submagic
numbers, specific ingredients of the effective interaction,
particularly the tensor force, could play a crucial role. The
magic nature of N = 32 around 52Ca and the nonmagic nature
around 60Ni can be accounted for by the tensor force as well as
by the central part of the one-pion exchange potential; i.e., the
leading order effects of the chiral symmetry breaking. On the
other hand, the present mean-field study does not support
the N = 34 magic number. The tensor force gives rise to Z

dependence of the shell structure around N = 40. Whereas
the submagic nature of N = 40 in 68Ni has been observed and
is described by many effective interactions except SkM∗, the
submagic nature is likely destroyed in 60Ca because of the Z

dependence in the shell structure produced by the tensor force.
Although it has been pointed out that the loose binding

could lead to new magic numbers in drip-line nuclei, no clear
evidence has been found so far. We point out that N = 58 will
be submagic in 86Ni, owing to the lower centrifugal barrier in
the lower � orbits, together with the weak pair coupling. This
submagic nature may be connected to small B(E2), but not to
high Ex(2+

1 ).
In the present work we have constrained ourselves to the

spherical MF calculations, which are useful to understand
variation of the structure in the Ca to Ni nuclei in a simple
manner. Future plan includes extension of the calculations by
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taking the possibility of deformation into consideration [19],
as has been done with the phenomenological Skyrme or Gogny
energy density functionals [25,30].

This work is financially supported in part as Grant-in-Aid
for Scientific Research (C), No. 22540266, by Japan Society

for the Promotion of Science. Numerical calculations are
performed on HITAC SR11000 at Institute of Media and
Information Technology, Chiba University, at Information
Technology Center, University of Tokyo, and at Information
Initiative Center, Hokkaido University. The code given in
Ref. [31] is employed for the calculation with SkM∗.
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