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Correlation energy of nuclear matter and neutron star masses
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We consider nuclear matter in the frames of the sigma model and find the role of correlation energy in the
determination of the parameters of neutron stars. The response-function formalism is used for calculations within
the Hartree-Fock approach and beyond. When electrons and muons are present in the neutron-rich matter, the
maximal mass of the star is M∗ = 1.64 (in the unit of the solar mass M�). The correlation energy becomes very
important for the stars with M∗ ∼ 0.7 ÷ 1.5M� and its effect is estimated as 0.3 ÷ 0.4M� extracted from the
relevant values obtained in the frames of the Hartree-Fock approximation. On the whole, the nuclear equation of
state is definitely “softened.”
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The nuclear matter calculations have various applications in
astrophysics [1–3]. First, it concerns the neutron stars. They are
associated with remnants of supernovae explosions. The most
famous of them are the Crab and Vela X-1. A typical neutron
star has the mass M∗ of around 1–2 masses of the Sun M� and
the radius r ∼ 10 km. The central density ∼1017 g/cm3 is so
high that there is no atomic structure inside the star, but it is
nuclear matter, composed of neutrons with a small fraction of
protons and electrons. The gravitational field is very strong and
the metric tensor is defined by the Schwarzschild solution for a
spherical-symmetric body. The latter implies that the pressure
P , the energy density ε and the mass M distribution along
radius r obey the Oppenheimer-Volkoff equations:

dP

dr
= −(ε + P )

M + 4πr3P

r(r − 2M)
(1)

dM

dr
= 4πr2ε (2)

(here the universal system of units c = G = 1 is used).
The initial condition M(0) = 0 and the boundary condition
P (r∗) = 0 determines the outer radius of the star r∗. Thus,
it is possible to find the total mass of the star M∗ = M(r∗).
The result depends on the central density ε(0) = ε∗, and the
particular choice of the functional dependence P [ε] known as
the equation of state (EOS).

The nuclear matter of neutron stars is something between
the “stiff” matter with P = ε and the ideal Fermi-gas whose
pressure obeys the general law P ∼ εα and whose energy
density at zero temperature is determined as

T0 = γ

8π2
k3
F EF + 1

4
nsm, (3)

where kF = [6π2n/γ ]1/3 is the Fermi momentum and EF =√
m2 + k2

F is the Fermi energy, while m is the particle mass, n

is the particle number density, and

ns = γ

4π2
m

(
kF EF − m2 ln

kF + EF

m

)
(4)

is the scalar density. The degeneracy factor of symmetric
nuclear matter γ = 4 (for pure neutron matter γ = 2). The
interaction between the particles of nuclear matter results in

the interaction term W included in the energy density of the
whole system

ε = T0 + W. (5)

The the general parameters of nuclear matter is the binding
energy per nucleon E = ε/n and the compression modulus

K = k2
F

d2E

dk2
F

= 9n2 d2E

dn2
. (6)

Knowledge of the energy functional ε[n] or E[n] is equivalent
to knowledge of the pressure P = −n2(dE/dn) that, together
with the material density ρ = mn, will be substituted in
Eqs. (1) and (2) to obtain the stellar parameters. The stronger
interaction implies “stiffness” of the EOS and admits the most
massive neutron stars. Modern estimations of the maximal
mass are in the range from approximately 1.5 to 3.0 solar
masses [1–3]. The uncertainty in the value reflects the fact
that the EOS of very dense matter is not known well at high
accuracy and that the neutron star mass is very sensible to the
smallest changes in the EOS parameters.

The researchers never stop their attempts in making better
approximation to the interaction W and getting the most
realistic EOS of nuclear matter. For many calculations the
interaction is approximated by the Hartree term W0 [4].
The more complicated Hartree-Fock approximation allows to
evaluate the additional exchange contribution Wx [5–7]. Many
calculations are truncated at this level, while the exact value
(5) includes the contribution of the correlation energy:

W = W0 + Wx + Wc. (7)

Its estimation is always very complicated [8], and it is
usually omitted in the practice of nuclear matter research.
The difficulties are the result of the nonlinear terms for
meson fields that are also present in the well-known σ -ω
model [4,6]. The calculations require much effort and are
mostly performed within the random-phase approximation
[9], that, however, can evaluate only about 40% of the total
correlation energy value [10]. Another difficulty concerns the
massive scalar σ meson (which is necessary for description
of nucleon density distributions in finite nuclei and which
does not exist in nature) that leads to the change of nucleon
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mass m and implies necessity to take into account the vacuum
corrections.

Nevertheless, it is highly desirable to find the neutron
star parameters with exact EOS and reveal the essence of
correlation energy. The recent exact accounts of the correlation
energy [11] were performed for the σ model with the
Lagrangian

L = ψ̄(iγ ν∂ν − gσ − igγ5 �τ · �π )ψ

+ 1
2∂νσ∂νσ + 1

2∂ν �π · ∂ν �π. (8)

The complicated method of linear response functions [12,13]
have definite advantages. There is no problem with the origin
of σ -meson field which is ultimately expressed through the
pion variables that obey the constraint σ 2 + �π2 = f 2

π . The
repulsion produced by the vector ω meson is incorporated in
the zero-point vibration, and there is no vacuum corrections.
As a result, the equations operate with the proper nucleon mass
m. Particularly, the simple Hartree term

W0 = − g2

2m2
n2

s (9)

is extended to the exchange interaction which is a sum Wx =
Wx1 + Wx2 of two terms:

Wx1 = −2g2
∫

d3pd4q

(2π )6

m2 − q2

EpEp+q

δ[q0 + Ep − Ep+q]

×V (q)NpNp+q (10)

Wx2 = 4g2
∫

d3pd4q

(2π )6

m2 − q2

EpEp+q

δ[q0 − Ep − Ep+q]

× [V (q, λ) − V (q, λ0)]Np, (11)

where

V (q) = − 1

λ2 + �q2 − q2
0

+ 2q2
0(

λ2 + �q2 − q2
0

)2 (12)

and λ2 > λ2
0 = g2ns/(2m), Np = �(kF − p) and Ep =√

m2 + p2. The parameter λ is calculated self-consistently

2mλ2

g2
= ns − λ4

ns

∫
dk4

(2π )4

1

λ2 + �k2 − k2
0

×
[

χ2
σ0(k)

1 − χσ0(k)Rσ (k)
+ 3

χ2
π0(k)

1 − χπ0(k)Rπ (k)

]
,

(13)

where ns is the scalar density (4), and exact calculation of λ

requires numeric solution of complicated equations:

Rσ (k) = g2

[
V + ns

∂V

∂ns

+ 1

2
n2

s

∂2V

∂n2
s

]

+ g2 ∂2

∂n2
s

[J1 + 2J2 + Zσ ], (14)

Rπ (k) = g2

[
V + ns

∂V

∂ns

+ 1

2
n2

s

∂2V

∂n2
s

]

+ g2 ∂2

∂n2
s

[
J1

2
+ J2 + Zπ

]
, (15)

and

J1 =−
∫

d3pd4q

(2π )6

2m2 − q2

εpεp+q

{δ(q0 + Ep − Ep+q)

+ δ(q0 − Ep + Ep+q)}V (q − k)NpNp+q, (16)

J2 =
∫

d3pd4q

(2π )6

2m2 − q2

εpεp+q

{δ(q0 − Ep−Ep+q )

+ δ(q0 + Ep+Ep+q )}[V (q − k, λ)−V (q − k, λ0)]Np,

(17)

Zσ =−1

2

∫ 1

0
dξ

∫
dq4

(2π )4
V (q − k)

×
{

χ2
σ0(q)Rσξ (q)

1 − χσ0(q)Rσξ (q)
+ 3

χ2
π0(q)Rπξ (q)

1 − χπ0(q)Rπξ (q)

}
, (18)

Zπ =−1

2

∫ 1

0
dξ

∫
dq4

(2π )4
V (q − k)

×
{

χ2
σ0(q)Rσξ (q)

1 − χσ0(q)Rσξ (q)
+ χ2

π0(q)Rπξ (q)

1 − χπ0(q)Rπξ (q)

}
, (19)

where χσ0 and χπ0 are the σ meson and pion noninteracting
response functions, respectively; while Rσξ and Rπξ are the
Fourier images of effective interaction [13].

Inclusion of (18)–(19) in (14)–(15) gives rise to the
correlation energy [12]:

Wc = −g

2

∫ 1

0
dξ

∫
dq4

(2π )4
V (q)

×
{

χ2
σ0(q)Rσξ (q)

1 − χσ0(q)Rσξ (q)
+ 3

χ2
π0(q)Rπξ (q)

1 − χπ0(q)Rπξ (q)

}

(20)

in addition to the exchange terms (10)–(11). The total energy
density of the system ε is determined by Eqs. (5), (7), (9),
(10), and (11), so we immediately get the binding energy per
nucleon E = ε/n.

The only free parameter of this model is the coupling
constant g. Its choice depends on the saturation value of
binding energy EB . Or it can be adjusted to achieve saturation
at definite density n0. Starting with initial λ2 = g2ns/(2m) in
(13), Eqs. (12)–(19) yield high accurate solution after a series
of iterations. In our previous simulation [11] we requested
saturation at kF = 1.36 fm−1, that yielded the binding energy
EB = −12.8 MeV per nucleon and the compression modulus
K = 314 MeV. Now we have adjusted the coupling constant
g = 13.96 in order to get the empirical saturation value
of EB = −15.75 MeV. The saturation density corresponds
to kF = 1.39 fm−1 and the compression modulus is K =
285 MeV. The resulting equation of state, with the effect of
correlation energy, is given on Fig. 1 (solid line). The present
calculation deserves more reliability because the compression
modulus is closer to the empirical value K = 250 MeV, while
the theory, in principle, may predict K varying from 110 MeV
to 470 MeV [4].

We have also calculated the EOS without the correlation
energy contribution (20). The accuracy of this approximation
is corresponding to the level of Hartree-Fock approach, and
it is working when we switch of the integral terms (18)–(19)
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FIG. 1. Binding energy per nucleon EB (MeV) vs. Fermi
momentum (fm−1).

in the effective interaction (14)–(15), while the self-consistent
equation (13) remains valid. Now the binding energy EHF

comes to the saturation value of EB = −15.75 MeV at
kF = 1.41 fm−1 and the compression modulus is high K =
377 MeV. The saturation occurs at a bit higher density, while
the matter becomes stiffer. It is demonstrated by dashed line
on Fig. 1.

When the nuclear matter consists of arbitrary number
of neutrons and protons n = nn + np, then the number of
electrons must satisfy the requirement of charge neutrality
ne = np. Appearance of negative-charged muons will imply

np = ne + nµ (21)

and the fraction of protons in the β equilibrium is determined
by the constraint imposed on the chemical potentials

µn = µp + µe µµ = µe. (22)

The energy of neutron-rich matter with arbitrary fraction of
protons x = np/n is interpolated by formula [1–3]

E[n, x] = E[n] + (1 − 2x)2Esym[n]
(23)

Esym[n] = E[n, 0] − E[n],

where E[n, 0] is the energy of pure neutron matter, and
E[n] = E[n, 0.5] is the energy of symmetric nuclear matter.
The energy of symmetry is approximated as [14,15]:

Esym[n] = Ck3
F + 1

6

k2
F√

k2
F + m2

(24)

and the constant C is responsible for the empirical value
Esym[n0] = 1

8∂2E/∂x2|x=0.5 = 30 MeV at the saturation den-
sity n0. Note that we should put in Eq. (24) the proper nucleon
mass m with whom we have operated above in the frames of
the linear response function approach [12] to the Lagrangian
(8), since no massive meson field is provided in this model. For

a more precise interpolation we can choose the formula [16]

E[n, x] = E[n] − EF [n] + EF [n, x] + (1 − 2x)2

×{E[n, 0] − E[n] + EF [n, x] − EF [n]}, (25)

where EF [n, x] = EF [nx] + EF [n − nx] and the Fermi lev-
els are calculated at the proton/neutron degeneracy factor
γ = 2.

Appearance of electrons and muons implies that the
total energy density (5) will be extended by the additional
contribution

T (e) + T (µ) + W (e)
xc + W (µ)

xc + W (p)
xc (26)

that includes the energy of ideal electron and muon gas T (e) and
T (µ), calculated by the standard formula (3) with m = me and
m = mµ, the degeneracy factor γ = 2, and the Fermi momen-
tum k

(e)
F = [3π2ne]1/3 and k

(µ)
F = [3π2nµ]1/3. In the light of the

charge neutrality (21) there is no Coulomb energy contribution.
The electromagnetic exchange-correlation energy in (26) has
the same standard form for electrons, muons, and protons [17]:

Wxc = e2

4π3
k3
F

[
1 − 3

2

EF

kF

+ 3

2

m2

E2
F

ln
kF + EF

m

]

+ e4

12π4
k4
F �

(
kF

m

)
, (27)

where �(z) is a tabulated function, and for m, kF and EF the
electron, muon, and proton values are substituted respectively
(we omit their labels in this formula for simplicity). The
exchange and correlation interaction (27) gives rise to a bit
nonideality of the electron and muon gas, but there is no
strong effect, especially in the ultrarelativistic electron gas, on
account of the small constant of electromagnetic interaction

FIG. 2. Neutron star mass M∗ (in the unit of solar mass M�) vs.
central density ρ∗ (in the unit of ρ0 = 2.8 × 1017 g/cm3).
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FIG. 3. Neutron star mass M∗ (in the unit of solar mass M�) vs.
radius r∗ (km).

e2 = 1/137. In general, the presence of electrons and muons
result in some softening of the EOS of stellar matter.

Thus, calculating the pressure and energy of the neutron-
rich matter with electrons and muons by means of (21)–(27),
and simulating the Oppenheimer-Volkoff equations (1)–(2),
we obtain the results depicted on Fig. 2 and Fig. 3. The
dependence of star mass M∗ (per solar mass M�) vs. central
density ρ∗ is given on Fig 2, solid line, the present EOS
that includes the correlation energy, dashed line, the same
EOS without the correlation energy. The mass M∗ vs. radius
r∗ relationship is depicted on Fig. 3; solid and dashed lines
correspond to the same conditions.

We have found that the maximal mass is M∗ = 1.64M�
and it corresponds to the central density of 7.87ρ0 (where
ρ0 = 2.8 × 1017 g/cm3 is the normal nuclear density). The
radius of this star is r∗ = 9.82 km. If we apply the present

calculation to the Crab pulsar (whose mass is M∗ = 1.44M�),
we can estimate its radius as r∗ ∼= 10.8 km, and the central
density ρ∗ ∼= 5.2ρ0. The Hartree-Fock approximation predicts
the star with maximal mass M∗ = 2.06M� and radius r∗ =
12.07 km when its central density is ρ∗ = 6.79ρ0. Particularly,
the Crab pulsar will have the radius r∗ ∼= 14.1 km and ρ∗ ∼=
3.4ρ0. In general, the profiles of mass and radius are very
sensitive to smallest changes of density when ρ∗ = 3 ÷ 6ρ0

that corresponds, in the frames of our calculation, to the stellar
masses 0.8M� � M∗ � 1.5M�.

Our results are within the range of values discovered in
earlier research [1–3,14,15]. The nuclear matter may have
very “soft” EOS and the compression modulus K = 225 MeV
that corresponds to the maximal mass of neutron star M∗ =
1.45M� [14]. The “stiff” nuclear matter with the compression
modulus K = 300 MeV [15] gives the greater maximal mass
M∗ = 2.1M� [15]. Our Lagrangian (8) corresponds to an
intermediate situation (K = 285 MeV and M∗ = 1.64M�).
However, the main advantage of (8) concerns the possibility of
development in terms of response-functions and the possibility
to evaluate the correlation energy (20) [11–13]. It is well-
known from solid-state physics that the correlation energy
softens the EOS [17], now it is proved in the direct nuclear
matter calculation. The Hartree-Fock approximation has a
tendency to overestimate the stellar masses, and inclusion
of the correlation energy implies a weighty correction of
−0.3 ÷ 0.4M�. Most careful estimation is required when
the mass of the star is expected to be M∗ = 1.1 ± 0.4M�.
Can we warrant that M∗ = 1.6 ÷ 1.7M� is the upper limit
of neutron star mass? We have described the nuclear matter
by the Lagrangian (8), more sophisticated interaction models
may bring wider alternatives, but each particular Lagrangian
requires special analysis and construction of solution by means
of a response functions technique [12,13]. The most massive
stars have complex structure, containing exotic particles
(besides neutrons, protons, and leptons) and a quark core
in the central part. Nevertheless, we can conclude, at the
qualitative level, that the neutron star masses are regularly
overestimated when the correlation energy is not taken into
account. It may give fresh ideas for further research in this
area.

The authors are grateful to Victor Khodel and Leonid
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