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Electromagnetic form factors of nucleons with QCD constraints: Systematic study
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Elastic electromagnetic form factors of nucleons are investigated for both the time-like and the space-like
momenta by using the unsubtracted dispersion relation with QCD constraints. It is shown that the calculated
form factors reproduce the experimental data reasonably well; they agree with recent experimental data for the
neutron magnetic form factors for the space-like data obtained by the CLAS Collaboration and are compatible
with the ratio of the electric and magnetic form factors for the time-like momentum obtained by the BABAR
Collaboration.
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I. INTRODUCTION

Recently, there have been remarkable developments in
experiments for the nucleon electromagnetic form factors:

(i) For the space-like momentum, the ratio of the electric
and magnetic form factors of the proton, G

p

E and G
p

M ,
respectively, was shown to be a decreasing function of
the squared momentum transfer, Q2, and the experi-
mental results imply that the proton electric form factor
vanishes for Q2 ≈ 7 (GeV/c)2 [1–5].

(ii) For the neutron magnetic form factor, Gn
M , very

accurate experimental data were obtained and it ap-
proximately satisfies Gn

M (Q2)/µn ≈ GD(Q2) = (1 +
Q2/0.71)−2, with Q being represented in terms of
GeV/c, for a fairly wide range of squared momentum
transfer, Q2 = 1.4–4.8 (GeV/c)2 [6,7] (CLAS Collab-
oration).

(iii) For the time-like momentum the ratio |Gp

E/G
p

M | was
estimated [8,9], (BABAR Collaboration), whereas pre-
viously the data of form factors had been analyzed
under the assumption G

p

E = 0 or G
p

E = G
p

M .

Asymptotically, the experimental data of nucleon form
factors decrease more rapidly than the dipole formula for large
Q2 and the decrease has been understood as a realization of
perturbative QCD [10]. According to perturbative QCD the
nucleon form factors decrease for large momentum transfer,
for both space-like and time-like momenta.
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To realize QCD properties by dispersion theory, use is
made of the unsubtracted dispersion relation with the super-
convergence conditions [11,12]. Because of the analyticity
property of the dispersion relation, the form factor for the
time-like momentum transfer, t > 0, is obtained by the analytic
continuation from the space-like part, t < 0, so that we are able
to investigate systematically the form factors for the space- and
time-like momentum transfers.

Theoretical calculations of Gn
M turned out to be larger

than the aforementioned new experimental data for Q2 = 1.4–
4.8 (GeV/c)2 (see Ref. [7]). It is important to confirm whether
it is possible to realize the experimental data simply by the
adjustment of parameters or by the refinement of absorptive
parts.

It is the purpose of this paper to analyze experimental
data of nucleon form factors by dispersion theory, with the
QCD constraints imposed, by taking account of these new
experimental results.

Organization of the paper is given as follows: In Sec. II
we explain the superconvergent dispersion relation and give
conditions that are used in this paper. In Sec. III we summarize
the absorptive parts, which are broken up into three parts: low-
momentum, intermediate-momentum, and asymptotic regions.
For each momentum region the imaginary parts are given.
The asymptotic part is expressed as an expansion in terms
of the analytically regularized effective coupling constant in
the renormalization group for QCD. In Sec. IV we remark
on the numerical analysis. In Sec. V numerical results
are summarized. The final section is devoted to a general
discussion.

II. SUPERCONVERGENT DISPERSION RELATION

As mentioned in Sec. I, the electromagnetic form factors
approach zero asymptotically for t → ∞. Therefore, we
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assume the unsubtracted dispersion relations for charge and
magnetic moment form factors F I

1 and F I
2 , respectively, with

I denoting the isospin state I = 0, 1; that is,

F I
i = 1

π

∫ ∞

t0

dt ′
Im F I

i (t ′)
t ′ − t

, (1)

where the threshold is t0 = 4µ2. Here µ is the pion mass, being
taken as the average of the neutral and charged pion masses.

We impose the superconvergence conditions for Im F I
i :

1

π

∫ ∞

t0

dt ′ ImF I
1 (t ′) = 1

π

∫ ∞

t0

dt ′t ′ ImF I
1 (t ′) = 0, (2)

1

π

∫ ∞

t0

dt ′ ImF I
2 (t ′) = 1

π

∫ ∞

t0

dt ′t ′ ImF I
2 (t ′)

= 1

π

∫ ∞

t0

dt ′t ′ 2 ImF I
2 (t ′)

= 0, (3)

where ImF I
i (t ′) satisfies the asymptotic conditions for

t ′ → ∞:

t ′ iImF I
i (t ′) → c/

[
ln

(
t ′/Q2

0

)]γ+1
(i = 1, 2), (4)

with Q0, γ (� 2), and c as constants. The constant γ is written
in terms of the anomalous dimension of the renormalization
group in QCD. In this calculation we take γ = 2 so that F I

i ,
being given by Eq. (1) with the superconvergence conditions
(2) and (3), satisfy the asymptotic conditions of QCD:

Fi(t) → c/
{
πγ ti+1

[
ln

(|t |/Q2
0

)]γ }
(i = 1, 2) (5)

for t → ±∞ (see Ref. [13] for the proof of formulas and
formulation).

In addition to the conditions (2) and (3) we impose the
normalization conditions at t = 0:

1

2
= 1

π

∫ ∞

t0

dt ′ ImF I
1 (t ′)/t ′, (6)

gI = 1

π

∫ ∞

t0

dt ′ ImF I
2 (t ′)/t ′, (7)

where gI is the anomalous magnetic moments of nucleons
with isospin I .

III. IMAGINARY PART OF THE FORM FACTORS

Let us discuss the imaginary parts of the nucleon form
factors, which are broken up into three parts: low-momentum,
intermediate-momentum, and asymptotic regions.

A. Low-momentum region

The imaginary parts of the form factors, ImFV
i , are given

in terms of the two-pion contribution as follows:

Im
[
FV

1 (t)/e
]

= m

2

(t − 4µ2)

4m2 − t

(
t − 4µ2

t

)1/2

× Re

{
M∗(t)

[
f

(−)1
+ (t)− t

4m2

m√
2
f

(−)1
− (t)

]}
,

Im
[
2mFV

2 (t)/e
]

= m

2

(t − 4µ2)

(4m2 − t)

(
t − 4µ2

t

)1/2

× Re

{
M∗

[
m√

2
f

(−)1
− (t) − f

(−)1
+ (t)

]}
, (8)

where f
(−)1
± (t) are helicty amplitudes for ππ ↔ NN̄ , M(t) is

the pion form factor, and µ is the pion mass. For the helicity
amplitudes we use the numerical values given by Höhler and
Schopper [14] and parametrize M(t) according to

M(t) = tρ{1 + (�ρ/mρ)d}[tρ − t − im2
ρ�ρ(qt/qρ)3/

√
t]−1,

(9)

where mρ and �ρ are the ρ meson mass and width, respectively,
and

tρ = mρ, qρ =
√

tρ − µ2, qt =
√

t − µ2, (10)

d = 3µ2

πtρ
ln

mρ + 2qρ

2µ
+ mρ

2πqρ

(
1 − 2µ2

tρ

)
. (11)

The imaginary parts thus obtained are denoted as ImFH
i (i =

1, 2) hereafter. It must be remarked that the ρ meson
contribution is included in the helicity amplitudes of Ref. [14].
The uncorrelated kaon pair is neglected here as the effect was
estimated to be small [15].

B. Intermediate-momentum region

The intermediate states 4µ2 � t � �2
1 are approximated

by the addition of the Breit-Wigner terms, with the imaginary
part parametrized as follows:

Imf BW
R (t) = g(

t − M2
R

)2 + g2
, (12)

where

g = �M2
R

(
M2

R + tres
)3(

M2
R − t0

)3/2

√
(t − t0)3

t

1

(t + tres)3
. (13)

Here MR and � are the mass and width of the resonance,
respectively, the threshold t0 is t0 = 4µ2, and tres is treated as
an adjustable parameter. g is introduced to cut off the Breit-
Wigner formula.

We write the intermediate part as the summation of
resonances,

ImF
BW,I
i =

∑
n

aI,i
n f I

nR, (14)

where I is the isospin and n is the labeling of resonances (see
Table I). Here the suffix i denotes i = 1, 2, corresponding to
the charge and Pauli form factors FN

1 and FN
2 (N = n or p).

The same formulas for f I
nR are used for i = 1 and i = 2.

C. Asymptotic region

We express the form factors as a power series in the effective
coupling constant of QCD, αS . To calculate the absorptive part,
it is necessary to perform analytic continuation to the time-like
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TABLE I. Masses and widths determined by the analysis for
cases I and II.

I n Case I Case II

mass width mass width
(GeV/c2) (GeV) (GeV/c2) (GeV)

1 1.351 0.3240 1.340 0.3221
2 1.370 0.2200 1.381 0.2199

I = 1 3 1.587 0.2640 1.618 0.2636
4 1.827 0.3680 1.823 0.3679
5 2.082 0.3960 2.048 0.3848

1 0.78256 0.844 ×10−2 0.78256 0.844 ×10−2

2 1.01945 0.426 × 10−2 1.01945 0.426 × 10−2

I = 0 3 1.204 0.1583 1.207 0.1584
4 1.440 0.2075 1.438 0.2078
5 1.509 0.1285 1.504 0.1279

momentum. Here we give only the necessary procedure for
the analytic continuation of the effective coupling constant to
the time-like momentum by using the analytic regularization
[16–18], as the formulation is given in Ref. [13].

Let αS(Q2) be the effective coupling constant in the
renormalization group calculated by perturbative QCD as a
function of the squared momentum Q2 for the space-like
momentum. We use the three-loop approximation for αS(Q2),
which is expressed in the Padé form

αS(Q2) = 4π

β0

{
ln(Q2/�2) + a1 ln[ln(Q2/�2)]

+ a2
ln[ln(Q2/�2)]

ln(Q2/�2)
+ a3

ln(Q2/�2)
+ · · ·

}−1

.

(15)

Here � is the QCD scale parameter, and ai are expressed in
terms of the β function of QCD,

a1 = 2β1/β
2
0 , a2 = 4

β2
1

β4
0

, a3 = 4β2
1

β4
0

(
1 − β0β2

8β2
1

)
,

(16)

where

β0 = 11 − 2nf

3
, β1 = 51 − 19nf

3
,

(17)
β2 = 2357 − 5033

9
nf + 325

27
n2

f ,

with nf being the flavor number. We perform the analytic
continuation of the squared momentum to the time-like region,
s, by the replacement in (15)

Q2 → e−iπ s. (18)

Then αS(e−iπ s) becomes complex and is expressed as
follows:

β0

4π
αS(e−iπ s) = 1/(u − iv) = u + iv

D
, (19)

D = u2 + v2, (20)

where u and v are given as

u = ln(s/�2) + a1

2
ln[ln2(s/�2) + π2]

+ a2

ln2(s/�) + π2

{
1

2
ln(s/�2) ln[ln2(s/�2) + π2] + πθ

}

+ a3 ln(s/�2)

ln2(s/�2) + π2
, (21)

v = π + a1θ

− a2

ln2(s/�2) + π2

{π

2
ln[ln2(s/�2) + π2]−θ ln(s/�2)

}
− πa3

ln2(s/�2) + π2
, (22)

with

θ = tan−1{π/ ln(s/�2)}. (23)

The effective coupling constant is given by the dispersion
integral for both the space-like and the time-like momentum:

αR(t) =
∫ ∞

0
dt ′

σ (t ′)
t ′ − t

(24)

with

σ (t ′) = Im αS(e−iπ s) = 4πv/β0D. (25)

The constant αR(t) represented by Eq. (24) is called the
analytically regularized effective coupling constant as it has no
singular point for t = −Q2 < 0. The regularization eliminates
the ghost pole of αS(Q2), given by Eq. (15), appearing at

Q2 = Q∗2 = �eu∗
, (26)

where u∗ = 0.7659596 . . . for flavor number nf = 3. Cal-
culating the integral in Eq. (24), we find that αR(t) is
approximately given by the simple formula with the ghost
pole subtracted,

αR(Q2) ≈ αS(Q2) − A∗/(Q2 − Q∗2), (27)

where the residue A∗ is

A∗ = 4π�2eu∗
/ [

β0

(
1 + a1

u∗ − a2
ln u∗

u∗2
+ a2 − a1

u∗2

)]
.

(28)

We use Eq. (27) as the regularized coupling constant; for the
time-like momentum we replace Q2 → e−iπ s in Eq. (27) as
was mentioned before.

The QCD parts, F QCD, I
i (i = 1, 2; I = 0, 1) for the squared

time-like momentum are written as follows:

F
QCD, I
i (s) = F̂

QCD, I
i (s)hi(s), (29)

where F̂
QCD, I
i are given as an expansion in terms of the

effective coupling constant,

F̂
QCD, I
i (s) =

∑
j�2

c
QCD, I
j {αR(s)}j , (30)

for the time-like squared momentum s. We multiply by
the function h(s) in Eq. (29) to ensure the convergence of
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the superconvergence conditions (2) and (3). The following
formula is assumed for hi(s):

hi(s) =
(

s − tQ

s + t1

)3/2 (
t2

s + t2

)i+1

, (31)

which may be interpreted as the form factor for γ → qq̄

with tQ being the threshold of the quark antiquark pair. The
parameters tQ, t1, and t2 are taken as adjustable parameters and
will be determined by the analysis of experimental data.

For the time-like momentum, we perform the analytic
continuation of the regularized effective coupling constant
αR(Q2) to αR(s) through the equation

αR(s) = αR(Q2e−iπ ) = Re[αR(s)] + i Im[αR(s)]. (32)

The summation in Eq. (30) begins in the second order in
the effective coupling constant so as to realize the log-
arithmic decrease of the nucleon form factors [Eq. (5)].
It is remarked here that Re αR(s) → const/[ln(s/�2)] and
Im αR(s) → const/[ln(s/�2)]2 for s → ∞ so that ImF sat-
isfies condition (4).

The imaginary part of Eq. (30) is obtained as

ImF̂
QCD, I

i = 2c
QCD, I
i,2 Re αRIm αR

+ c
QCD, I
i,3 [3(Re αR)2Im αR − (Im αR)3]

+ c
QCD, I
i,4 [4(Re αR)3Im αR − 4Re αR(Im αR)3]

+ · · · , (33)

and

ImF
QCD, I
i (s) = ImF̂

QCD, I
i (s)hi(s). (34)

We write the low-energy part, intermediate resonance part,
and asymptotic QCD parts of form factors as F H

i , F
BW,I
i ,

and F
QCD, I
i , respectively, which are given by the dispersion

integral with the imaginary parts from Eqs. (8), (14) and (34):
F H

i denote the parts obtained by using the helicity amplitudes
of Höhler and Schopper. The form factors F I

i are defined by
adding them up. We impose the conditions or Eqs. (2) and (3)
on ImF I

i so that the QCD conditions are satisfied.

IV. NUMERICAL ANALYSIS

We analyzed the experimental data of nucleon electromag-
netic form factors for the space-like momentum, G

p

M/µpGD ,
G

p

E/GD , Gn
M/µnGD , and Gn

E , and the ratio µpG
p

E/G
p

M and
for the time-like momentum, |Gp| and |Gn|, in Refs. [19]– [41]
and the aforementioned recent experimental data, Gn

M , for
the space-like momentum and |Gp

E/µpG
p

M | for the time-like
momentum. The parameters appearing in the formulas are
determined so as to minimize χ2.

As was mentioned in Sec. I we analyze by taking account of
the recent experimental data: (a) |µpG

p

E|/|Gp

M | for the time-
like momentum (BABAR Collaboration) and (b) Gn

M for Q2 =
1–4.8 (GeV/c)2 (CLAS Collaboration).

To see how the situation changes by taking account of these
new experiments in addition to the other data, we perform
analysis for the following two cases in the chi-square analysis:

Case I: Only the data (a) |µpG
p

E/G
p

M | for the time-like
momentum are added.

Case II: Both of the experimental data, (a) |µpG
p

E/G
p

M | for
the time-like momentum and (b) new data for Gn

M

for the space-like momentum, are added.

Let us remark on the experiments for the time-like mo-
mentum [8,32,34], where the form factors |Gp| and |Gn| are
determined by using the formula for the cross section σ0 for
the processes e + ē → N + N̄ or N + N̄ → e + ē, which is
given as

σ0 = 4πα2ν

3s

(
1 + 2m2

p

s

)
|G(s)|2. (35)

Here α is the fine-structure constant and ν is the nucleon
velocity. The form factors |GN

M | are estimated from |G| under
the assumption GM = GE or GE = 0. The cross section σ0 is
expressed in terms of GN

M and GN
E as follows:

σ0 = 4πα2ν

3s

(∣∣GN
M

∣∣2 + 2m2

s

∣∣GN
E

∣∣2
)

. (36)

Equating (35) and (36), we have

|G|2 =
∣∣GN

M

∣∣2 + 2m2
∣∣GN

E

∣∣2
/s

1 + 2m2/s
. (37)

TABLE II. The coefficients a
I,n
i , residues at the resonance poles, determined by the χ2 analysis

for cases I and II.

I n Case I Case II

a
I,n
1 (GeV2) a

I,n
2 (GeV2) a

I,n
1 (GeV2) a

I,n
2 (GeV2)

1 −4.49 8.07 −4.54 8.01
2 7.38958 −15.38252 7.95421 −16.42955

I = 1 3 −7.782044 10.39096 −9.342846 10.93951
4 6.078791 −5.890514 7.199141 −7.383261
5 −1.34 1.28 −1.41 1.42

1 0.9018172 0.05832291 0.9125511 0.02062334
2 −3.999109 0.8816084 −3.898647 0.6904565

I = 0 3 8.122170 −2.890431 7.988233 −2.256377
4 −4.549486 −1.191009 −5.013229 −0.7494913
5 −0.8224076 3.347816 −0.3145762 2.44927

045209-4



ELECTROMAGNETIC FORM FACTORS OF NUCLEONS WITH . . . PHYSICAL REVIEW C 81, 045209 (2010)

Substituting our calculated result of form factors into the right-
hand side of Eq. (37), we obtain the theoretical value for |G|,
which is compared with the experimental data for the magnetic
form factor obtained under the assumption GM = GE .

The parameters appearing in our analysis are the following:
residues at resonances, coefficients appearing in the expansion
by the QCD effective coupling constants, and cutoffs for
the intermediate region �1. In addition to them we have
parameters in the Breit-Wigner formula and the convergence
factor h of the QCD contribution, t0, tres, t1, t2, and t3.

We have taken the masses and the widths of resonances
as adjustable parameters. As the superconvergence constraints
impose very stringent conditions on the form factors, it is
necessary to take the masses and widths as parameters.

V. NUMERICAL RESULTS

We give in Tables I, II, and III the results for the parameters
for cases I and II obtained by the chi-square analysis; Table I
lists the masses and widths of resonances, Table III lists
residues at resonance poles, and Table III lists the coefficients
c

QCD, I
i,j (i = 1, 2; j = 2, 3, 4; I = 0, 1) in the expansion in

terms of the effective coupling constant αR of QCD defined by
Eq. (24). The flavor number is taken as nf = 3. ImFH

i is cut off
at �2

0 = 0.779 GeV2 and the Breit-Wigner formulas at �1 =
26.0 GeV. The QCD parameter is fixed at � = 0.216 GeV.
The other parameters are determined as follows:

Case I: t0 = 4µ2, t1 = 0.243 × 103 GeV2, t2 = 0.237 ×
103 GeV2, tres = 0.2260 × 103 GeV2, and tQ =
0.202 × 102 GeV2.

Case II: The same as in case I except for tres = 0.2300 ×
103 GeV2.

The value of χ2 is obtained as χ2
tot = 446.6 for case I and

χ2
tot = 524.5 for case II, which includes the data of both space-

like and time-like regions. The total numbers of data points are
243 for case I and 252 for case II. The number of parameters
is 36 so that χmin/(degree of freedom) = 2.0 for case I and 2.5
for case II.

TABLE III. The coefficients c
QCD, I

i,j of the QCD terms for cases I
and II determined by the χ 2 analysis.

I i Case I

c
QCD, I

i,2 c
QCD, I

i,3 c
QCD, I

i,4

I = 1 1 −1.142469 0.1105 × 102 −7.100
2 4.316448 −0.4454 × 102 0.5657 × 102

I = 0 1 1.176993 −2.36 −0.8114 × 102

2 −6.4872 0.7802 × 102 −0.19375 × 103

I i Case II

c
QCD, I

i,2 c
QCD, I

i,3 c
QCD, I

i,4

I = 1 1 0.5942862 −4.431 −7.35
2 3.337350 −0.3614 × 102 0.6112 × 102

I = 0 1 0.4515128 2.81 −0.6793 × 102

2 −5.50069 0.69220 × 102 −0.195220 × 103

10−2 10−1 100 101
0.6

0.8

1

Q2 [(GeV/c)2]

G
M

p /µ
p
G

D

Borkowski
Price
Berger
Bosted

Sill
Bartel

FIG. 1. Proton magnetic form factor for the space-like momen-
tum. The solid curve is the result for case I and the dashed one for
case II. The data are taken from Borkowski et al. [35], Price et al. [38],
Berger et al. [37], Bosted et al. [19], Bartel et al. [39], and Sill
et al. [40].

We illustrate in Figs. 1–10 the calculated results for the form
factors. The results for case I are given by the solid curves
and those for case II by the dashed ones. In Figs. 1–5 the
results for the space-like momentum are illustrated. Figure 1
shows the proton magnetic form factors G

p

M/µpGD , Fig. 2
shows proton electric form factor G

p

E/GD , Fig. 3 shows the
neutron magnetic form factor Gn

M/µnGD , and Fig. 4 shows
the neutron electric form factor. In Fig. 5 we illustrate the
ratio of proton electric and proton magnetic form factors,
µpG

p

E/G
p

M . We find that G
p

E = 0 at Q2 = 6.60 (GeV/c)2 for
case I and Q2 = 6.12 (GeV/c)2 for case II. The form factor
for the time-like momentum, |G|, is given for the proton in
Fig. 6 (s � 15 GeV2) and Fig. 7 (s < 5 GeV2). In Fig. 8 |G|

10−2 10−1 100 101
0

0.5

1

1.5

Q2 [(GeV/c)2]

G
E

p /G
D

Borkowski
Price
Berger
Bosted

FIG. 2. Proton electric form factor for the space-like momentum.
The solid curve is the result for case I and the dashed one for
case II. The data points are taken from Berger et al. [37], Price
et al. [38], Borkowski et al. [35], and Bosted et al. [19].
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10−1 100 101

0.5

1

Q2 [(Gev/c)2]

G
M

n /µ
nG

D

Rock
Anklin
Kubon
Madey

Anderson
Xu

Lachniet

FIG. 3. Neutron magnetic form factors for the space-like momen-
tum. The solid curve is the result for case I and the dashed one for
case II. The data points are taken from Rock et al. [20], Anklin
et al. [21], Kubon et al. [28], Madey et al. [41], Xu et al. [29],
Anderson et al. [6], and Lachniet et al. [7].

is illustrated for the neutron. The result for the proton form
factor agrees with the experimental data, but for the neutron
the calculated one becomes larger than the experimental values
for large Q2. In Fig. 9 we compare the calculated result for
the neutron magnetic form factor Gn

M/µnGD with the recent
experiments [6,7]. The dashed curve (case II) agrees with the
experimental data very well. The solid one (case I) becomes a
little larger than the data of the CLAS Collaboration. However,
the deviation is not too large. In Fig. 10 we illustrate the result
for |Gp

E/µpG
p

M | for the time-like momentum. There seems to
be some discrepancy between the experimental data: The ratio
obtained by Bardin et al. [8] is smaller than that of Aubert
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0.05

0.1

Q2 [(GeV2]

G
E

n

Meyerhoff
Rohe
Herberg
Zhu

Passchier
Ostrick
Madey

FIG. 4. Neutron electric form factor for the space-like momen-
tum. The solid curve is the result for case I and the dashed one for
case II. Data points are taken from Meyerhoff et al. [22], Rohe
et al. [30], Herberg et al. [24], Zhu et al. [31], Passchier et al. [25],
Ostrick et al. [26], and Madey et al. [41].

10−1 100 101
0

0.5

1

Q2 [(GeV/c)2]

µ p
G

E
p /G

M
p

Jones
Gayou
MacLachlam
Crawford
Ron

FIG. 5. Ratio of the electric and magnetic form factors of proton
for the space-like momentum. The solid curve is the result for case I
and the dashed one for case II. Data points are taken from Jones
et al. [1], Gayou et al. [2], MacLachlam et al. [3], Crawford et al. [4],
and Ron et al. [5].

et al. [9]. Our result coincides with the result of Bardin et al.
for small Q2 and that of Aubert et al. for large Q2.

VI. CONCLUDING REMARKS

We have shown that the experimental data of the nucleon
form factors are reproduced reasonably well by the dispersion
relation with supercovergence conditions both for the space-
like and time-like momentum transfer. In our calculations we
take on a model for the imaginary part of the form factors,
ImF , being given as an addition of the low, intermediate, and
asymptotic parts of QCD. All of the parameters are contained

10
0

0.2

0.4

0.6

s [GeV2]

|G
p |

Bardin
Antonelli
Ablikim
Pedlar
Ambrogiani

5 15

FIG. 6. Proton form factors for the time-like momentum. The
solid curve is the result for case I and the dashed one for case II.
The data points are taken from Bardin et al. [8], Antonelli et al. [34],
Ablikim et al. [32], and Pedlar et al. [33]. The data of Aubert et al. [9]
are given in Fig. 7.

045209-6



ELECTROMAGNETIC FORM FACTORS OF NUCLEONS WITH . . . PHYSICAL REVIEW C 81, 045209 (2010)

3.5 4 4.5 5
0

0.2

0.4

0.6

s [GeV2]

|G
p |

Bardin
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FIG. 7. Proton form factors for the time-like momentum for s <

5 GeV2. The solid curve is the result for case I and the dashed one
for case II. The curves and data points are the same as in Fig. 6 with
the addition of Aubert et al. [9].

in ImF . In the calculations performed by Belushkin et al. [12],
they gave models for the form factor F itself, which satisfy
the unsubtracted dispersion relation with the superconvergence
condition. The parameters are contained in F .

In our formulation ImF QCD is separated from the other
parts, so that we are able to determine the QCD contribution
to the form factors. ImF QCD is assumed to be given as an
expansion by the effective coupling constant of the renormal-
ization group of QCD and the coefficients are determined by a
chi-square analysis. It is concluded that an approximation up
to third order in the effective coupling constant is required as
in the case of deep inelastic lepton hadron interactions; that is,
the next to the leading order is necessary. The same conclusion
had been reached for the pion and the kaon form factors [13].

We have performed two kind of analysis, cases I and II; in
the former the Gn

M data obtained by the CLAS Collaboration

4 5 6 7
0

0.5

1

s [GeV2]

|G
n |

Antonelli

FIG. 8. The neutron form factor for the time-like momentum. The
solid curve is the result for case I and the dashed one for case II. Data
are taken from Antonelli et al. [34].

0 2 4

0.9

1

1.1

1.2

Q2 [(Gev/c)2]

G
M

n /µ
n
G

D

Anderson
Lachniet

FIG. 9. Neutron magnetic form factor for the space-like momen-
tum in the few (GeV/c)2 region. The solid curve is the result for
case I and the dashed one for case II. Data are taken from Anderson
et al. [6] and Lachniet et al. [7]. The same notations are used as in
Fig. 3.

[7] are left out and in the latter the CLAS data are used in
the chi-square analysis. Although the CLAS data, for Q2 <

5 (Ge/c)2, are reproduced very well by case II, there arises
some disagreement for Gn

M with the data obtained by Rock
et al. [20] at Q2 = 8 and 10 (GeV/c)2; the calculated result
for case II became larger (see Fig. 3) than the experimental
value. Considering the value of χ2, we may conclude that case
I is better than case II.

For the electric form factor of the proton there are deviations
of the dispersion theoretical calculation from the experimental
data for large Q2, where the data were obtained by using the
Rosenbluth formula. The discrepancy may imply the necessity
of correction of two-photon processes to the experimental data
[42,43].

2 2.5 3
0

1

2

s1/2 [GeV]

µ p
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E
p /G

M
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Bardin
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FIG. 10. |Gp

E/µpG
p

M | for the time-like momentum. The solid
curve is the result for case I and the dashed one for case II. The
data points are taken from Bardin et al. [8] and Aubert et al. [9].
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In our calculation we treated all of the vector boson masses
and widths as parameters. If they are kept at experimental
values, we get poor results. The superconvergence conditions
are so strong that the value of χ2 is very sensitive to the
masses and widths. The masses are obtained to be smaller
than the experimental value and the existence of vector bosons
with masses around 1.2–1.4 GeV/c2 are necessary for both
the I = 1 and I = 0 states.

To conclude the paper we remark on vector bosons with
mass around 1.2 GeV/c2. We have introduced the vector
boson to supplement the lack of information on the unphysical

region with small s. However, for both I = 0 and I = 1 states
there are indications of resonances observed by the processes
e+e− → ηπ+π−, γp → ωπ0p, and B → D∗ωπ− [44].
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