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Characteristics of the polarization part of the optical potential for a weakly bound projectile, 9Be
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Based on the extended optical model with the double folding potential, in which the polarization potential
is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2 analyses are performed of elastic
scattering and fusion cross-section data for the 9Be + 28Si, 144Sm, and 208Pb systems at near-Coulomb-barrier
energies. The polarization potentials thus determined are found to reveal an interesting target mass number
dependence reflecting the experimental observation that the fusion cross section becomes larger than the DR
cross section as the target changes from 208Pb to 28Si.
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Recently, we have done simultaneous χ2 analyses of elastic
scattering and fusion cross-section data for 6Li, 7Li + 208Pb [1],
and 12C + 208Pb [2] systems at near-Coulomb-barrier energies
by using the double folding potential [3] and the extended
optical model approach [4] in which the polarization potential
is decomposed into direct reaction (DR) and fusion parts.
Both 6Li and 7Li projectiles are weakly bound nuclei. Thus,
it was expected that the resulting real part of the DR potential
that might be related to the couplings with the breakup
channels would become repulsive as was observed in the
CDCC calculations [5,6]. Indeed we obtained repulsive real
DR polarization potentials for both 6Li and 7Li projectiles [1].
We also found that the resultant DR potential for the 6Li
projectile is more repulsive than that for 7Li, which is also
consistent with the CDCC calculations by Keeley and Rusek
[6], explaining the normalization factors used in Ref. [3].
In addition, we showed that both DR and fusion potentials
satisfied the dispersion relation [7,8] separately.

The 9Be projectile also exhibits a strong breakup character.
Thus, if one tries to analyze the elastic scattering data for the
systems involving a 9Be projectile by using the usual one-
channel optical model with a double folding potential as the
bare potential, one is forced to introduce a normalization factor
of N ≈ 0.3 ∼ 0.6 [3] as for 6Li. Data for 9Be projectiles have
been accumulated enough for both elastic scattering and fusion
at energies near the Coulomb-barrier energy for targets such
as 28Si [9,10], 144Sm [11], and 208Pb [12,13], so that we can
attempt to carry out extended optical model analyses with the
double folding potentials for the 9Be + 28Si, 144Sm, and 208Pb
systems, following the method used in our previous analyses
of Refs. [1,2].

We thus first generate the so-called semiexperimental DR
cross section σ

semi−exp
D by using the expression σ

semi−exp
D =

σ
semi−exp
R − σ

exp
F , where σ

semi−exp
R is the total reaction cross

section obtained from the preliminary simple optical model χ2

analyses of the elastic scattering data [9–12], while σ
exp
F is the

experimental fusion cross section taken from Refs. [9–11,13].
After σ

semi−exp
D is obtained, we perform the simultaneous

χ2 analyses on the data sets of (dσ
exp
E /d�, σ

semi−exp
D , σ

exp
F ) by

employing dσ
exp
E /d� and σ

exp
F taken from Refs. [9–13]. The

optical potential U (r, E) we use in the simultaneous analyses
has the following form:

U (r; E) = VC(r) − [V0(r) + UF (r; E) + UD(r; E)], (1)

where VC(r) is the usual Coulomb potential with rC =
1.25 fm and V0(r) is the bare nuclear potential, for which
use is made of the double folding potential. UF (r; E) and
UD(r; E) are, respectively, fusion and DR parts of the so-called
polarization potential that originates from couplings with the
respective reaction channels. Both UF (r; E) and UD(r; E)
are complex [Ui(r; E) = Vi(r; E) + iWi(r; E), i = F or D]
and their forms are assumed to be of volume-type and
surface-derivative-type Woods-Saxon function, respectively,
with the fixed geometrical parameters ri = Ri/(A1/3

1 + A
1/3
2 )

listed in Table I. As explained in details in Ref. [1], to eliminate
unphysical oscillations appearing in the radial wave functions
of low partial waves, a short-range imaginary potential of
the Woods-Saxon type with WI = 40 MeV, rI = 0.8 fm, and
aI = 0.30 fm is added [1,2].

By assuming the geometrical parameters of the real and
imaginary potentials to be identical, the strength parameters
Vi(E) and Wi(E) (i = F or D) can be related through a
dispersion relation [7],

Vi(E) = Vi(Es) + E − Es

π
P

∫ ∞

0
dE′ Wi(E′)

(E′ − Es)(E′ − E)
,

(2)

where P stands for the principal value and Vi(Es) is the value
of Vi(E) at a reference energy E = Es .

As in Refs. [1,2], we use for the bare nuclear potential
V0(r) the double folding potential of the form of Eq. (5) in
Ref. [3]. For the effective nucleon-nucleon interaction vNN

involved, use is made of the sum of the M3Y interaction and
the knock-on exchange effect. The functional form of the target
nuclear matter distribution, ρ1(r), for 28Si, 144Sm, and 208Pb
is assumed to be ρ1(r) = (A/Z)ρch(r), where ρch(r) is the
proton charge distribution adopted from Ref. [14], while the
matter distribution of projectile, ρ2(r), for 9Be is taken from
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TABLE I. The values of the diffuseness ai and the radius
parameters ri (i = F,D) used in the simultaneous χ 2 analyses.

28Si 114Sm 208Pb

rF (fm) 1.40 1.40 1.40
aF (fm) 0.50 0.33 0.27
rD(fm) 1.50 1.50 1.47
aD(fm) 0.60 0.51 0.57

Refs. [15,16]. We then use the code DFPOT of Cook [17] for
evaluating V0(r).

In the extended optical model, fusion and DR cross sections,
σF and σD , respectively, are calculated by using the following
expression [1,2]:

σi = 2

h̄v
〈χ (+)|Im[Ui(r; E)]|χ (+)〉 (i = F or D), (3)

where χ (+) is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model potential
U (r; E) in Eq. (1). σF and σD are thus calculated within the
same framework as dσel/d� is calculated. Such a unified
description enables us to evaluate all the different types of
cross sections on the same footing.

The simultaneous χ2 analyses are done in two steps [1,2];
in the first step we let all four strength parameters, VF (E),
WF (E), VD(E), and WD(E) vary. In this step, we have been
able to fix fairly well the strength parameters of the DR
potential, VD(E) and WD(E), in the sense that VD(E) and
WD(E) are determined as a smooth function of E, as shown in
Fig. 1 by the open circles. Note that the real part of the resultant
DR potential, VD(E), is systematically repulsive except for the
28Si target. We can represent the extracted values of WD(E)
plotted in the lower panel of Fig. 1 by the following function
of E (two linear segments),

Wi(E) =

⎧⎪⎨
⎪⎩

0 for E � E0

α(E − E0) for E0 < E � E1,

W1 for E1 < E

(4)
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FIG. 1. (Color online) The strength parameters Vi (upper panel)
and Wi (lower panel) for i = D (the open circles) and F (the solid
circles) as functions of E.

100

101

100

100

100

100

100

0 30 60 90 120 15010-5

10-4

10-3

10-2

10-1

100

0 30 60 90 120 150 0 30 60 90 120 150 180

9.1MeV

(a) 9Be + 28Si

P
E

10.6MeV

15.1MeV

12.9MeV

17.4MeV

22.7MeV

19.7MeV

θ
c.m.

 (deg)

(b) 9Be + 144Sm

31.1MeV

32.0MeV

32.9MeV

34.8MeV

36.7MeV

38.6MeV

θ
c.m.

 (deg)

(c) 9Be + 208Pb

36.4MeV

38.3MeV

40.3MeV

42.2MeV

44.1MeV

46.0MeV

θ
c.m.

 (deg)

47.9MeV

FIG. 2. (Color online) The ratios of the elastic scattering cross
sections to the Rutherford cross section calculated with our final
dispersive optical potential are shown in comparison with the
experimental data. The data are taken from Refs. [9–12] for the 28Si,
144Sm, and 208Pb targets, respectively.

where i = D and the sets of values for (α,W1, E0, E1) are,
respectively, (0.157, 1.10, 2.0, 9.0) for 28Si, (0.083, 0.745,
25.0, 34.0) for 144Sm, and (0.136, 0.87, 30.0, 36.4) for 208Pb.
(The values of W1, E0, E1, and E are all in units of MeV.) Note
that the threshold energies E0 at which Wi=D(E) becomes
zero are determined as in [1,2] by using the Stelson plot [18]
of σ

semi−exp
D .

The dotted lines in the lower panel of Fig. 1 represent the
linear seguments expressed by Eq. (4). The dotted lines in
the upper panel of Fig. 1 denote VD(E) as calculated by the
dispersion relation of Eq. (2) with WD(E) given by Eq. (4).
As seen, the dotted lines in the upper panel fit the open circles
quite well, indicating that VD(E) and WD(E) extracted by the
χ2 analyses satisfy the dispersion relation. In this first step of
χ2 fitting, however, the values of VF (E) and WF (E) are not
reliably fixed in the sense that the extracted values fluctuate
considerably as functions of E.

To obtain reliable information on VF and WF , we thus
have performed the second step of the χ2 analysis as in
Refs. [1,2]. This time, instead of doing a four-parameter
search we keep VD and WD as determined by the first step of
χ2 fitting, that is, WD(E) given by Eq. (4) and VD(E) predicted
from the dispersion relation. We then perform two-parameter
χ2 analyses, treating only VF (E) and WF (E) as adjustable
parameters. The values thus extracted are presented in Fig. 1
by the solid circles. The values of WF (E) may be represented
by the same form of Eq. (4) with i = F and the sets of values
of (α,W1, E0, E1) = (1.80, 9.00, 5.0, 10.0), (0.568, 3.75, 28.9,
35.5), and (0.80, 3.20, 35.0, 39.0), respectively, for 28Si, 144Sm,
and 208Pb.

As shown in Fig. 1, the WF (E) values determined by the
second step of χ2 analyses can fairly well be represented by the
linear seguments of Eq. (4) with the values of the parameters
listed above. Note that the energy variations in both WF (E)
and VF (E) are more rapid compared to those in WD(E) and
VD(E), and are similar to those observed with tightly bound
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FIG. 3. (Color online) DR and fusion cross sections calculated
with our final dispersive optical potentials are shown in comparison
with the experimental data. σ

semi−exp
D denoted by the open circles are

obtained as described in the text. The Coulomb barrier energies, VB ,
are taken as 8.6, 31.2, and 38.1 MeV for the 28Si, 144Sm, and 208Pb
targets, respectively, from the Wong’s formula [19]. The fusion data
are from Refs. [9–11,13].

projectiles [20–22]. It is thus seen that the resultant VF (E) and
WF (E) exhibit the threshold anomaly.

Using WF (E) given by the two linear seguments, one can
generate VF (E) from the dispersion relation. The results are
shown by the solid curves in the upper panel of Fig. 1, which
again well reproduce the values (the solid circles) extracted
from the χ2 fitting. This means that the fusion potential
determined from the present analysis satisfies the dispersion
relation.

We have performed the final calculations of the elastic, DR,
and fusion cross sections, by using WD(E) and WF (E) by the
linear functions together with VD(E) and VF (E) generated
from the dispersion relation. The results are presented in
Figs. 2 and 3 in comparison with the experimental data. All
the data are fairly well reproduced by the calculations. We list
in Table II the values of the χ2 per datum for the scattering
cross sections evaluated by assuming 1% errors for all the
experimental points.

It is remarkable to find that the polarization potentials de-
termined in the present analyses exhibit interesting target mass
number dependence. As seen in Fig. 1, the relative magnitudes
of WF (E) with respect to WD(E) changes systematically as the
target changes from 28Si to 208Pb. As the target mass increases,
the ratio of WF (E) to WD(E) decreases significantly. Because
the geometrical parameters of the fusion and DR potentials
differ, the relative importance of these potentials may better
be seen by comparing their values at the strong absorption
radius r = Rsa, that is, WF (Rsa; E) and WD(Rsa; E). These

TABLE II. The χ 2 values at all incident energies for 9Be + 28Si,
144Sm, and 208Pb targets.

28Si 144Sm 208Pb

Ec.m. χ 2 Ec.m. χ 2 Ec.m. χ 2

9.1 8.2 31.1 11.7 36.4 0.2
10.6 18.4 32.0 23.3 38.3 0.1
12.9 3.9 32.9 17.3 40.3 0.4
15.1 8.7 34.8 25.0 42.2 0.9
17.4 93.8 36.7 9.6 44.1 0.9
19.7 45.3 38.6 57.7 46.0 2.0
22.7 47.4 47.9 30.7

values together with the sum Wtot(Rsa; E) = WF (Rsa; E) +
WD(Rsa; E) are plotted in the left panel of Fig. 4 as functions
of E for the three targets considered. It can be seen that at
r = Rsa the total imaginary potential is dominated by the DR
part for 208Pb, but for 28Si the fusion part becomes larger than
the DR part.
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FIG. 4. (Color online) The values of WF (Rsa, E), WD(Rsa, E)
and the sum Wtot(Rsa, E) = WF (Rsa, E) + WD(Rsa, E) at the strong
absorption radius are plotted as functions of Ec.m. − VB for (a) the
9Be + 28Si system, (b) the 9Be + 144Sm system, and (c) the 9Be +
208Pb system. The values of VF (Rsa, E), VD(Rsa, E) and the sum
Vtot(Rsa, E) are plotted in the right panel.
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This change in the relative importance between WF (r; E)
and WD(r; E) seems to reflect the features of the experimental
data plotted in Fig. 3. The ratio of the experimental fusion
cross section relative to the semiexperimental DR cross
section, R = σ

exp
F /σ

semi−exp
D is larger than unity for 28Si, but

becomes much smaller than unity for 208Pb. The DR cross
section is much larger than the fusion cross section for a
heavy target. For a midsized target of 144Sm, the situation is
in between 28Si and 208Pb. This enhancement of the DR cross
section for heavier targets may be caused by the stronger
effects of the Coulomb force.

The target mass number dependence appears also in the
values of the real part of the polarization potential, VF (E)
and VD(E), shown in the right panel of Fig. 4; the values of
VD(E) plotted by the dotted curves are negative (repulsive)
for 144Sm and 208Pb but become positive (attractive) for 28Si.
The values of VF (E) denoted by the dashed curves behave
in a completely opposite way; they are positive (attractive)
for 144Sm and 208Pb, but negative (repulsive) for 28Si. The
repulsive nature of VD(r; E) for 144Sm and 209Pb and VF (r; E)
for 28Si seems to come from the coupling of the elastic channel
with the incomplete fusion and fusion channels through those
of breakup.

We finally remark on the normalization factor for the double
folding potential. The right panel of Fig. 4 shows the total
real polarization potential Vtot(Rsa; E) is repulsive for all three

targets and energies, except at the lower energies for 28Si.
This comes from the repulsiveness of VD(E) for 144Sm and
208Pb and of VF for 28Si. Because Vtot(Rsa, E) is repulsive, we
can reproduce the elastic scattering data without introducing
a normalization factor N to the double folding potential as
was necessary in [3]. Similar results were obtained in [6] and
in our previous studies [1] showing the need of the repulsive
real polarization potential for the 6Li + 208Pb and 7Li + 208Pb
systems.

It should be noted, however, that the detailed quantitative
nature of the polarization potential may depend on what we
use for the double folding potential. In this work, use is made
of that obtained from the M3Y interaction, but in recent years
effective interactions including the density dependence such
as DDM3Y have been developed. It would be an interesting
future work to repeat the present analyses and also CDCC
calculations by using such an improved interaction to get more
quantitative information about the polarization potential.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Foundation grant funded by the Korean government (MEST)
(Grant Nos. 2009-0067169 and 2009-0077715) and the WCU
program through the National Research Foundation (R31-
2008-000-10029-0).

[1] W. Y. So, T. Udagawa, K. S. Kim, S. W. Hong, and B. T. Kim,
Phys. Rev. C 75, 024610 (2007); 76, 024613 (2007).

[2] W. Y. So, T. Udagawa, S. W. Hong, and B. T. Kim, Phys. Rev.
C 77, 024609 (2008).

[3] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183
(1979).

[4] T. Udagawa, B. T. Kim, and T. Tamura, Phys. Rev. C 32, 124
(1985); T. Udagawa and T. Tamura, ibid. 29, 1922 (1984).

[5] Y. Sakuragi, Phys. Rev. C 35, 2161 (1987).
[6] N. Keeley and K. Rusek, Phys. Lett. B 427, 1 (1998).
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