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The paper describes a multilevel, multichannel R-matrix code, AZURE, for applications in nuclear astrophysics.
The code allows simultaneous analysis and extrapolation of low-energy particle scattering, capture, and reaction
cross sections of relevance to stellar hydrogen, helium, and carbon burning. The paper presents a summary of
R-matrix theory, code description, and a number of applications to demonstrate the applicability and versatility
of AZURE.
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I. INTRODUCTION

Stellar nucleosynthesis during the hydrogen, helium, and
carbon burning phases of stellar evolution is characterized
by radiative capture and nuclear fusion reactions of light
particles. The reaction rates of these processes determine not
only nucleosynthesis but also the energy production and time
scale for these three consecutive stellar burning phases. The
reaction rates NA〈σv〉 at the characteristic stellar temperatures
T are determined by the low-energy cross section σ (E) of the
respective nuclear reaction processes

NA〈σν〉 =
(

8

πµ

)1/2
NA

(kT )3/2

∫ ∞

0
σ (E)E exp

(
− E

kT

)
dE,

(1)

where µ is the reduced mass, k is the Boltzmann constant, T

is the temperature, and σ (E) is the energy E dependent cross
section.

The reaction cross sections σ (E) of radiative capture and
reaction processes on light nuclei are typically characterized by
resonant and nonresonant reaction components. Extraordinary
effort has been spent over the last decades to experimentally
study and map the cross sections of critical reactions in
stellar hydrogen, helium, and carbon burning. However, in the
typical energy range of stellar burning, the cross sections are
exceedingly low and in most cases cannot be measured directly
with available techniques. Present reaction data in the stellar
energy range are therefore mostly based on extrapolations of
existing higher energy measurements [1]. A wide variety of
theoretical tools have been introduced to reduce the associated
uncertainties, starting from the concept of the S factor S(E)
to correct in first approximation for the effect of Coulomb
repulsion for a straightforward extrapolation of the data [2].
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The S factor for a reaction between two charged nuclei with
atomic numbers Z1 and Z2 is given by

S(E) = σ (E)E exp(2πη), (2)

where η = Z1Z2e
2/(h̄v0) is the Sommerfeld parameter, v0 =√

2E/µ the relative velocity of the interacting nuclei, and µ

the reduced mass.
Traditionally, the extrapolation of low-energy radiative

capture or reaction data for low-level-density compound
systems utilized the single-level Breit-Wigner formula for
resonance data [3], complemented by potential model based
direct capture calculations [4–7] for nonresonant reaction
components. On the other hand, reaction data on high-level-
density compound systems were traditionally extrapolated
on the basis of statistical Hauser-Feshbach theories [2,8].
The range of applicability depends critically on the level
density in the compound nucleus as well as the typical
widths of the resonance levels, which decrease rapidly with
increasing charge Z [9]. This phenomenological approach
is, in many cases, insufficient, since it often neglects more
complex low-energy reaction mechanisms and contributions
that are not directly reflected in the available higher energy
data.

The introduction of R-matrix theory [10–12] allows for
more reliable interpretation of the observed experimental data,
since it makes it possible to accurately account for interference
effects between multiple resonant and nonresonant contri-
butions. While the classical R-matrix approach was limited
to the treatment of resonant reactions in low-level-density
systems [13], considerable effort was made to implement
also nonresonant reaction mechanisms into the framework
of R-matrix theory to describe more reliably the interplay
between resonant and nonresonant reaction components [14].
The versatility of this approach was successfully demonstrated
by the interpretation and extrapolation of the low-energy
data of the 14N(p,γ )15O reaction [15], which determines
nucleosynthesis, time scale, and energy production in the CNO
cycles [16]. R matrix has emerged as a powerful tool for the
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analysis of stellar reaction rates, but in most cases R-matrix
applications have been limited to a multilevel single-reaction
approach that cannot consider additional data on scattering
and other open reaction channels. This is a disadvantage in
cases where interference effects or subthreshold contributions
are more constrained by other reaction or scattering channels
than that of astrophysical interest.

The multilevel, multichannel R-matrix code AZURE has
been developed and optimized for the analysis and extrapola-
tion of low-energy charged-particle reaction data of relevance
to stellar nucleosynthesis processes. This paper will introduce
the code AZURE and will demonstrate the applicability and
versatility of the code for a number of reaction examples of
relevance to stellar hydrogen burning.

In the following section, a short summary of R-matrix
theory is given in the context of the AZURE development.
This is followed by sections summarizing the parameter
transformation theories of Barker [17] and Brune [18], and
providing a short description of the code structure for the
potential user. The following sections present three examples
of the analysis of published low-energy reaction data. These
examples include scattering data and capture reaction data
dominated by resonant and/or nonresonant reaction contri-
butions. Specifically, this consists of critical examples for
our present interpretation of the CNO cycle [19,20] through
a description of radiative capture data from 12C(p,γ )13N,
14N(p,γ )15O, and 16O(p,γ )17F. The present study is based
on the use of published, generally accessible reaction data
and focuses on demonstrating the versatility of the mul-
tichannel R-matrix code techniques. The implications for
resonance parameters and low-energy extrapolation of the
associated cross sections will be presented and discussed
within the limits of the available experimental data used for this
study.

II. R-MATRIX THEORY

The basic assumption of the R-matrix approach is that the
particle configuration space can be separated into two distinct
regions: an internal region where the total wave function can be
expanded into a complete set of eigenstates, and an external
region where the possible combinations of coupled particle
pairs, or channels, exist [21]. The interactions within the
internal region are determined by the complicated many-body
nuclear physics. The external region is assumed to contain
only the Coulomb interaction between the particles and thus
has a completely analytical solution depending only upon
energy, masses, charges, and the intrinsic and relative angular
momenta. Further development of R-matrix theory is then
based on the assertion that the wave functions of the internal
and external regions, and their derivatives, must match at the
boundary surface.

A. Mathematical formalism

The fundamentals of the R-matrix formalism were re-
viewed in the encyclopedic publication of Lane and Thomas
[21], and the notation of this reference has been retained
unless otherwise noted. Additionally, the mathematical details

of the theory have been well summarized by Vogt [22]. These
publications extensively explain the basis of R-matrix theory,
and therefore only a few key points will be outlined here.

1. From R-matrix to cross section

The wave functions at the surface defining the boundary
between the internal and external regions of the compound
nucleus can be expanded in terms of channels, where each
channel is designated by a specific particle pair with a defined
angular momentum coupling. In the notation of Ref. [21],
channels are represented as c = αsl, where s is the channel
spin, l is the relative angular momentum of the interacting
particles, and α identifies the interacting particle pair. In
the following equations, c will be used when all indices α,
s, and l should be considered as a group. If one of these
indices is treated explicitly from the rest, for example, in a
summation, the expanded notation will be used. In general,
the dependencies of various quantities on the total spin J will
be suppressed unless it plays an important role.

At the boundary surface, the radial part of the external
channel wave function takes the form

φc =
(

1

vc

) 1
2

(ycIc + xcOc), (3)

where Ic and Oc denote the incoming and outgoing wave
functions which can be determined from the Coulomb wave
functions Fc and Gc. The quantities yc and xc are the incoming
and outgoing wave amplitudes, respectively, and vc is the
relative channel velocity. The collision matrix U is defined
by the relation

xc = −
∑
c′

Ucc′yc′ , (4)

and mediates the transformation from a set of incoming particle
channels to outgoing particle channels. Substitution of Eq. (4)
into Eq. (3) gives the external radial wave function in terms of
the incoming wave amplitudes:

φc =
(

1

vc

) 1
2

(
ycIc −

∑
c′

Ucc′yc′Oc

)
. (5)

A similar relation can be derived for the radial component
of an internal channel wave function evaluated at the channel
surface. This expression is given by

φc =
(

mcac

h̄2

) 1
2 ∑

c′
Rcc′

(
h̄2

mc′ac′

) 1
2

[ρc′φ′
c′ − Bc′φc′ ], (6)

where mc is the reduced mass, ac is the channel radius,
ρc = kαac, kα is the wave number, and the prime denotes
the derivative with respect to kαr . The Bc represent the
boundary conditions in R-matrix theory or, more specifically,
the logarithmic derivatives of an eigenstate wave function
evaluated at the channel surface. This equation also introduces
the R matrix which represents all the internal information
concerning the structure of the compound system. Explicitly,
the R matrix is defined as

Rcc′ =
∑

λ

γλcγλc′

Eλ − E
, (7a)
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with

γλc =
(

h̄2

2mcac

) 1
2
∫

dSX∗
λψc. (7b)

The eigenstate wave function Xλ appears in the second
equation as an overlap integral with the surface channel wave
function ψc. The reduced width amplitude γλc is then a measure
of the contribution of the level λ to the wave function of
a channel c. The eigenenergy is denoted above as Eλ. In
the present approach, the level energy and reduced width
amplitudes are treated as parameters to be determined by
experimental data.

When the logarithmic derivatives of the radial wave
functions for the internal and external regions are matched at
the channel surface, the subsequent expression can be solved
for the collision matrix. In matrix form, this yields

U = ρ
1
2 O−1(1 − RL0)−1(1 − RL∗

0)Iρ− 1
2 . (8)

With the exception of R, all of the matrices in Eq. (8) are
diagonal. The matrices ρ, I, O, and B are defined to have
diagonal elements ρc, Ic, Oc, and Bc, respectively. The matrix
L0 is given by ρO′O−1 − B. With the definition of two
new diagonal matrices B = ρI−1O−1 and � = I

1
2 O− 1

2 , the
collision matrix may be written in terms of a new matrix W
with the relation U = �W�, where

W = B 1
2 (1 − RL0)−1(1 − RL∗

0)B− 1
2

= 1 + B 1
2 (1 − RL0)−1RB 1

2 w. (9)

The final diagonal matrix in the above equation, w, is the
Wronskian of the functions Oc and Ic evaluated at the boundary
surface. For positive energy channels, the elements of the
diagonal matrices B and w are

Bcc′ = Pcδcc′ and wcc′ = 2iδcc′ , (10)

where Pc is the penetrability for channel c. The use of the W
matrix is strictly a convenience, as it serves only to simplify
the calculation of the collision matrix. The collision matrix
can be related to the transition matrix T via

Tcc′ = e2iωc δcc′ − Ucc′ , (11)

where ωc represents the Coulomb phase shift.
It should be noted that there is one R matrix and thus

one collision matrix for each grouping of like Jπ levels. The
respective channels that can populate a given R-matrix are
restricted by conservation of both angular momentum and
parity. For the calculation of cross sections, the dependence of
U and T upon J must be considered explicitly. With the use of
the T matrix, the angle-integrated cross section for a reaction
going through α → α′ is given as

σαα′ = π

k2
α

∑
J ll′ss ′

gJ

∣∣T J
cc′

∣∣2
, (12)

where gJ is the statistical spin factor,

gJ = 2J + 1

(2Iα1 + 1)(2Iα2 + 1)
, (13)

and Iα1 and Iα2 are the projectile and target spins. It should
be noted that the above equation does not hold for charged-
particle elastic scattering.

2. A-matrix approach

The collision matrix given by Eqs. (8) and (9) is dependent
upon the inversion of the channel matrix (1 − RL0). In the case
of many levels and few channels, this task is computationally
trivial. On the other hand, if a calculation includes many
channels and few levels, the time necessary to perform the
inversion is drastically increased. For this reason, it is useful
to also define the collision matrix in terms of the level matrix,
Aλλ′ . The relation is given by

Ucc′ = cc′

{
δcc′ + i

∑
λλ′

�
1
2
λc�

1
2
λ′c′Aλλ′

}
, (14)

where the matrix Aλλ′ is defined by its inverse

(A−1)λλ′ = (Eλ − E)δλλ′ + �λλ′ − i�λλ′

2
. (15)

The additional quantities appearing in Eqs. (14) and (15)
are

�λλ′ = −
∑

c

γλcγλ′c(Sc − Bc), (16a)

�λc = 2Pcγ
2
λc, (16b)

and

�λλ′ =
∑

c

2Pcγλcγλ′c. (16c)

While the use of the A matrix still requires an inversion, it
is significantly less computationally intensive in the case of
many channels and few levels. Once the collision matrix is
obtained using Eq. (14), the calculation of the cross section
follows through the procedure outlined above.

3. Differential cross section

The expression of the angle-integrated cross section in
terms of the collision matrix is remarkably simple. For
the differential cross section, a more rigorous calculation
is involved. The differential cross section is related to the
transition matrix by

(2s + 1)
k2
α

π

dσαs,α′s ′

dα′

= (2s + 1)|Cα′(θα′ )|2δαs,α′s ′ + 1

π

∑
L

BL(αs, α′s ′)

×PL(cos θα′ ) + δα′s ′,αs(4π )−1/2
∑
J l

(2J + 1)

× 2Re
[
i
(
T J

c′c
)∗

Cα′(θα′)Pl(cos θα′)
]
. (17)

Several new quantities have been introduced in Eq. (17) to
define the angular dependence of the cross section. The term
Cα′(θα′ ) represents the Coulomb amplitudes, while PL(cos θα′ )
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are the Legendre polynomials. The remaining term is
defined as

BL(αs, α′s ′)

= 1

4
(−1)s−s ′ ∑

J1J2l1l2l
′
1l

′
2

Z̄(l1J1l2J2, sL)

× Z̄(l′1J1l
′
2J2, s

′L)
(
T

J1

α′s ′l′1,αsl1

)(
T

J2

α′s ′l′2,αsl2

)∗
, (18)

with

Z̄(l1J1l2J2, sL)

= (2l1 + 1)1/2(2l2 + 1)1/2(2J1 + 1)1/2

× (2J2 + 1)1/2(l10l20|L0)W (l1J1l2J2; sL). (19)

The corresponding differential cross section formula in
Ref. [21] (Eq. VIII.2.6) contains typographical errors; see
Ref. [23] for further discussion. The specific differences are
that a Kronecker delta has been applied to the third term, and
the transition matrix has been conjugated. A final summation
over the entrance and exit channel spins is necessary to calcu-
late the differential cross section corresponding to the reaction
α → α′:
dσα,α′

dα′
= 1

(2Iα1 + 1)(2Iα2 + 1)

∑
ss ′

(2s + 1)
dσαs,α′s ′

dα′
. (20)

4. Photon channels

The R-matrix theory described above is appropriate only
for particle-particle reactions. In the internal region (enclosed
by the boundary surface), photon channels can be included
symmetrically with particle channels [21]; however, it has
often been found necessary to include an additional capture
component attributed to the external region (beyond the
boundary radius).

In A-matrix formalism, the internal transition matrix
element connecting a particle channel c to a photon channel
p ≡ εLλf takes the form

T J,int
cp = −i

∑
λλ′

cpAλλ′�
1/2
λc �

1/2
λ′p , (21)

where

p = 1, �λ′p = 2k2L+1
γ γ int

λ′p
2
. (22)

In the above expression, the term λf indicates the final state
with some defined energy and total spin Jf and L is the
multipolarity of the γ -ray. The symbol ε has been introduced
to indicate the mode of the emitted radiation, where ε = 0
for magnetic transitions and ε = 1 for electric transitions. It
should be noted that the internal transition matrix can also
be written in R-matrix formalism if photon channels are
included in the definition of the R matrix, and the photon
penetrability is defined to be Pγ = k2L+1

γ . Additionally, it is
also often assumed that the resonant state is not significantly
dampened by the γ decay, therefore the elements of the
diagonal matrix L0 are ignored for photon channels. In
A-matrix formalism, this is tantamount to neglecting the
photon channel from the channel sum in the definition of the
A matrix. Such an assumption is not justified if the photon

widths are appreciable compared to the particle widths, and in
these cases proper photon channel damping must be included
[21].

In the external region, the scattering state contains contribu-
tions from both resonant and hard-sphere phase shifts [24,25].
Throughout the remainder of this paper, the term EC will be as-
sociated with this nonresonant portion, while the external res-
onance contribution will be designated by ERC. Nonresonant
capture has been treated historically in two distinct but analo-
gous ways. The term direct capture (DC) often refers specifi-
cally to the formulation of Ref. [5], while the term EC, defined
above, is associated with the hard-sphere formulation. With the
assumption of the hard-sphere phase shift and a square-well
bound-state potential in DC, the two formalisms become
identical.

A full multilevel multichannel external capture theory was
introduced in Ref. [14], and the formalism used in AZURE

is based on that work. This approach allows resonant and
direct or external capture contributions to be combined in
a self-consistent manner. Additionally, we follow Ref. [15]
and express the external capture in terms of the asymptotic
normalization coefficient (ANC).

The following external capture equations apply for electric-
multipole (EL) external capture transitions only, which are
typically the most important cases in practice. The ex-
ternal portion of the transition matrix element is defined
as

T J,ext
cp

= −ic

√
8(2L + 1)(L + 1)

Lh̄

k
L+1/2
γ

(2L + 1)!!

×
⎡
⎣∑

lf

il+L−lf ēL
α

v
1/2
α

(l0L0|lf 0) U (Llf J s; lJf ) REC
clf L

+
∑
c′l′f

il
′+L−l′f ēL

α′

v
1/2
α′

(l′0L0|l′f 0) U (Ll′f J s ′; l′Jf ) RERC
cc′l′f L

⎤
⎦,

(23)

where

ēL
α = e

[
Zα1

(
Mα2

Aα

)L

+ Zα2

(−Mα1

Aα

)L
]

(24)

is the effective charge term, with e the fundamental charge,
Mαi and Zαi are the constituent masses and charges of particle
pair α, Aα = Mα1 + Mα2, and

U (Llf J s; lJf ) = (2l + 1)1/2(2Jf + 1)1/2W (Llf J s; lJf )

is the normalized Racah coefficient. All quantities appearing
with a subscript f refer to the final state configuration. It should
be noted that our Eqs. (21) and (23) follow the sign convention
of Refs. [21,25] and consequently differ from those of Ref. [14]
by an overall minus sign (which has no effect upon observ-
ables). We have also allowed ēL

α to depend upon the particle
pair α, as it must if more than one pair type is present in the
problem.
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The integrals REC
clf L and RERC

cc′l′f L
contain the hard-sphere

and resonant portions of the initial scattering wave function,
respectively. The hard-sphere integral is given by

REC
clf L = Cαslf

∫ ∞

ac

drrL
[
Fαl(kαr) cos δhs

c + Gαl(kαr) sin δhs
c

]
×W−ηα,lf +1/2(2kαf r). (25)

In the above equation, the asymptotic normalization (ANC) is
represented by Cαslf , the functions Fαl(kαr) and Gαl(kαr) are
normal Coulomb functions, W−ηα,lf +1/2(2kαf r) is a Whittaker
function, and δhs

c is the hard-sphere phase shift given by

δhs
c = − tan−1

[
Fαl(kαac)

Gαl(kαac)

]
. (26)

The resonant external integral RERC
cc′l′f L

includes contributions

from all channels. For open channels, we define

KLclf = exp
(
iδhs

c

)
P 1/2

c

∫ ∞

ac

dr rL[Gαl(kαr) + iFαl(kαr)]

×W−ηα,lf +1/2(2kαf r), (27)

and for closed channels

KLclf = (kαac)1/2
∫ ∞

ac

drrL W−ηα,l+1/2(2kαr)

W−ηα,l+1/2(2kαac)

×W−ηα,lf +1/2(2kαf r). (28)

In R-matrix formalism, the resonant external integral is given
by

RERC
cc′l′f L = P 1/2

c [(1 − RL)−1R]cc′Cα′s ′l′f KLc′l′f , (29)

while for the A-matrix formalism the term takes the form

RERC
cc′l′f L = P 1/2

c

∑
λµ

γλcγµc′AλµCα′s ′l′f KLc′l′f . (30)

The above integrals can also be parametrized in terms of the
dimensionless reduced width amplitude (DRWA), θαslf , by
substituting for the ANC the expression

Cαslf =
√

2

aαslf

θαslf

N
1/2
f

W−ηα,lf +1/2(2kαf ac)
. (31)

The normalization factor Nf results from the fact that R-matrix
eigenfunctions are normalized to unity inside the channel radii.
It is given by

N−1
f = 1 +

∑
αslf

2θ2
αslf

aαslf

∫ ∞

ac

[
W−ηα,lf +1/2(2kαf r)

W−ηα,lf +1/2(2kαf aαslf )

]2

dr.

(32)

If the level shift of the final state vanishes, the dimensionless
reduced width can be related to the R-matrix reduced width
γαslf for that state via Eq. IV.3.10 of Ref. [21]:

θαslf = aαslf

√
µα

h̄
γαslf , (33)

and using Eq. A.29 of Ref. [21] the normalization factor can
be written

N−1
f = 1 +

∑
αslf

γ 2
αslf

(
dSαslf

dE

)
aαslf

. (34)

Alternative definitions of the dimensionless reduced width
amplitude also exist.

Defining the total transition matrix element for capture as

T J
cp = T J,int

cp + T J,ext
cp , (35)

it can be shown that the differential cross section is given as

dσα→λf

d
= 1

(2Iα1 + 1)(2Iα2 + 1)

1

k2
α

∑
k

BkPk(θ ), (36)

with the definitions

Bk =
∑

s,L,L′,l,l′,J,J ′,ε,ε′
[ ]

(−1)1+s−Jf

4
Z1(lJ l′J ′; sk)

×Z2(LJL′J ′; Jf k)T ∗J ′
αsl′,ε′L′λf

T J
αsl,εLλf

, (37)

and

Z1(lJ l′J ′; sk) = l̂ l̂′Ĵ Ĵ ′(l0l′0|k0)W (lJ l′J ′; sk), (38a)

Z2(LJL′J ′; Jf k) = L̂L̂′Ĵ Ĵ ′(L1L′ − 1|k0)W (LJL′J ′; Jf k),

(38b)

where the symbol [ ] indicates a parity restriction defined by

[ ] = 1
2 [1 + (−1)L

′+L+k+ε+ε′
]. (39)

These equations are identical to those given in Ref. [26].
Integrating over the solid angle gives the usual expression
for the total cross section:

σα→λf
= π

k2
α

∑
J lsLε

gJ

∣∣T J
cp

∣∣2
. (40)

B. Parameter transformations

Experimental resonance widths are usually presented as
Breit-Wigner partial widths �o

λc, while R-matrix theory uses
reduced width amplitudes γλc for the resonance parameters.
The situation is complicated by the dependence of the reduced
width amplitudes and R-matrix pole energies on the choice
of boundary conditions. In R-matrix theory, a single set of
fixed boundary conditions is defined for each Jπ group of
levels. The free parameters in the theory, namely, γλc and Eλ,
are then fitted given this choice of boundary conditions. In
the following section, the transformation from experimental
to theoretical parameter space, and vice versa, is summarized.

In the discussion below, the notation of Ref. [18] has been
adopted. Observed partial widths and level energies are de-
noted by �o

λc and Ẽλ, respectively. The on-resonance reduced
width amplitudes are represented by γ̃λc, while the R-matrix
parameters transformed to a single boundary condition are
given by γλc and Eλ. The definition of an on-resonance reduced
width amplitude is inherently dependent upon a specific choice
of boundary condition. Conventionally, the term on-resonance
implies that the boundary condition for a given set of R-matrix
parameters of a single level has been taken to be Sc(Ẽλ), where
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Ẽλ is the observed level energy and Sc is the Coulomb shift
function [21]. The descriptor on-resonance will be replaced
by physical for the remainder of the discussion. Additionally,
many of the formulas in the following sections include a sum
over channels. The contribution from γ channels should be
excluded from this summation [18].

1. Physical width amplitudes

For a single level, the observed width can be related to the
physical reduced width amplitudes via [18]

�o
λc ≡ 2Pcγ̃

2
λc

1 + ∑
k γ̃ 2

λk

(
dSk

dE

)
Ẽλ

, (41)

where Pc is the penetrability (Ref. [21], Eqs. XII.3.5 and
XII.3.6). In the specialized case of photon channels, Pc =
k2L+1
γ should be used in place of the Coulomb penetrability.

In Eq. (41), a complete set of γ̃λc parameters for a given level
is assumed. As a result, this formula can be inverted to yield a
single physical reduced width amplitude using

γ̃ 2
λc = �o

λc

Pc

[
2 −

∑
k

�o
λk

Pk

(
dSk

dE

)
Ẽλ

]−1

. (42)

While these formulas dictate the transformation from observed
partial widths to physical reduced width amplitudes, additional
conventions are needed to shift the boundary condition
dependence of the parameter space in R-matrix theory.

2. Brune transformation

A process has been suggested in Ref. [18] to further
transform the γ̃λc and Ẽλ parameters of multiple levels relative
to a single boundary condition in R-matrix space. This is
extremely useful to determine initial parameters for an R-
matrix fit from literature values. It is first necessary to define
two square level matrices, M and N, as

Mµλ =
{

1 for µ = λ,

− ∑
c γ̃µcγ̃λc

Sµc−Sλc

Ẽµ−Ẽλ
for µ 	= λ,

(43)

and

Nµλ =
⎧⎨
⎩

Ẽµ + ∑
c γ̃ 2

µc(Sµc − Bc) for µ = λ,∑
cγ̃µcγ̃λc

( ẼµSλc−ẼλSµc

Ẽµ−Ẽλ
− Bc

)
for µ 	= λ.

(44)

In these equations, Sµc denotes the shift function for a given
channel evaluated at the pole energy Ẽµ, where the boundary
condition for which this transformation is relevant is Bc. The
transformed reduced width amplitudes result from a solution
to the eigenvalue equation

Nbν = EνMbν, (45)

where Eν is the transformed R-matrix pole energy. The
transformation for the reduced width amplitudes then follows
from

γνc = bT
ν γ̃ c, (46)

where γ̃ c is a channel vector with components corresponding
to each level in the Jπ grouping.

3. Barker transformation

At the conclusion of the fitting process, it is useful to
reinstate the Bc = Sc(Ẽλ) boundary condition dependence for
each individual set of level parameters prior to converting
reduced width amplitudes to observed partial widths. In
Ref. [17], a proposed method inverts the procedure described
in Sec. II B2. A level matrix C is defined as

Cµλ = Eµδµλ −
∑

c

(B ′
c − Bc)γµcγλc, (47)

where Bc is the single boundary condition corresponding to
the set of R-matrix parameters resulting from the fit, and B ′

c

is the boundary condition for the transformed parameters. It
is then required to find an orthogonal matrix K such that C is
diagonalized by the transformation

D = KCKT. (48)

The diagonal elements of D contain the eigenvalues (which are
the transformed E′

ν) of C, while the column vectors of KT make
up the corresponding eigenvectors (kT

ν ). The transformation of
the reduced width amplitude to the new boundary condition
then follows from

γ ′
νc = kνγ c or γ ′

c = Kγ c. (49)

A set of parameters for a single level are denoted as physical
when Bc = Sc(Ẽλ), though Ẽλ is initially unknown. If B ′

c =
S(Eλ) is adopted as an initial estimate, and the process is
repeated iteratively, the transformation most often converges to
a set of parameters relative to the desired boundary condition.
This process must subsequently be repeated for each level in a
given Jπ grouping. With a complete set of physical R-matrix
parameters, a conversion to a complete set of observed partial
widths can be determined using Eq. (41).

III. AZURE

AZURE is a multichannel, multilevel R-matrix computer
code written in FORTRAN 77. It is designed to model low-energy
nuclear reactions involving charged particles, γ rays, and
neutrons. The main focus is to extract level energies, observed
partial widths, and bound state normalization parameters
(ANCs or DRWAs) from the analysis of experimental exci-
tation functions and angular distributions, and to determine
S factors at or near the energies of interest to nuclear
astrophysics.

The AZURE package is divided into two primary sub-
routines, linked by the fitting package MINUIT [27]. In the
first subroutine, all quantities that are not dependent on the
R-matrix parameter sets are calculated. The second subroutine,
called iteratively by the MINUIT package, calculates the cross
section from the R-matrix parameters and applies beam and
target effects to determine the total χ2 value.

A graphical user interface (GUI) has been developed to
expedite data management and program configuration. The
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user can add or delete entire reaction channels, turn on, turn
off, or edit resonances and their associated parameters, as well
as swap data sets in and out. In addition, many analysis options
within AZURE are controlled by configuration flags, which can
be toggled using the GUI.

The multichannel aspect permits the inclusion of as many
channels as allowed by angular momentum conservation for
as many compound state decay reactions as desired. At
the present time, AZURE permits simultaneous analysis of
reactions occurring through only a single entrance particle
pair. All allowed interferences are automatically taken into
account. This allows for more strict constraints on the fitted
parameters, but introduces additional demands on the relative
energy calibrations and target thickness corrections for the
data sets for different reactions and experiments. Also, both
nonresonant EC and resonant ERC external channel capture
have been implemented in AZURE using this full multichannel
approach.

The matrix transformations of Brune and Barker (See
Sec. II B) are implemented in AZURE. Therefore, it is possible
to use experimental resonance energies and widths directly
as starting parameters. These are automatically converted into
the proper reduced width amplitudes and pole energies and,
following the R-matrix analysis, are transformed back into
physical parameters. AZURE utilizes the package LAPACK [28]
to solve the eigensystems necessary for the transformations.

Many other analysis options are also available in AZURE,
including, but not limited to, target integration, beam energy
convolution, and inverse kinematics. The technical and com-
putational aspects of AZURE are described in the AZURE user
manual which is accessible on the AZURE website. The source
code for AZURE, the graphical user interface, and the user
manual are available online at http://azure.nd.edu/. Several
examples are also included to demonstrate the various features
offered by the AZURE code.

IV. EXAMPLES AND APPLICATIONS

In this section, the application of AZURE for the analysis of
a number of proton-induced scattering and radiative capture
reactions will be presented. The focus will be on three key
reactions in the first and second CNO cycles [19,20]. The
reactions are selected, in part, to demonstrate the versatility of
the code. For the examples in this study, the data were taken
from published reports only. This allows a better comparison
to be made with the results of previous reaction analysis.

In R-matrix analysis of low-energy cross sections, the
fitted results often depend on the value chosen for the radius
parameter ac. In the first example, an error analysis has been
performed to explore the radial dependence of the R-matrix
parameters for this reaction. In the other cases, the value of
ac is chosen to be that of the previous relevant publications to
allow a direct comparison of the resulting reaction parameters.

The 12C(p,γ )13N radiative capture cross section is charac-
terized by broad resonances and a nonresonant direct capture
component which leads to pronounced interference effects
over the entire observed energy range. In this example, the
elastic scattering channel was evaluated simultaneously to en-

hance the constraints on the particle widths. The 14N(p,γ )15O
reaction, on the other hand, is characterized by very narrow
resonances and a continuous direct capture component which
locally causes interference effects in the cross sections. The
final example reaction 16O(p,γ )17F is completely dominated
by a nonresonant direct capture reaction mechanism without
significant resonant contributions.

With the exception of bound state energies, all parameters
given in the tables of the following examples have been left
free in the fit unless otherwise indicated.

A. 12C + p reaction

The 12C(p,γ )13N reaction is critical to understanding
stellar hydrogen burning in massive stars. It initiates the
first CNO cycle, or the CN cycle, on the available 12C
seed abundance in the stellar material [19]. There have been
extensive measurements in the past mapping the cross section
in the energy range from 2.3 MeV down to 0.15 MeV [6,29].
These results indicate that at astrophysical energies, the cross
section of 12C(p,γ )13N is dominated by the low-energy tail of
a Jπ = 1/2+ resonance at Ep = 461 keV and an E1 external
capture component arising from s → p and d → p orbital
transitions. Previous analysis predicts a low-energy total S

factor of S ≈ 1.5 keV barn at 25 keV [30], which is comparable
to the low-energy S factor of 14N(p,γ )15O, the slowest reaction
of the CN cycle.

Because of the complex interplay of a strong direct
nonresonant component with a large resonant component
at astrophysical energies, the 12C(p,γ )13N reaction is an
excellent demonstration of the versatility of the AZURE code.
As the low-energy capture data adopted in the following fits
originated directly from Ref. [29], and therefore contain no
uncertainties from digitization, this example is also used to
highlight the sensitivity studies which can be performed with
AZURE to evaluate the uncertainties in both fit parameters and
extrapolations.

1. Experimental data and R-matrix analysis

In the present analysis, capture data for the 12C(p,γ )13N
reaction from Refs. [6,29] were initially considered. Addi-
tionally, available elastic scattering data from Ref. [31] were
included to further constrain the entrance channel. While
the capture data of Ref. [6] represent the most extensive
low-energy measurement to date, questions have arisen in
the literature [30,32,33] concerning the reliability of the data
extracted from the figures in the publication. Notably, a
discrepancy in the energy of the Jπ = 3/2− resonance has
been reported in Refs. [32,33], where it was observed that
the resonance at Ep = 1689 keV disagrees with the quoted
energy of Ep = 1699 keV of Ref. [6]. An energy of Ep =
1689 ± 2 keV was later adopted in Ref. [34]. An AZURE fit
to a digitized data set of Ref. [6] yielded Ep = 1709 keV.
A separate AZURE fit to the elastic scattering data of Ref. [31]
positions the resonance at Ep = 1686 keV, in better agreement
with previous results [32–34]. In light of this discrepancy,
and considering the negligible effect of this resonance at
astrophysical energies, only the data of Ref. [29] extending
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FIG. 1. (Color online) Calculated nuclear phase shifts for the
12C + p reaction. The solid black line indicates the total p1/2 phase
shift including the ground state contribution, while the dotted black
line represents only the hard-sphere phase shift.

up to Ep = 685 keV have been used in the present analysis.
The data resulting from the study in Ref. [29] are directly listed
in the thesis; the use of these data helped avoid errors resulting
from scanning and digitization of data figure representations.
While the resonant contribution of the Jπ = 3/2− state is
unimportant at astrophysical energies, capture in this energy
range exhibits strong interference with the external direct
component. New data for the 12C(p,γ )13N reaction in this
energy region could serve to further constrain the direct
contribution.

The data of Ref. [29] were fitted simultaneously with the
elastic scattering data of Ref. [31]. A renormalization was
applied to the capture data to reproduce a peak cross section
for the Jπ = 1/2+ resonance of 102 ± 8 µb recommended
in Ref. [30]. In addition to this resonance, the state at Ep =
1686 keV (Jπ = 3/2−) and an additional state Ep = 1735 keV
(Jπ = 5/2+) were included in the scattering channel. While
these states were not included in the capture channel for
the final analysis, tests were performed to ensure nonzero
capture widths would have a negligible contribution to the fit.
The above-mentioned external capture contributions were also
incorporated. Though not observable directly in the capture
channel, a subthreshold contribution from the ground state is
needed to properly fit the elastic scattering data [31]. Figure 1
shows the nuclear phase shifts calculated from the best fit
parameters. The effect of the p1/2 ground state inclusion
only becomes significant in the region of the two higher
energy p3/2 and d5/2 resonances, therefore no interference
contribution is expected in the differential cross section around
the lower s1/2 resonance. The proton reduced width amplitude
of this subthreshold state is directly convertible to the ANC
used to normalize the external capture contribution, therefore
these two contributions were fitted with a single parameter.
A channel radius of ac = 3.4 fm was adopted. Figure 2
shows the variation of the total minimum χ2 value with
respect to the channel radius. All radii producing a best fit χ2

value within 5% of the minimum were considered acceptable,
corresponding to an allowed range for the channel radius of
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FIG. 2. (Color online) Scan of the best fit χ 2 value as a function
of the entrance channel radius. The vertical green (solid) line
indicates the adopted value, while the vertical blue (dash-dotted) lines
correspond to a 5% variation from the minimum χ2 value (horizontal
red dashed line).

2.7–4.2 fm. Fits to the capture and scattering data are shown
in Fig. 3 and Figs. 4 and 5, respectively. In Fig. 3, the best
fit not including external capture is shown, highlighting the
importance of this reaction mechanism. The constraint of the
ground state ANC by the scattering channel can be seen in
Fig. 5, where a fit not including the subthreshold contribution
is also given. The effect is most pronounced at θc.m. = 118.9◦.

2. Astrophysical S factor at 25 keV

A scan of the S(25 keV) value as a function of channel
radius was performed, and a maximum variation of ap-
proximately 1% was found. The uncertainty of the AZURE

extrapolation was evaluated by placing a fictitious data point
with negligible uncertainty at the energy of interest, varying
the magnitude of this data point, and observing the net effect
on the χ2 value of the best fit as a function of the extrapolated
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FIG. 3. (Color online) AZURE fit to the 12C(p, γ )13N data of
Ref. [29]. The red (solid) line indicates the best fit including external
capture, while the blue (dashed) line is the best fit if external capture
is neglected.
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FIG. 4. (Color online) AZURE fit to the low-energy 12C(p, p)12C
data of Ref. [31].

S factor. The effect of the fictitious point on the overall χ2

determination was extracted. An allowed variation of 5% from
the minimum χ2 value contributes a 10% uncertainty in the
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FIG. 5. (Color online) AZURE fit to the high-energy 12C(p, p)12C
data of [31]. The red (solid) line indicates the best fit with the inclusion
of the ground state as a subthreshold component, while the blue
(dashed) line is the best fit excluding this contribution.
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FIG. 6. (Color online) Scan of the best fit χ 2 value as a function
of S(25 keV). The green (solid) line indicates the adopted value,
while the blue (dash-dot) lines correspond to a 5% variation from the
minimum χ 2 value (red dashed line). The half-width of the parabola
at the 5% line corresponds to approximately 10%.

S(25 keV) extrapolation (see Fig. 6). Coupling this with the
error in channel radius gives an overall fit uncertainty in the
extrapolated S(25 keV) value of 11%. In Ref. [30], the authors
quote an uncertainty in their overall capture normalization
of ±8 µb, yielding a systematic uncertainty for S(25 keV)
of an additional 8%. Taking all of these uncertainties into
account produces a final extrapolated value of S(25 keV) =
1.61 ± 0.29 keV b. This extrapolated S(25 keV) value is in
good agreement with the value of S(25 keV) = 1.54 keV b rec-
ommended in Ref. [30]. Comparison with other S factor pre-
dictions on the basis of previous work such as in Ref. [6] would
require a renormalization of their results according to the
suggestions made in Ref. [30] and has not been performed here.

3. Reaction parameter description and comparison

Table I shows the parameters of the present best fit. The
physical proton widths, indicated as �0

p, were evaluated with
the boundary condition equal to the shift function at the energy
of the resonance. It should be noted that the physical and
formal R-matrix parameters are identical in this case given
that there is only a single level per Jπ group. The notation
γγ (int) indicates the internal reduced width amplitude of the
γ channel. External resonance capture also contributes to this
level, but is completely determined by the proton reduced
width amplitude of the level and the ANC of the ground state.
The base uncertainties given in the table correspond to a 5%
increase in the minimum χ2 value of the best fit with respect
to the variation of a single parameter, a process which can
be automated using MINUIT. While the R-matrix parameters
are particularly dependent on the choice of boundary radius, a
radial change of less than 1% was found after the conversion
to physical widths and has been included in the estimation of
the uncertainty for these values. The fitted ANC for the ground
state also displayed less than a 1% variation over the allowed
radii. The uncertainty quoted in Ref. [30] in the overall normal-
ization of the capture data contributes an additional variation of
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TABLE I. Physical best fit parameters for the 12C + p reaction. A channel radius of ac = 3.4 fm was used in the fit.

Eλ (keV) Ep (keV) γp (MeV−1/2) �0
p (keV) γγ (int) (MeV−1/2)

0.000 −2107 1.84 ± 0.24 Cp1/2 = 1.87 ± 0.24 fm−1/2 –
2370 ± 3 461 ± 3 2.83 ± 0.12 34.1 ± 0.8 0.500 ± 0.125
3500 ± 1 1686 ± 1 0.570 ± 0.008 57.9 ± 1.7 –
3545 ± 2 1735 ± 2 2.38 ± 0.08 48.3 ± 1.9 –

approximately 4% in the fitted ground state ANC and internal
γ width of the 461 keV resonance. The internal γ width for
this state is not well constrained in the present fit because of
the indistinguishable mixing of internal and external contri-
butions. New measurements over a larger energy range would
serve to better establish the external contribution and would in
turn lower the uncertainty of the internal width. The present
physical proton widths for the unbound states agree within 6%
of the values quoted in Ref. [31], while the physical energies of
the resonances are confirmed within 0.5%. The ANC derived
in the present fit is also in good agreement with the indirect
value of Cp1/2 = 1.81 ± 0.07 fm−1/2 measured in Ref. [35].

The excellent agreement of the AZURE fit with previous
R-matrix and external capture analysis of the 12C + p reaction
serves as a strong confirmation of the reliability of the
code. The multichannel nature of the present analysis demon-
strates the power of AZURE to constrain the parameter space of
a fit through the incorporation of multiple reactions accessing
the same compound nucleus.

B. 14N( p,γ )15O reaction

The radiative capture process 14N(p,γ )15O is considered
the most critical reaction in the CNO cycles. At temperatures
typical for core hydrogen burning in stars, the reaction is the
slowest in the entire cycle and therefore determines the overall
fusion rate of four protons to one α particle. Consequently,
it is this reaction which determines the energy production
for hydrogen burning in massive stars. Furthermore, this rate
determines the time scale for main sequence stars (with masses
M � 2M�) and has been used to determine the age of globular
clusters [36]. More recently it has been argued that good
knowledge of the reaction rate is necessary to determine the
core metallicity of the Sun from direct observation of CNO
neutrinos associated with the decay of 13N, 15O, and 17F [37].

The total reaction cross section is determined by a number
of reaction components including external direct capture,
subthreshold states, low-energy tails from a number of res-
onances, and different interference terms between resonant
and nonresonant reaction contributions. The reaction proceeds
most strongly by external capture to the 6.79 MeV (Jπ =
3/2+) excited state and by resonant and external capture to
the ground state (Jπ = 1/2−) and 6.18 MeV (Jπ = 3/2−)
excited state, with several additional transitions to excited
states at 5.18, 5.24, 6.86, and 7.28 MeV contributing weakly
at low energies. There have been a number of attempts in
the past [15,38–41] to analyze the reaction cross section data
in the framework of a single channel R-matrix model. In
R-matrix theory, any decay of the compound nucleus leading

to a different final state is represented by an additional set
of channels. The many distinct transitions in this reaction, as
well as the complex interplay between various external and
resonant components, make it an excellent demonstration of
the multichannel, multilevel capabilities of AZURE.

1. Experimental reaction data

The broadest set of measurements, in terms of the number
of transitions identified and the energy range covered (0.2–
2.5 MeV), were made by Schröder et al. [42]. Angulo and
Descouvemont [15] reanalyzed this data set and obtained
a significantly smaller S(0) than Schröder et al., primarily
because of a weaker contribution for the subthreshold level
in the ground state transition. The data of Ref. [42] were
subsequently corrected for summing effects in Ref. [43]. In two
recent experiments from the LUNA [38,40] and LENA [39]
collaborations, the yield curves were remeasured, focusing
on the low-energy region. These works reached different
conclusions on the low-energy S factors for the different
primary transitions, particularly the ground state transition,
but the total S factors were in reasonable agreement. These
differences in the R-matrix fits prompted a remeasurement
of the ground state transition near 0.3 MeV [41], this energy
being expected to offer the best constraint on the S factor at
astrophysical energies. The lowest energy measurements of the
14N(p,γ )15O reaction were reported in Refs. [44,45], where
the transition-inclusive (p,γtotal) cross section was measured;
and while not included in the χ2 fit in the present analysis, we
compare the sum of our primary transition fits to these data.

In addition to the direct measurement of cross sections, the
lifetime of the important 6.792 MeV state was measured using
the Doppler-shift attenuation method [46,47] and via Coulomb
excitation [48]. The strong external capture components in
several transitions led to measurements of the asymptotic
normalization coefficients using the 14N(3He,d)15O transfer
reaction [35,49,50]. The analyzing power and inferred M1
contributions were measured in the 6.18 and 6.79 MeV
transitions [51], though in Ref. [39] the effect of the suggested
M1 background component in the 6.18 MeV transition was
found to be negligible.

2. Selection of resonances, transitions, and parameters
for the R-matrix analysis

The yield curves show the presence of Jπ = 1/2+ reso-
nances at center-of-mass energies 0.259 and 1.45 MeV and
Jπ = 3/2+ resonances at −0.504 (subthreshold), 0.985, and
2.19 MeV. A Jπ = 3/2+ background pole was included for the
ground state transition. Resonance energies and widths were
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FIG. 7. 15O compound nucleus level scheme indicating the
relevant resonances and final states for the resonant and external
capture induced γ transitions in radiative proton capture on 14N.

fixed to literature values, with the exceptions stated below.
ANCs were left as free parameters except in the ground state
transition, where the external capture contribution is believed
to be weak and is obscured by other nonresonant components.
The resonances and final states are summarized in Fig. 7. For
all fits, a radius parameter of a = 5.5 fm was adopted from pre-
vious R-matrix studies [15,39–41] to allow for a direct compar-
ison of the AZURE reaction parameters with literature results.

For resonance capture, it was assumed that only the lowest
incident �i value and multipolarity L would contribute. This
assumption is investigated in the ground state transition,
where there is strong destructive interference in the �i = 0
contributions at low energies. For external capture, 1/2 and
3/2 channel spin contributions are allowed, and the lowest
two incident �i values as appropriate. The initial values for
the ANCs are taken from Ref. [50], converted to the present
coupling scheme, and are denoted by C�f I , where �f is the
final state orbital angular momentum and I the channel spin.

At low energies, the ground state transition is primarily
determined by the interference between different Jπ = 3/2+
reaction components, which include the subthreshold state,
the broad 2.19 MeV resonance, the background pole, and
the external capture contribution. The proton reduced width
amplitude γp of the subthreshold state was fixed using the
ANC C6.79

s3/2 = 4.7 fm−1/2 [40]. In addition, the ANC for the
ground state external capture was fixed at C0.00

p3/2 = 7.3 fm−1/2.
These values are taken from previous R-matrix analyses [40]
and indirect determinations [50]. The weaker I = 1/2 external
capture component was fixed using the ANC of Ref. [50].

The widths of the narrow resonance at 0.259 MeV were
left as free parameters, while the proton width �p of the
0.985 MeV resonance was fixed at 3.0 keV. The energy of the
Jπ = 3/2+ background pole was set at Ec.m. = 6 MeV, with a
proton width of �p = 8 MeV. The γ partial widths �γ of the
subthreshold state and background pole, along with the width
of the 2.19 MeV resonance were treated as free parameters,
which determined the broad resonance contributions.

Capture to the 6.79 MeV state shows a strong I = 3/2 ex-
ternal capture component added incoherently to the 0.259 MeV
resonance. The ANC of the 6.79 MeV Jπ = 3/2+ state, and
the related proton reduced width amplitude γp, relevant for the
ground state transition, were treated as independent parameters
in the fitting procedure.

For the 5.18 and 6.18 MeV transitions, the Jπ = 1/2+ res-
onances at 0.259 and 1.45 MeV and the Jπ = 3/2+ resonance
at 0.985 MeV were included. The transition to the 6.18 MeV
state also includes I = 1/2 and I = 3/2 external capture
contributions. The proton width �p and the capture widths
�γ of the 1.45 MeV resonance were fixed, as the widths of this
resonance are not well defined by the existing data at higher
energies [42].

The 5.24, 6.86, and 7.28 MeV states all contribute weakly
at astrophysical energies, are strongly nonresonant, and were
modeled as external capture transitions. The transitions to
the 5.24 and 6.86 MeV states also included the 0.985 and
2.19 MeV resonances.

3. Single-channel R-matrix analyses of the ground
state transition

The primary transition with the largest uncertainty is to
the ground state, and a variety of S0.00(0) values have been
obtained often based on different data sets and different
R-matrix techniques. Generally it has been assumed that
only the lowest entrance channel angular momentum �i will
contribute, though it was noted in Ref. [15] that �i = 2 con-
tributions may be significant for the 2.19 MeV resonance, as
indicated by elastic scattering experiments, e.g., Refs. [52,53].
While the significance of d-wave components at low energy
may be very small, the dominant broad s-wave components are
sensitive to the data at energies where the d-wave components
could be non-negligible.

Previous R-matrix fits [38–41] were reproduced in the
present work by fitting the appropriate data subsets using
similar fitting procedures, in order to verify the AZURE code.
The following is a brief summary of the previous analyses.

In the fits of Ref. [38], the new low-energy data and the
higher energy data of Ref. [42], corrected for summing effects
were used. For the fit of Ref. [39], only the data from that
study were used; and though contributions from the 2.19 MeV
background resonances were included, the widths and energies
were fixed to the values of Ref. [15]. In the fits of Ref. [41],
the only data set used in addition to their own was that of
Schröder et al., neglecting the data of Refs. [38,39] because of
the possible uncertainties in the large summing corrections.

Such a selective choice of data sets by these references
may explain the differences in the S-factor predictions for the
ground state transition. The present study seeks to address this
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FIG. 8. (Color online) Fits to the ground state transition in the
low-energy region to match those from Refs. [38,40] (dot-dash), [39]
(dot-dot), and [41] (dotted). AZURE fits to all the data using the lowest
�i assumption are shown (solid), along with fits allowing �i = 2
for the external capture and 2.19 MeV resonance (dashed). The data
shown are from Refs. [42] (open circles), [38] (open squares), [39]
(solid triangles), and [41] (solid circles).

by providing a comprehensive fit analysis to all available data.
The analysis is constrained by including only the minimum �i

contributions. For exploring the possibility of higher �i compo-
nents as suggested in Ref. [15], this assumption was relaxed for
the 2.19 MeV resonance and the external capture contribution.

Figure 8 shows the resulting fits as described above. The
fits from previous studies are well reproduced, with the current
fit (�i = 0) to all available data being closest to that from
Ref. [38]. The primary source of the difference is likely the
inclusion of the data of Ref. [39] in the present fits, which
lowers the fit in the 0.3–0.4 MeV region. The inclusion of
�i = 2 contributions has little effect on the high-energy side of
the 0.259 MeV resonance but results in a considerably larger
S factor below 0.2 MeV in disagreement with the lowest energy
LUNA data, thereby demonstrating that such a component
could have an effect on the astrophysical reaction rate and
requires further study.

4. R-matrix multichannel analysis for all transitions

This section demonstrates the multichannel fit capability
of AZURE; it presents the results of a simultaneous R-matrix
analysis for all seven observed transitions in the 14N(p,γ )15O
radiative capture reaction.

The ground state transition was fitted including only the
lowest �i . The resulting multichannel fit for the ground state
transition is shown in Fig. 9, and is essentially identical to
the single-channel fits described in the previous section. The
resulting S0.00(0) = 0.28 keV b is slightly larger than the result
of [38] S0.00(0) = 0.25 ± 0.06 keV b. This change is most
likely due to the inclusion of the data from Ref. [39] in the
present study, since the low-energy extrapolation is very sensi-
tive to the data on the upper side of the 0.259 MeV resonance.

The fitted value for �0.00
γ (int) for the subthreshold state

is 0.62 eV, in good agreement with the values of Refs. [46]
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FIG. 9. (Color online) AZURE fit for the ground state transition.
The solid line shows the current fits to the data of Refs. [42] (open
circles), [38,40] (open squares), [39] (solid triangles), and [41] (solid
circles).

0.41+0.34
−0.13 eV, [48] 0.95+0.60

−0.95 eV, and [47] > 0.85 eV, though
how well the internal width is constrained by the current
analysis is unclear.

Current fits for the transition to the 6.18 MeV state, shown
in Fig. 10, describe the data well, particularly around the
0.259 MeV resonance. The fitted ANC of Cp1/2 = 0.49 fm−1/2

compares excellently to that of Refs. [50] 0.47 ± 0.03 fm−1/2

and [49] 0.45 ± 0.05 fm−1/2, but is larger than the value
determined from a previous R-matrix analysis of Cp1/2 =
0.2 ± 0.1 fm−1/2 [40]. This may be due to our inclusion of
the channel spin I = 3/2 component, the fitted ANC of which
Cp3/2 = 0.36 fm−1/2 compares reasonably to the results of
Refs. [50] 0.53 ± 0.03 fm−1/2 and [49] 0.51 ± 0.06 fm−1/2.
The extrapolated S6.18(0) = 0.12 keV b is somewhat larger
than 0.08 ± 0.03 keV b from Ref. [40], but is in excellent
agreement with that from Refs. [50] S6.18(0) = 0.13 ± 0.02
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FIG. 10. (Color online) Fits for the 6.18 MeV state transition.
The data sets are from Refs. [42] (open circles), [40] (open squares),
and [39] (solid triangles).
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FIG. 11. (Color online) Fit for the 6.79 MeV final state transition.
The data are from Refs. [42] (open circles), [38] (open squares),
and [39] (solid triangles), and data taken in Bochum (solid squares,
see Ref. [40]).

and [42] S6.18(0) = 0.14 ± 0.05 keV b. Agreement is also
found with the larger value suggested in Ref. [51] of 0.16 ±
0.06 keV b, though the M1 background strength was not
included as suggested.

The S-factor curve for the 6.79 MeV transition is dominated
by external capture, as shown in Fig. 11. The extrapolated
S6.79(0) = 1.30 keV b is in reasonable agreement with the
results of Refs. [40] 1.20 ± 0.05 and [39] 1.15 ± 0.05 keV
b. Our results are slightly larger because of our inclusion of
the data of Schröder et al.; the fits of Refs. [15] and [50], based
only on the data of Schröder et al., indeed obtained larger S(0)
values, being 1.63 ± 0.17 and 1.40 ± 0.20 keV b, respectively.
The systematic underestimation of the Schröder et al. data by
our calculation indicates the potential value of a remeasure-
ment of this transition at 0.5–2.5 MeV. The fitted ANC of
Cs3/2 = 4.86 fm−1/2 is in good agreement with those from the
previous R-matrix analysis 4.7 ± 0.1 fm−1/2 [40] and indirect
measurements 4.9 ± 0.5 [50] and 4.6 ± 0.5 [49] fm−1/2.

The S-factor curve for the weak transition to the 5.18 MeV
state is shown in Fig. 12. The extrapolated S factor S5.18(0) =
0.01 keV b, is consistent with the previous result of Ref. [40]
of 0.010 ± 0.003 keV b.

The three remaining transitions to the 5.24, 6.86, and
7.28 MeV states, shown in Fig. 13, are dominated by
external capture. The extrapolated S(0) = 0.045 keV b for the
transition to the 6.86 MeV state is in good agreement with
the values of 0.03 ± 0.04 [50] and 0.042 ± 0.001 [42] keV b.
The subsequent γ decay of the 6.86 and 7.28 MeV states
occurs via cascades through the 5.24 MeV state; comparing
the sum of these three transitions gives reasonable agreement
with the 5.24 to ground state secondary transition data
of Refs. [40,42]. The sum of the extrapolated S(0) is
S5.24→0.00(0) = 0.10 keV b, in good agreement with the value
of 0.070 ± 0.003 from Ref. [40]. The sum of all analyzed
transitions shown in Fig. 14 is in excellent agreement with the
14N(p,γtotal) data of Ref. [45].
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FIG. 12. (Color online) R-matrix analysis of the data for the
transition to the 5.18 MeV state. The analysis is based on the
experimental data of Refs. [42] (open circles), [40] (open squares),
and [39] (solid triangles). The solid line shows the resulting fit
and demonstrates the predictive power of the multichannel R-matrix
approach in the case of the 1.446 MeV resonance.

The resulting partial widths of the resonance states are
shown in Table II, and the ANCs of the bound states in 15O are
listed in Table III together with the ANC values determined
in previous work. The present ANC values are generally
in good agreement with these previous determinations. The
extrapolated S-factor values S(0) for the excitation curves
of the various primary transitions in this reaction are shown
in Table IV, and are in reasonable agreement with previous
results, though our total S(0) is somewhat larger than previous
determinations.

5. Summary

A simultaneous analysis of seven primary transitions for
the 14N(p,γ )15O reaction using a multichannel approach
has been presented. The results are best in agreement with
those from Ref. [40]. The zero-energy S factor for the
ground state transition is larger than that from Ref. [40]
attributed to the inclusion of the data from Ref. [39] in our
fits. The low-energy extrapolation is very sensitive to data just
above the 0.259 MeV resonance. The recent measurements of

TABLE II. Resonance proton and internal γ partial widths for the
three strongest transitions.

Energy �p �γ0.00 (int) �γ6.18 (int) �γ6.79 (int)
(MeV) (keV) (eV) (meV) (meV)

−0.504 4.7a,b 0.62 – –
0.259 1.0 0.4×10−3 5.4 9.6
0.985 3.0a 0.051 23 –
1.45 32a – 150a –
2.195 250 4.9 – –
6.00 8000a 31 – –

aParameter fixed in fitting.
bANC (fm−1/2).

045805-13



R. E. AZUMA et al. PHYSICAL REVIEW C 81, 045805 (2010)

10 -2

10 -1

10 0

 0  0.5  1  1.5  2  2.5  3

S
-F

ac
to

r 
[k

eV
 b

ar
n]

Center of Mass Energy [MeV]

10 -2

10 -1

10 0

 0  0.5  1  1.5  2  2.5  3

S
-F

ac
to

r 
[k

eV
 b

ar
n]

Center of Mass Energy [MeV]

10 -2

10 -1

10 0

10 1

10 2

10 3

 0  0.5  1  1.5  2  2.5  3

S
-F

ac
to

r 
[k

eV
 b

ar
n]

Center of Mass Energy [MeV]

10-2

10-1

10 0

10 1

10 2

 0  0.5  1  1.5  2  2.5  3

S
-F

ac
to

r 
[k

eV
 b

ar
n]

Center of Mass Energy [MeV]

FIG. 13. (Color online) Results from the primary transitions to the 5.24 (top left), 6.86 (top right), and 7.28 (bottom left) MeV state and
the sum of these three transitions compared with the secondary data for the ground state transition of the 5.24 MeV state (bottom right). The
triangles for the 5.24 MeV primary transition represent experimental upper limits.

Ref. [41], where the data with large summing corrections were
neglected, suggest a ground state S(0) of 0.08 keV b lower than
the value we obtained, suggesting that further measurements
in the range 0.3–1.0 MeV are required. The strong background
contributions may be better clarified by data above 2.5 MeV,
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FIG. 14. (Color online) Sum of the R-matrix curves for all
primary transitions in the low-energy region (solid black line) in
comparison with the total S-factor data for 14N(p,γtotal) derived in
Refs. [44,45] (solid circles).

and the relative strengths of the s and d entrance channel
components of the 2.19 MeV resonance would be better
determined by including elastic scattering data. This has not
been done in the present analysis and will be the subject of a
future study taking into account new elastic scattering data.

TABLE III. ANC values C�f I (fm−1/2) from the present R-matrix
analysis and ANC values from indirect measurements, converted to
the present coupling scheme. Note there is a sign ambiguity in the
conversion, as the ANCs from transfer measurements are given as
C2

�f j only.

Final (�f I ) AZURE Ref. [50] Ref. [49] Ref. [35]
state

0.00 (p,1/2) 0.23a 0.23 ± 0.01 – 1.31b

(p,3/2) 7.3a 7.3 ± 0.4 – 6.7b

6.18 (p,1/2) 0.49 0.47 ± 0.03 0.45 ± 0.05 0.49 ± 0.02
(p,3/2) 0.36 0.53 ± 0.03 0.51 ± 0.06 0.54 ± 0.02

6.79 (s,3/2) 4.86 4.9 ± 0.5 4.6 ± 0.5 3.74b

5.24 (d ,1/2) 0.54 0.23 ± 0.01 – 0.20 ± 0.02
(d ,3/2) 0.21 0.24 ± 0.01 – 0.24 ± 0.02

6.86 (d ,1/2) 0.46 0.39 ± 0.02 0.41 ± 0.05 0.36 ± 0.03
(d ,3/2) 0.48 0.41 ± 0.03 0.44 ± 0.05 0.39 ± 0.04

7.28 (d ,3/2) 1770 1530 ± 60 1640 ± 180 2300 ± 170

aParameter fixed in fitting.
bError not given.
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TABLE IV. Values for the astrophysical S factor resulting from the
present (multichannel) and previous R-matrix analyses. Analyzing
the ground state transition using the data of Ref. [41] would give
an S(0) ∼ 0.08 keV b lower. Excluding the data of Ref. [42] in the
6.79 MeV transition would give an S(0) ∼ 0.1 keV b lower.

Energy Astrophysical S factor S(0) (keV b)

(MeV) Present Ref. [40] Ref. [39] Ref. [50]

0.00 0.28 0.25 ± 0.06 0.49 ± 0.08 0.15 ± 0.07
5.18 0.01 0.01 ± 0.003 – –
5.24a 0.10 0.07 ± 0.003 – 0.03 ± 0.04
6.18 0.12 0.08 ± 0.03 0.04 ± 0.01 0.13 ± 0.02
6.79 1.30 1.20 ± 0.05 1.15 ± 0.05 1.40 ± 0.20
Total 1.81 1.61 ± 0.08 1.68 ± 0.09 1.70 ± 0.22

aReference [40] analyzes the secondary transition from the 5.24 MeV
decay to the ground state, and Ref. [50] presents results for the
transition to the 6.86 MeV state; our value is the sum of the primary
transitions to the 5.24, 6.86, and 7.28 MeV states.

The fit for the transition to the 6.18 MeV state gives a larger
S(0) than in Ref. [40] because of our inclusion of a I = 3/2
external capture component. The extrapolated S factor for the
dominant transition to the 6.79 MeV state is larger than the
previous analysis [40] because of our inclusion of the data of
Ref. [42], the normalization of which should be checked with
new measurements in the 0.5–2.5 MeV region. Our analysis of
the weakly contributing transitions is in good agreement with
previous determinations.

The sum of all fits for primary transitions at low energies
is marginally larger than previous estimates but is in excellent
agreement with (p,γtotal) data of Refs. [44,45]. There is still
considerable uncertainty in the ground state transition, which
is not distinguished by the (p,γtotal) data, despite extending as
low as 70 keV.

C. 16O( p,γ )17F reaction

The 16O(p,γ )17F reaction triggers the second CNO cycle
or NO cycle [19]. It is initiated primarily on the 16O seed
abundance in stellar material which may be slightly enhanced
by leakage from the CN cycle through the 15N(p,γ )16O
reaction. Because of the low cross section, the reaction is
the slowest one in the NO cycle and determines its energy
contribution to the overall CNO burning. The reaction is
dominated by direct capture components to the ground state
(Jπ = 5/2+) and the first excited state (Jπ = 1/2+) in 17F,
and is considered to be one of the standard cases for a pure
direct capture mechanism [4,5]. As such, this example is
used to demonstrate the full inclusion of the external capture
component in the AZURE code.

1. R-matrix analysis

The R-matrix analysis was performed using the data of
Ref. [54], corrected for summing effects in Ref. [55]. The
experimental errors have been augmented [55] to include
an additional 10%, which was added in quadrature with the
original errors of Ref. [54]. A systematic error of 10% has
been identified in Appendix B of Ref. [56]. It is not clear if
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FIG. 15. (Color online) AZURE fit of the 16O(p,γ0)17F reaction.
The red (solid) line indicates the AZURE best fit. The blue (dashed)
line is the hard-sphere external capture (EC) component, while
the violet (dash-dot) line is the resonant external capture (ERC)
contribution. The orange (dotted) line is the negligible internal
R-matrix contribution.

this is the 10% error referred to in Ref. [55]. The data covers an
energy range from 0.23 to 3.75 MeV in the laboratory frame.
Two resonances appear in the yield curve, at Ep = 2.659 MeV
(Jπ = 1/2−) and Ep = 3.463 MeV (Jπ = 5/2−), and were
included in the present analysis. Because of their small total
widths, these resonances have only a localized effect on the
yield curve. A Jπ = 3/2− background pole was also included
in the analysis. An external capture contribution to both bound
states was also considered, with the assumption that the ground
state and first excited state could be described by a valance
proton occupying 1d5/2 and 1s1/2 orbitals, respectively. Only
E1 contributions to external capture were included in the
analysis, proceeding through li = 1 (Jπ = 1/2−, 3/2−) and
li = 3 (Jπ = 5/2−, 7/2−) partial waves. A channel radius of
ac = 5.0 fm was used in the present calculation, adopted from
Ref. [55]. The resulting AZURE fits can be seen in Figs. 15
and 16. In both figures, the components arising from internal
R-matrix capture, hard-sphere external capture (EC), and res-
onant external capture (ERC) are explicitly shown. The back-
ground pole contributes very little to the internal contribution,
but it is significant in the ERC component. This is, in effect,
compensating for an additionally needed scattering phase shift
in the external capture beyond the hard-sphere approximation.

2. Reaction parameters and astrophysical S factor

At astrophysical energies, the cross section is almost
entirely determined by the hard-sphere external capture com-
ponent (EC), which is scaled by the asymptotic normalization
coefficient (ANC) of the bound state of interest. For the ground
state transition, the present analysis yields an ANC of C =
1.05 fm−1/2, and for the first excited state C = 80.7 fm−1/2.
Morlock et al. [54] quote an effective gas target thickness on
the order of the total width of the two resonances present in the
yield curve. Corrections for target effects were not included in
the present analysis, as the resonances contribute negligibly
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FIG. 16. (Color online) Same as Fig. 15, but for the 16O(p,γ1)17F
reaction.

to the reaction rate away from their local energies, and
therefore physical widths are not quoted here. The R-matrix
fit parameters, including the fitted background state, are given
in Table V. The present analysis yields a total astrophysical S

factor of S(90 keV) = 8.07 keV b.

3. Comparison with previous work

Iliadis et al. [55] quote an ANC of C = 1.13 ± 0.01 fm−1/2

for the ground state, and C = 82.3 ± 0.3 fm−1/2 for the first
excited state. The present values differ from those values by
7% and 2% for the ground and first excited states, respectively.
These differences may arise from an alternative treatment
of the nonresonant components in the internal R matrix.
Regardless of these discrepancies, the present S factor at
90 keV is in good agreement with the extrapolation illustrated
in Fig. 8 of Ref. [55]. Gagliardi et al. [57] have indirectly
measured the ANCs for the ground and first excited state as a
test case for the determination of low-energy capture S factors
via transfer reactions. They obtain C = 1.04 ± 0.05 fm−1/2

for the ground state and C = 80.6 ± 4.2 fm−1/2 for the first
excited state. The ANCs obtained in the current analysis are
in excellent agreement with these indirect values.

V. SUMMARY

This study presents a new R-matrix code, AZURE, which
has been designed specifically for the nuclear astrophysics
community. AZURE is particularly useful in the analysis of

low-energy charged-particle induced reactions. Resonant and
nonresonant direct contributions have been included within a
full multilevel multichannel framework, allowing for reliable
extrapolations to astrophysically relevant energy regions.
Several examples of the capabilities of AZURE have been given
above in the context of stellar hydrogen burning, demonstrating
the usefulness of the program in evaluating cross sections of
interest to the field of nuclear astrophysics. The examples
presented here, 12C(p,γ )13N, 14N(p,γ )15O, and 16O(p,γ )17F,
are significant to the understanding of stellar hydrogen burning
through the CNO cycles in our sun and in massive stars. The
reliability of the extrapolation of the existing low-energy data
has been a matter of intense debate over the last decade.
The use of R-matrix theory has added considerably to our
understanding and interpretation of the low-energy cross
sections of these and other reactions. Multichannel R-matrix
analysis offers the possibility of reducing the uncertainties
in this extrapolation and interpretation of low-energy reaction
data via the additional constraint provided by the simultaneous
treatment of multiple reaction channels.

Extensive careful analysis of all the chosen examples has
been performed in the past. The present analysis shows excel-
lent agreement with these previous studies which demonstrates
the reliability of AZURE. Beyond this, the multichannel analysis
feature of AZURE added significantly to the reduction of the
uncertainty in the extrapolation by introducing new constraints
for the reaction parameters.

The selected examples were radiative capture reactions
where AZURE has been used to explore in detail the various
reaction components in the low-energy range. Adding the
elastic scattering channel into the fit proved to be beneficial
for providing constraints to the ground state ANC which
defines the strength of the external capture channel in the
12C(p,γ )13N cross section. The multichannel approach was
particularly useful in the analysis of 14N(p,γ )15O, where
the seven radiative capture channels were fitted parallel.
This certainly generates a more consistent parameter set for
resonant and external capture components than the usual
approach of fitting each channel separately. The 16O(p,γ )17F
example demonstrated the capability of AZURE to fit reactions
dominated by external capture components.

While the present paper focuses exclusively on the low-
energy fit of radiative capture reactions, AZURE also provides
the possibility for the parallel fitting of particle channels. This
will be demonstrated in a number of upcoming papers where
new experimental data will be used to present an R-matrix
analysis to the critical CNO reaction branches 15N(p,γ )16O-
15N(p,α)12C and 17O(p,γ )18F-17O(p,α)14N.

TABLE V. Physical R-matrix fit parameters for the 16O(p,γ )17F reaction.

Eλ (keV) Ep (keV) γp (MeV−1/2) γγ0 (int) (MeV−1/2) γγ1 (int) (MeV−1/2)

0.00 −638 Cd5/2 = 1.05 fm−1/2 – –
495 −112 Cs1/2 = 80.7 fm−1/2 – –
3103 2659 0.1415 – 0.04359
3859 3463 0.2456 0.05344 –
4711 4368 0.7519 −0.09586 0.00404
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