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Unified description of neutron superfluidity in the neutron-star crust with analogy
to anisotropic multiband BCS superconductors
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The neutron superfluidity in the inner crust of a neutron star has traditionally been studied considering either
homogeneous neutron matter or a small number of nucleons confined inside the spherical Wigner-Seitz cell.
Drawing analogies with the recently discovered multiband superconductors, we have solved the anisotropic
multiband BCS gap equations with Bloch boundary conditions, thus providing a unified description taking
consistently into account both the free neutrons and the nuclear clusters. Calculations have been carried out
using the effective interaction underlying our recent Hartree-Fock-Bogoliubov nuclear mass model HFB-16. We
have found that even though the presence of inhomogeneities lowers the neutron pairing gaps, the reduction is
much less than that predicted by previous calculations using the Wigner-Seitz approximation. We have studied
the disappearance of superfluidity with increasing temperature. As an application we have calculated the neutron
specific heat, which is an important ingredient for modeling the thermal evolution of newly born neutron stars.
This work provides a new scheme for realistic calculations of superfluidity in neutron-star crusts.
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I. INTRODUCTION

The possibility of superfluidity inside neutron stars was
suggested a long time ago by Migdal [1], only 2 years after
the formulation of the theory of electron superconductivity
by Bardeen, Cooper, and Schrieffer (BCS) [2] and before
the discovery of the first pulsars. This prediction was later
supported by the observation of the long relaxation time, of
the order of months, following the first observed glitch in
the Vela pulsar [3]. Glitches were subsequently observed in
other pulsars. Pulsar glitches are believed to be related to
the dynamics of the neutron superfluid permeating the inner
layers of the solid neutron-star crust [4–6]. Understanding
the properties of this neutron superfluid is also of prime
importance for modeling the cooling of newly born neutron
stars [7–10] and strongly magnetized neutron stars [11], the
thermal relaxation of quasipersistent X-ray transients [12,13],
or the quasiperiodic oscillations recently detected in the giant
flares of Soft-Gamma Repeaters [14–16].

So far most microscopic studies of neutron superfluidity
have been devoted to the case of uniform infinite neutron
matter [17]. However, the coherence length of the neutron
superfluid in the neutron-star crust is typically smaller than the
lattice spacing and may even be comparable to the size of the
nuclear clusters in some layers [18,19] (see also Sec. 8.2.3 of
Ref. [20]). This situation is in sharp contrast to that encoun-
tered in ordinary type I electron superconductors, for which the
electron Cooper pairs are spatially extended over macroscopic
distances so that the order parameter is essentially uniform [21]
(note that neutron stars are much too hot for electrons to be
superconducting there; see, e.g., the discussion in Sec. 8.1
of Ref. [20]). The effects of the inhomogeneities on neutron
superfluidity in the neutron-star crust have been studied in
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the mean-field approximation with realistic nucleon-nucleon
potentials [22] and effective nucleon-nucleon interactions
[9,10,23–26]. Systematic, fully self-consistent calculations in
the entire inner crust (at zero temperature) have been recently
carried out using semimicroscopic energy functionals [27]. In
the latter work, it was found that even though inhomogeneities
are small in the densest regions of the crust, the 1S0 neutron
pairing gaps are strongly reduced compared to those in uniform
neutron matter. Moreover, the weaker the pairing force, the
stronger is the suppression of the gaps. In somes cases,
the gaps even vanish almost completely. All these quantum
calculations have been carried out in the Wigner-Seitz (W-S)
approximation, according to which the lattice is decomposed
into a set of identical spherical cells centered around each
cluster. The radius of each sphere is chosen so that its volume
is equal to 1/ρN, where ρN is the cluster density (number
of lattice sites per unit volume). As discussed in Ref. [28],
two different boundary conditions, yielding an almost-constant
neutron density ρn(r) near the cell edge, can be chosen. While
the differences in the predicted pairing gaps are small for
average nucleon densities, ρ̄ � 0.03 fm−3, the uncertainties
become increasingly large in the deeper layers of the crust [27].
This limitation of the W-S method is related to the existence
of spurious neutron shell effects owing to the discretization of
the single-particle (s.p.) energy spectrum [28,29].

In this paper, we present the first calculations of neutron
superfluidity in neutron-star crusts going beyond the W-S
approach by using the BCS theory of anisotropic multiband
superconductivity. This theory is briefly reviewed in Sec. II.
Our model of the neutron-star crust is discussed in Sec. III.
The solutions of the BCS equations are presented in Sec. IV.
We have focused on the deepest regions of the crust, for
average nucleon densities ρ̄ between 0.05 and 0.07 fm−3,
where the results from the W-S approximation are the most
uncertain [27]. In Sec. V, we discuss the validity of the local
density approximation (LDA) and the importance of proximity

0556-2813/2010/81(4)/045804(14) 045804-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.045804


N. CHAMEL, S. GORIELY, J. M. PEARSON, AND M. ONSI PHYSICAL REVIEW C 81, 045804 (2010)

effects. The disappearance of superfluidity with increasing
temperature is studied in Secs. VI and VII. In Sec. VIII, we
present numerical results of the neutron specific heat.

II. BCS THEORY OF SUPERFLUID NEUTRONS
IN NEUTRON-STAR CRUSTS

The standard formulation of the BCS theory starts with the
Hamiltonian [2]

H =
∑
σ,α,k

(εαk − µ)c†αkσ cαkσ

+
∑

α,β,k,k′
Vαkβk′c

†
αk↑c

†
α−k↓cβ−k′↓cβk′↑, (1)

where c
†
αkσ (cαkσ ) are the creation (annihilation) operators for

Bloch states with wave vector k, band index α, and spin σ ,
εαk are the s.p. energies (assumed to be independent of the
spin state), µ is chemical potential, and Vαkβk′ are the matrix
elements of the two-body pairing interaction. In the mean-field
approximation at finite temperature, the quasiparticle (q.p.)
energies are given by

Eαk =
√

(εαk − µ)2 + �2
αk, (2)

where �αk are solutions of the anisotropic multiband BCS gap
equations (setting the Boltzmann constant kB = 1):

�αk = −1

2

∑
β

∑
k′

Vαkβk′
�βk′

Eβk′
tanh

Eβk′

2T
. (3)

In conventional superconductors the pairing interaction is
induced by electron-phonon coupling [21]. It is usually a very
good approximation to take the matrix elements Vαkβk′ as
constant and nonzero only within a low-energy shell, of the
order ∼ h̄ωp around the Fermi level, where ωp is the ion-plasma
frequency. In this case the gap parameters �αk depend neither
on the band index α nor on the wave vector k and are all equal
to a single constant, the pairing gap � [2]. The possibility of
multiband superconductors characterized by the existence of
several pairing gaps �α was raised soon after the formulation
of the BCS theory [30], but clear experimental evidence was
lacking until the discovery in 2001 of superconductivity in
magnesium diboride, whose unusual properties can be nicely
explained by a two-band model [31,32]. Since then, many
other multiband superconductors have been found such as
the iron pnictide superconductors [33]. In these materials,
several bands can intersect the Fermi level, yielding a complex,
multisheeted Fermi surface. Pairing is still thought to be
mediated by the exchange of phonons, but the electrons on the
different sheets of the Fermi surface undergo very different
pairing interactions, leading to the existence of different
gaps. In the neutron-star crust, the formation of neutron pairs
giving rise to superfluidity is directly triggered by the strong
neutron-neutron interaction that is always attractive at low
densities in the 1S0 channel. The number of bands contributing
appreciably to the pairing gap �αk can thus be huge (about
102–103 in the dense layers of the inner crust considered in
this work). Because the matrix elements of the pairing force
may a priori vary appreciably, we have solved Eqs. (3) in the
most general case.

III. MODEL OF THE NEUTRON-STAR CRUST

We have determined the equilibrium structure and com-
position of the inner crust of neutron stars by using the
fourth-order Extended Thomas-Fermi method with quantum
shell effects added via the Strutinsky-Integral theorem. This
so-called ETFSI method, as applied to the equation of state of
neutron-star crusts, has been described in detail in Ref. [34]. It
is a high-speed approximation to the self-consistent Hartree-
Fock method. We have neglected the small neutron shell
effects [35], the estimation of which,in current calculations,
is plagued by the approximate treatment of the interaction
between the unbound neutrons and the nuclear lattice [28,29].
The calculations have been carried out using an effective
nucleon-nucleon interaction of the Skyrme type:

vSky(r i , r j ) = t0(1 + x0Pσ )δ(r ij )

+ 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

ij δ(r ij ) + δ(r ij ) p2
ij

]
+ t2(1 + x2Pσ )

1

h̄2 pij · δ(r ij ) pij

+ 1

6
t3(1 + x3Pσ )ρ(r)γ δ(r ij )

+ i

h̄2 W0(σ i + σ j ) · pij × δ(r ij ) pij , (4)

where r ij = r i − rj , r = (r i + rj )/2, pij = −ih̄(∇i −
∇j )/2 is the relative momentum, Pσ is the two-body spin-
exchange operator, and ρ(r) is the total nucleon density at
position r . The pairing interaction that we take here acts only
between nucleons of the same charge state q (q = n or p for
neutron or proton, respectively) and is given by

vpair
q (r i , r j ) = vπq[ρn(r), ρp(r)]δ(r i j ), (5)

where r i j = r i − r j , r = (r i + r j )/2 and ρn(r) and ρp(r)
are the neutron and proton density at position r , respectively.

We have adopted the parametrization BSk16, underlying
the HFB-16 nuclear mass model [36]. The parameters of this
force are listed in Table I. This force is particularly suitable
for studying neutron-rich environments such as neutron-star
crusts, as it has been constrained to reproduce the equation of
state and the 1S0 pairing gap of infinite homogeneous neutron
matter, as calculated for the realistic Argonne v14 potential
and shown in Fig. 1. The expression of vπq[ρn(r), ρp(r)] is
given in Ref. [36]. Moreover, we can hope that the nuclear
inhomogeneities in the neutron-star crust will be properly
taken into account, given the excellent fit to essentially all
the available experimental nuclear mass data.

To solve the BCS Eqs. (3), we first need to determine
the neutron s.p. energies εαk and wave functions ϕαk(r). For
this purpose, we have solved the following three-dimensional
Schroedinger equation:

−∇ · h̄2

2M∗
n (r)

∇ϕαk(r) + Un(r)ϕαk(r) = εαkϕαk(r). (6)

The effective mass M∗
n (r) and the potential Un(r) are given

by (we neglect the small rearrangement term coming from the
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TABLE I. Skyrme parameters of the force
BSk16 [36]. ε� is a s.p. energy cutoff above the
chemical potential introduced to regularize the
divergences associated with the zero range of
the pairing force.

t0 (MeV fm3) −1837.23
t1 (MeV fm5) 383.521
t2 (MeV fm5) −3.41736
t3 (MeV fm3+3γ ) 11523.0
x0 0.432600
x1 −0.824106
x2 44.6520
x3 0.689797
W0 (MeV fm5) 141.100
γ 0.3
ε� (MeV) 16

pairing force; see, e.g., Ref. [36])

h̄2

2M∗
n

= h̄2

2Mn

+ 1

4
t1

[(
1 + 1

2
x1

)
ρ −

(
1

2
+ x1

)
ρn

]

+ 1

4
t2

[(
1 + 1

2
x2

)
ρ +

(
1

2
+ x2

)
ρn

]
, (7)

Un = t0
[(

1 + 1
2x0

)
ρ − (

1
2 + x0

)
ρn

] + 1
4 t1

[(
1 + 1

2x1
)

× (
τ − 3

2∇2ρ
) − (

1
2 + x1

)(
τn − 3

2∇2ρn

)]
+ 1

4 t2
[(

1 + 1
2x2

)(
τ + 1

2∇2ρ
) + (

1
2 + x2

)
× (

τn + 1
2∇2ρn

)] + 1
12 t3

[(
1 + 1

2x3
)
(2 + γ )ργ+1

− (
1
2 + x3

)(
2ργ ρn + γργ−1

(
ρ2

n + ρ2
p

))]
, (8)

where τn(r) and τp(r) are the neutron and proton kinetic-
energy densities, respectively (we have introduced τ = τn +
τp). Both M∗

n (r) and Un(r) were determined using the ETFSI
fields. In Eq. (6), we have neglected the spin-orbit coupling
arising from the last term in Eq. (4). This approximation is
justified because the spin-orbit coupling is proportional to ∇ρn
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FIG. 1. 1S0 neutron pairing gap in infinite uniform neutron matter
versus Fermi wave number kF = (3π 2ρn)1/3, as used in model HFB-
16 [36].

and ∇ρp (see, e.g., Appendix A of Ref. [36]). In the neutron-
star crust, nuclear clusters have a very diffuse surface, as shown
in Fig. 2, and consequently the spin-orbit coupling is much
smaller than that in isolated nuclei [29].

Although neutron shell effects represent a small correction
to the total energy density [35], they are expected to have a
much stronger impact on neutron superfluidity owing to the
highly nonlinear nature of the pairing phenomenon. This is
the reason why we have not followed the usual practice of
applying the W-S approximation for solving Eq. (6), but have
imposed the Bloch boundary conditions,

ϕαk(r + �) = exp(ik · �)ϕαk(r), (9)

where � denotes any lattice translation vector. Note that, in this
case, Eq. (6) has to be solved for each wave vector k, while
in the W-S method only a single wave vector is considered,
namely, k = 0 (see Ref. [29] for a discussion about the
W-S approximation). Following the standard assumptions, we
have considered a body-centered cubic lattice [20]. The BCS
Hamiltonian (1) can then be obtained from the s.p. states, once
the pairing interaction has been specified. The matrix elements
of the pairing force (5) between Bloch states are given by an
integral over the W-S cell of volume Vcell,

Vαkβk′ =
∫

WS
d3rvπ [ρn(r)]|ϕαk(r)|2|ϕβk′(r)|2, (10)

the Bloch wave functions ϕαk(r) being normalized according
to ∫

WS
d3r|ϕαk(r)|2 = 1. (11)

The W-S cell that we consider here is a truncated octahedron,
as determined by the body-centered cubic lattice geometry. It
should not be confused with the spherical cell used in the W-S
approximation [29].

IV. NEUTRON PAIRING GAPS

We have considered five different layers of the inner crust in
the average nucleon density range between 0.05 and 0.07 fm−3.
Results of the ETFSI calculations at T = 0 are summarized in
Table II and the nucleon density profiles are plotted in Fig. 2.

We have solved iteratively the anisotropic multiband BCS
gap equations (3) for each average nucleon density ρ̄. Results

TABLE II. Ground-state composition of the neutron-star crust
using the ETFSI method with Skyrme force BSk16. ρ̄ is the average
nucleon density, Z and A are the equilibrium numbers of protons
and nucleons in the W-S cell, respectively, and ρBn is the neutron
background density outside clusters (see Ref. [34]).

ρ̄ (fm−3) Z A ρBn (fm−3)

0.070 40 1258 0.060
0.065 40 1264 0.056
0.060 40 1260 0.051
0.055 40 1294 0.047
0.050 40 1304 0.043
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FIG. 2. Equilibrium neutron number density ρn(r) (solid line) and proton number density ρp(r) (dashed line) inside the Wigner-Seitz cell
of different neutron-star crust layers with average nucleon density ρ̄. The densities (in fm−3) were obtained using the ETFSI method [34] at
T = 0 with the Skyrme force BSk16 [36].

are summarized in Table III. Owing to the ultraviolet diver-
gence induced by the zero range of the pairing interaction (5),
the summation in Eq. (3) has to be truncated. We have imposed
the same s.p. energy cutoff, ε� = 16 MeV, above the chemical
potential as used in the determination of the BSk16 force
through optimization of the mass fit. For each temperature the
chemical potential has been recalculated neglecting pairing,
as the pairing gaps are much smaller than the Fermi energy
(note that the same approximation was used in Ref. [36] to
construct the effective density-dependent pairing strength from
the pairing gap in infinite homogeneous neutron matter). We

have solved Eq. (6) by expanding the s.p. wave functions into
plane waves,

ϕαk(r) = exp(ik · r)
∑

G

ϕ̃αk(G) exp(iG · r), (12)

in which G are reciprocal lattice vectors. Because by definition

exp(iG · �) = 1 (13)

for any vectors G and �, the Bloch boundary conditions (9) are
automatically satisfied. We have included all Fourier compo-
nents with reciprocal lattice vectors G such that |k + G| < Q.
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TABLE III. Neutron pairing gaps in the neutron-star crust for
different average nucleon densities ρ̄ at T = 0. �F (�F0) is the pairing
gap obtained from Eq. (3) after averaging over continuum states and
using the special point method (mean-value point method) for the
summation over k. �u and �̄u are the pairing gaps in uniform infinite
neutron matter for the neutron density ρBn and for the average neutron
density ρ̄n = (A − Z)/Vcell, respectively.

ρ̄ (fm−3) �F (MeV) �F0 (MeV) �u (MeV) �̄u (MeV)

0.070 1.44 1.39 1.79 1.43
0.065 1.65 1.59 1.99 1.65
0.060 1.86 1.81 2.20 1.87
0.055 2.08 2.07 2.40 2.10
0.050 2.29 2.27 2.59 2.33

Q has been adjusted so that the s.p. energies are computed
with an accuracy of a few keV. We have evaluated the
summation in Eq. (3) using the special-point method [37].
We have also applied this method to compute the pairing
matrix elements (10). On general grounds one may expect that
|ϕαk(r)|2, and thereby Vαkβk′ and �αk, are weakly dependent
on k, because bound states are vanishingly small outside
clusters where Bloch boundary conditions are imposed, while
continuum states depend on k essentially through only a phase
factor, exp(ik · r). Indeed we have found that the summation in
Eq. (3) converges quickly with the number of special k points.
An error below 1% for the averaged pairing gap �F can be
reached with 30 k points. Keeping just one term, corresponding
to the mean-value point [38], yields a result with a few percent
precision, as reported in Table III. This method has indeed
proved to be surprisingly accurate in solid-state physics to
compute the electron density and dielectric matrix [39]. The
convergence of the real-space integrations in Eq. (10) is slower
because of the oscillating behavior of the wave functions. We
have checked that the solutions of the BCS gap equations
converge to a few-keV accuracy using 110 special r points.

As shown in Fig. 3, the dependence of the pairing gaps �αk

on the band index α and wave vector k is quite significant. At
the Fermi level the pairing gaps vary by about ∼0.2–0.4 MeV.
While all s.p. states lying in the continuum contribute to
the average gap �F, we have found that �F remains almost
unchanged if bound states are excluded from the summation
in Eq. (3). However, this does not imply that neutrons inside
clusters do not have any impact on the average pairing gap.
The inhomogeneous distribution of neutrons modifies the s.p.
energies and the matrix elements of the pairing force.

For comparison, we have calculated the neutron pairing gap
�u without nuclear clusters, assuming that unbound neutrons
are uniformly distributed, with the density ρBn corresponding
to the neutron background density outside clusters (values of
ρBn for the different crustal layers are indicated in Table II).
In this limiting case, the Bloch wave functions reduce to plane
waves,

ϕαk(r) = 1√
Vcell

exp[i, (k + Gα) · r], (14)

where Gα are reciprocal lattice vectors. The pairing matrix
elements all become equal,

Vαkβk′ = vπ [ρBn]

Vcell
. (15)

As a result, the pairing gaps are independent of α and k and
are the solutions of the usual isotropic BCS equations [2]:

1 = −vπ [ρBn]

8π2

(
2M∗

Bn

h̄2

)3/2 ∫ εBF+ε�

0
dε

√
ε

E(ε)
tanh

E(ε)

2T
,

(16)

with

E(ε) =
√

(ε − εBF)2 + �2
u, (17)

in which

εBF = h̄2k2
FB

2M∗
Bn

(18)

is the Fermi energy, kFB = (3π2ρBn)1/3, and M∗
Bn is the

effective mass in neutron matter at density ρBn. From the
definition of the pairing strength, it follows immediately
that �u at T = 0 is nothing but the microscopic neutron
pairing gap, shown in Fig. 1, evaluated at the neutron density
ρn = ρBn. Results for the different crust layers are reported
in Table III. Comparing �F and �u, it can be seen that
the presence of inhomogeneities lowers the averaged neutron
pairing gap by about 10–20%. This reduction is much smaller
than that found in previous calculations based on the W-S
approach [27]. For instance, for ρ̄ = 0.058 fm−3, �F was
suppressed by about 40–60%, depending on the choice of
boundary conditions (last line in Table 2 in Ref. [27]).

V. PAIRING FIELD OF THE NEUTRON SUPERFLUID
AT ZERO TEMPERATURE AND LOCAL DENSITY

APPROXIMATION

The effects of the inhomogeneities on the neutron
superfluid can be seen more directly by computing the neutron
pairing field, defined by

�n(r) = − 1
2vπn[ρn(r), ρp(r)]ρ̃n(r), (19)

where ρn(r) and ρ̃n(r) are the local normal neutron density and
abnormal neutron density, respectively, given (at T = 0) by

ρn(r) =
�∑

α,k

|ϕαk(r)|2
[

1 − εαk − µ

Eαk

]
, (20)

ρ̃n(r) =
�∑

α,k

|ϕαk(r)|2 �αk

Eαk
, (21)

where the superscript � is to indicate that the summation
includes only states whose s.p. energy lies below µ + ε�. We
have computed the angle-averaged pairing field inside each
W-S cell, as given by

�n(r) =
∫

WS

d�

4π
�n(r). (22)
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FIG. 3. Neutron pairing gaps �αk versus s.p. energies εαk for the different crustal layers. The arrow indicates the position of the chemical
potential at T = 0. The BCS equations (3) have been solved at T = 0 together with Eq. (6) using the neutron-star crust composition shown in
Fig. 2. The dashed and dotted horizontal lines represent the gaps �u and �̄u, respectively, given in Table III.

For each value of the radial coordinate r , we have performed
the solid-angle integration using 30 uniformly distributed
spiral points on the sphere of radius r [40]. To minimize the
amount of computations, we have applied the mean-value
point method for solving the BCS equations and for calculating
the normal and abnormal densities. For comparison, we have
also calculated the pairing field in the LDA, that is, assuming
that at each point r the pairing field is locally the same as that
in uniform neutron matter for the density ρn(r):

�(LDA)
n (r) = �u(ρn(r)). (23)

As shown in Fig. 4, the LDA overestimates the spatial
dependence of the pairing field, thus indicating that pairing
is highly nonlocal. Indeed the local coherence length of the
neutron superfluid, defined by [2]

ξ (r) = h̄2kF(r)

πM∗
n (r)�(LDA)

n (r)
, (24)

where

kF(r) = (3π2ρn(r))1/3, (25)
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FIG. 4. Angle-averaged neutron pairing field �(r) (solid line) and LDA pairing field (dashed line) for the different crustal layers at T = 0.

is larger than the size of the clusters, as shown in Fig. 5. This
means that even if the center of mass of a Cooper pair is located
outside clusters, one of the partners may actually lie inside so
that all neutrons are actually involved in the pairing process.
As a result, pairing correlations are strongly enhanced inside
clusters but are reduced in the intersticial region, leading to a
smooth spatial variation of the pairing field. These so-called
proximity effects are the most spectacular in the shallowest
layer, at ρ̄ = 0.05 fm−3, where the neutron pairing field
is increased by a factor of ∼4 inside clusters. The entire
inner crust is therefore permeated by the neutron superfluid,
including in the region occupied by clusters themselves.

The previous considerations suggest estimating �F by
calculating the pairing gap �̄u in uniform neutron matter for the
average neutron density ρ̄n ≡ N/Vcell instead of the neutron
background density ρBn. As reported in Table III, this gap
indeed provides a very good approximation of the average gap
calculated numerically.

VI. CRITICAL TEMPERATURE

While the pairing gaps obtained from Eqs. (3) vary
from one band to the other as shown in Fig. 3, we have
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FIG. 5. Local coherence length, defined by Eq. (24), for the different crustal layers at T = 0.

found that they all share the same universal temperature
dependence, which (for 1S0 pairing) can be well represented
by [41]

�αk(T � Tc) 	 �αk(0)

√
1 −

(
T

Tc

)δ

, (26)

with δ 	 3.23 and the critical temperature Tc, is defined by
the condition �αk(T � Tc) = 0 for all states. For simplicity,
we have assumed that the composition remains unchanged at
finite temperature so that the s.p. energies εαk and the matrix
elements Vαkβk′ are independent of T . We have determined

Tc for each crustal layer by solving numerically Eqs. (3). For
comparison, we have also calculated the critical temperature
Tcu of a uniform neutron superfluid with the corresponding
neutron background density ρBn. As indicated in Table IV, the
actual critical temperature Tc is systematically lower than Tcu,
as could have been expected from the results on the pairing
gaps discussed in Sec. V. The critical temperature T̄cu of a
uniform neutron superfluid with the average neutron density
ρ̄n is much closer to Tc.

It is well known from the BCS theory of superconductivity
that the ratio of the critical temperature to the pairing gap
is universal [2]. We have checked that this relation holds in
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TABLE IV. Critical temperature for the onset of neutron superflu-
idity in the neutron-star crust for different average nucleon densities ρ̄

using different approximations: Tc is the critical temperature obtained
after solving the BCS Eqs. (3) numerically, while Tcu and T̄cu are the
critical temperatures of a uniform superfluid with density ρBn and ρ̄n,
respectively. All temperatures are indicated in units of 1010 K.

ρ̄ (fm−3) Tcu Tc T̄cu

0.070 1.17 0.96 0.94
0.065 1.31 1.09 1.08
0.060 1.45 1.24 1.23
0.055 1.58 1.38 1.38
0.050 1.70 1.52 1.53

uniform neutron matter, namely,

Tcu = exp(ζ )

π
�u, (27)

(likewise for T̄cu), where ζ 	 0.577 is the Euler-Mascheroni
constant. (This result is not specific to the pairing model we
have used. It has also been found in microscopic calculations
using realistic nucleon-nucleon interactions, as discussed in
Ref. [42].) What is perhaps more surprising is that we
have found the same relation for the inhomogeneous neutron
superfluid in the neutron-star crust:

Tc

�F
	 exp(ζ )

π
(28)

(note that in the original BCS theory [2], the superconductor
is supposed to be isotropic and uniform). Because the band
theory includes the limiting case in which all neutrons are
bound inside clusters, we expect Eq. (28) to remain valid
in finite nuclei. Quite interestingly, this conclusion seems to
be supported by self-consistent mean-field calculations in tin
isotopes [43], even though in this case the averaged gap �F

has to be suitably defined.
We can understand Eq. (28) by considering a simple pairing

model. Because Eq. (28) holds in very different situations, this
means that, unlike the state-dependent pairing gaps �αk, the
critical temperature is rather insensitive to the precise nature
of s.p. states (see also Ref. [44] for a mathematical discussion
in the context of multiband superconductivity). This suggests
replacing the pairing matrix Vαkβk′ with a constant coupling
〈V 〉/Vcell. In this case the pairing gaps �αk all become equal to
the same value � and Eq. (3) reduces to the finite-temperature
isotropic BCS gap equations,

1 = −1

2

〈V 〉
Vcell

∫ µ+ε�

0
dε

g(ε)

E(ε)
tanh

E(ε)

2T
, (29)

where E(ε) =
√

(ε − µ)2 + �2 is the q.p. energy, and g(ε) is
the density of s.p. states (for a given spin state), defined by

g(ε) =
∑
α,k

δ(εαk − ε). (30)

The critical temperature Tc is mainly determined by
unbound neutron s.p. states (see the discussion in Sec. V).
However, as shown in a previous work [45], the density of
unbound neutron s.p. states is essentially unaffected by the

inhomogeneities on an energy scale larger than a few hundred
keV. Because the pairing gaps are typically of the order of MeV,
we can replace g(ε) with its expression in uniform neutron
matter with density ρ̄n,

g(ε) 	 Vcell

4π2

(
2M̄∗

n

h̄2

)3/2 √
ε, (31)

where M̄∗
n is the corresponding neutron effective mass. At T =

0 the neutron chemical potential µn is given by the neutron
Fermi energy,

εF = h̄2k2
F

2M̄∗
n

, (32)

with kF = (3π2ρ̄n)1/3. Because Tc � εF, we take µ(Tc) 	 εF,
remembering that the lowest order correction is only of order
(Tc/εF)2. Because the most important contribution to the
integral in Eq. (29) comes from s.p. states lying in the vicinity
of the Fermi surface, we replace g(ε) with g(εF). For T = Tc,
� = 0, and Eq. (29) thus becomes

− 4π2h̄2

〈V 〉M̄∗
nkF

=
∫ ε�/2Tc

−εF /2Tc

dx
tanh |x|

|x| . (33)

After remarking that Tc � ε�, the integral in Eq. (33) can be
solved analytically using∫ y

0
dx

tanh x

x
	 log

(
4y

π

)
+ ζ (34)

for y 
 1. Replacing Eq. (34) in Eq. (33), we find that the
critical temperature is given by

Tc = 2 exp(ζ )

π

√
εFε� exp

(
8π2h̄2

kFM̄∗
n 〈V 〉

)
. (35)

On the other hand, we assume that the average pairing gap
�F can be obtained from the solution of the BCS gap, Eq. (3),
at T = 0 after substituting the pairing matrix Vαkβk′ with the
same pairing constant 〈V 〉/Vcell that was introduced previously
for calculating Tc. Equation (3) thus reduces to Eq. (29), which,
at T = 0, reads

− 4π2h̄2

〈V 〉M̄∗
nkF

=
∫ ε�/�

−εF/�

dx(1 + x2)−1/2, (36)

where we have taken the density of states out of the integral.
Solving Eq. (36) for the pairing gap yields

�F = � = 2
√

εFε� exp

(
8π2h̄2

kFM̄∗
n 〈V 〉

)
. (37)

Comparing Eqs. (35) and (37) leads to Eq. (28).

VII. FINITE-TEMPERATURE EFFECTS ON THE
NEUTRON PAIRING FIELD

At finite temperatures, the pairing field is still given by the
same expression (19) as for T = 0. But the normal neutron
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FIG. 6. Angle-averaged neutron pairing field �(r) for the different crustal layers at different temperatures. (T is indicated above each curve
in 1010 K).

density and abnormal neutron density are now given by

ρn(r) =
�∑

α,k

|ϕαk(r)|2
[

1 − εαk − µ

Eαk
tanh

Eαk

2T

]
, (38)

ρ̃n(r) =
�∑

α,k

|ϕαk(r)|2 �αk

Eαk
tanh

Eαk

2T
. (39)

In the LDA, the corresponding pairing field is given by

�(LDA)
n (r, T ) = �u(ρn(r))

√
1 −

(
T

Tcu(r)

)δ

(40)

for T < Tcu(r), with

Tcu(r) = exp(ζ )

π
�u(ρn(r)), (41)

while for T � Tcu(r), �(LDA)
n (r, T ) = 0. Figure 6 shows

the pairing field for different temperatures. The temperature
dependence of the pairing field comes mainly from that of
the abnormal density. As the temperature gets closer to the
critical temperature Tc, the superfluid becomes more and
more homogeneous. This is because the coherence length
obtained after substituting �(LDA)

n (r) with �(LDA)
n (r, T ) in

Eq. (24) increases with T and even diverges when the local
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critical temperature is reached. This means that the LDA
becomes worse at finite temperatures, strongly overestimating
the impact of inhomogeneities. In particular, Eq. (40) implies
that �(LDA)

n (r, Tcu(0)) vanishes inside clusters, while it remains
finite outside, leading to a sharp variation of the pairing field
at the cluster surface.

VIII. SPECIFIC HEAT OF SUPERFLUID NEUTRONS

Observations of the thermal X-ray emission from newly
born isolated neutron stars can potentially provide valuable
information on the structure of neutron-star crusts. Because of
its relatively low neutrino emissivity, the crust of the neutron
star cools less rapidly than the core and thus stays hotter. As
a result, the surface temperature decreases slowly during the
first ten to hundred years after the formation of the neutron
star in a supernova explosion and then drops sharply when
the cooling wave from the core reaches the surface [7,8]. The
occurrence of neutron superfluidity in the inner crust has a
strong influence on the neutron specific heat and, in turn, on
the thermal relaxation time of the crust [9,10].

In Ref. [45], we have shown that the specific heat of normal
neutrons in the outermost layers of the inner crust is almost
unaffected by the nuclear lattice and is essentially given by the
specific heat of a uniform gas. At low temperatures T < Tc,
pairing correlations have to be taken into account. This is
usually done by introducing a multiplication factor R, defined
by

C
(sn)
V = RC

(n)
V , (42)

where C
(sn)
V and C

(n)
V are the specific heat of superfluid and

normal neutrons, respectively. Assuming that the free neutrons
are uniformly distributed, the factor R is well approximated
by the analytical expression of Ref. [46] (used in neutron-star
cooling simulations),

R(y) = [0.4186 +
√

1.0072 + (0.501u)2]

× exp(1.456 −
√

1.4562 + u2), (43)

with y = T/Tcu and

u =
√

1 − y

(
1.456 − 0.157√

y
+ 1.764

y

)
. (44)

To assess the validity of these expressions for the inhomoge-
neous matter of neutron-star crusts, we have evaluated the
neutron specific heat from the numerical solutions of the
anisotropic multiband BCS gap equations (3). We have applied
the following expression from Ref. [47] using the temperature
dependence of the gaps given by Eq. (26):

C
(sn)
V = 1

Vcell

∑
α,k

exp (Eαk/T )

[1 + exp (Eαk/T )]2

×
[(

Eαk

T

)2

− 1

2T

d

dT
�αk(T )2

]
. (45)

Numerical results are shown in Fig. 7. The summation in
k space in Eq. (45) was carried out using the special-point
method [37].

At low temperatures T � Tc, neutron pairing correlations
are very strong. The pairing gaps are weakly dependent on
T and the last term in Eq. (45) is negligible (de Genne
approximation [47]). In this regime, the neutron specific heat is
exponentially suppressed compared to that of normal neutrons
and decays approximately as exp(−�F/T ). However, as the
temperature gets higher, the contribution of the last term in
Eq. (45) becomes increasingly large, eventually leading to a
sharp rise in the specific heat for T � Tc. For T > Tc, all
pairing gaps vanish and neutron superfluidity is destroyed. For
T > Tc and T � εF, the specific heat increases linearly with
T as clearly shown in Fig. 7. As in our previous work [45], we
have found that the numerical results for the normal neutron
specific heat are in good agreement with the expression for a
uniform gas:

C
(n)
V = M̄∗

nkF

3h̄2 T . (46)

Note, however, that for the dense crustal layers considered
here, using M̄∗

n and kF instead of M∗
Bn and kFB (as in

Ref. [45]) yields a slightly better fit. As shown in Fig. 7,
the transition between the superfluid and the normal regime
is very sharp. The specific heat exhibits a discontinuity at
T = Tc, approximately given by

C
(sn)
V (Tc) − C

(n)
V (Tc)

C
(n)
V (Tc)

	 3

2
δ exp(−2ζ ), (47)

after replacing �αk with �F in Eq. (45) and the density of
the s.p. state by Eq. (31). Note that for T � Tc, the neutron
specific heat is enhanced by pairing, that is, R > 1.

We have found that C
(sn)
V is numerically close to the

expression for a uniform superfluid, namely, Eqs. (42), (43),
and (46), provided that the critical temperature is suit-
ably renormalized (i.e., Tcu must be replaced with Tc)
as shown in Fig. 7 (renormalized homogeneous superfluid
curve).

IX. CONCLUSIONS

We have clarified the effects of the nuclear inhomogeneities
on the neutron superfluidity in the deep layers of the neutron-
star crust by solving the anisotropic multiband BCS gap
equations (3). We have properly taken into account the
interactions between the neutron superfluid and the nuclear
crystal lattice by imposing Bloch boundary conditions instead
of using the W-S approximation. Because of the presence of
the nuclear clusters, neutrons belonging to different bands and
having different Bloch wave vectors undergo different pairing
interactions, thus leading to a dispersion of the neutron pairing
gaps �αk of about 0.2–0.4 MeV around the Fermi level,
as shown in Fig. 3. The neutron pairing gap �F averaged
over all continuum states is reduced owing to the presence
of inhomogeneities, but much less than predicted by previous
calculations based on the W-S approximation [27]. Unlike
the individual gaps �αk, �F is essentially unaffected by the
band structure and is very well approximated by the gap �̄u

in uniform neutron matter using the average neutron density
ρ̄n. The reason for this agreement lies in the highly nonlocal
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FIG. 7. Specific heat of superfluid neutrons in different layers of the inner crust of a neutron star. The solid line has been obtained from
Eq. (45) after solving numerically the BCS Eqs. (3) The dashed and dotted lines correspond to homogeneous neutron matter with two different
values of the critical temperature Tc and Tcu, respectively.

character of the pairing phenomenon involving both bound
and unbound neutrons, as revealed by numerical calculations
of the neutron pairing field �n(r). As a consequence, the LDA
strongly overestimates the spatial variations of the pairing
field. The discrepancies are particularly large inside clusters,
where the LDA incorrectly predicts a quenching of pairing
correlations.

Solving the BCS equations at finite temperatures, we
have found that the temperature dependence of the pairing

gaps �αk is universal and well represented by Eq. (26).
Unlike what one may have naively expected, the critical
temperature Tc is not determined by the largest state-dependent
pairing gap around the Fermi level but, rather, by the average
pairing gap �F. Moreover, the ratio Tc/�F is approximately
given by the BCS value 	0.58 [2]. We have explained
these results by solving the isotropic BCS Eqs. (29) in
the weak-coupling approximation, leading to the analytical
expression (35) for the critical temperature. We have computed
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the neutron pairing field at finite temperatures and we have
shown that the LDA becomes worse as the temperature is
increased.

We have computed the neutron specific heat, which is an
important ingredient for modeling the thermal evolution of
newly born neutron stars [7–10]. We have found that the
specific heat is modified by clusters but it can be easily
estimated from the expression in uniform neutron matter,
namely, Eqs. (42), (43), and (46), by simply renormalizing
Tc.

The conclusions of the present work may change in
shallower regions of the crust where the matter is more
inhomogeneous, as suggested by a recent study in dirty
superconductors [48]. In addition, we have neglected the
change in composition with increasing temperature [34],
which could affect the values of the pairing gaps (hence also

the critical temperature) for T � 1010 K. In particular, we
expect to find deviations of the ratio Tc/�F from the BCS
value of 	0.58 when these thermal effects are taken into
account. We have also left aside the modifications of the
pairing gaps owing to many-body effects beyond the BCS
approximation [49]. These various issues will be addressed in
future work using the multiband approach presented in this
paper.
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