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Deep exclusive charged π electroproduction above the resonance region
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A description of exclusive charged-pion electroproduction (e,e′π±) off nucleons at high energies is proposed.
The model combines a Regge pole approach with the residual effect of nucleon resonances. The exchanges of
π (140), vector ρ(770), and axial-vector a1(1260) and b1(1235) Regge trajectories are considered. The contribution
of nucleon resonances is described using a dual connection between the exclusive hadronic form factors and
inclusive deep inelastic structure functions. The model describes the measured longitudinal, transverse, and
interference cross sections at the Thomas Jefferson Lab National Accelerator Facility (JLAB) and the Deutsches
Elektronen Synchrotron. The scaling behavior of the cross sections is in agreement with JLAB and deeply virtual
HERMES data. The results for a polarized beam-spin azimuthal asymmetry in (�e,e′π±) are presented. Model
predictions for JLAB at 12 GeV are given.
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I. INTRODUCTION

At the Thomas Jefferson Lab National Accelerator Facility
(JLAB) the exclusive reaction p(e,e′π+)n has been studied
for a wide range of photon virtualities Q2 at an invariant
mass of the π+n system around the onset of the deep inelastic
scattering (DIS) regime, W � 2 GeV [1–5]. A separation of
the cross section into the transverse σT, longitudinal σL, and
interference σTT and σLT components has been performed.
The CLAS data for the polarized beam single-spin asymmetry
in p(�e,e′π+)n are also available [6]. The HERMES data at
the Deutsches Elektronen Synchrotron (DESY) [7] extend the
kinematic region to much higher values of W 2 > 10 GeV2

toward the true DIS region Q2 � 1 GeV2 and much higher
values of −t . The cross section for p(e,e′π+)n has also
been measured above the resonance region at the Cambridge
Electron Accelerator (CEA) [8] in p(e,e′π+)n and n(e,e′π−)p
at the Wilson Synchrotron Laboratory at Cornell [9–11] and
DESY [12–16].

The longitudinal cross section σL is generally thought to
be well understood in terms of the pion quasielastic knockout
mechanism [17] because of the pion pole at low −t . If true,
this makes it possible to study the charge-form factor of the
pion at momentum transfers much greater than in the scattering
of pions from atomic electrons [18]. However, the transverse
cross section σT is predicted to be suppressed by ∼1/Q2 with
respect to σL for sufficiently high values of Q2 and W [19]. On
the experimental side, however, the JLAB data show that at
forward angles σT is large. For instance, at Q2 = 3.91 GeV2

[3] σT is by about a factor of two larger than σL and at Q2 =
2.15 GeV2 it has same size as σL, in agreement with previous
JLAB measurements [1].

There is a long-standing issue concerning the reaction
mechanisms contributing to deeply virtual π electroproduction
above the resonance region [20–22]. The models that describe
(e,e′π±) in terms of hadronic degrees of freedom fail to
reproduce the σT observed in these reactions (see Ref. [4] and
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references therein). Previous measurements [1,2,11] at smaller
and much higher values of Q2 show a similar problem in the
understanding of σT. Already from values of Q2 > 0.6 GeV2

the meson-exchange and/or Regge pole models are not
compatible with the measured interference σTT and σLT cross
sections and the extraction of the pion form factor relies on the
fit to the longitudinal cross section σL only [5]. A remarkably
rich experimental database obtained for N (e,e′π )N ′ above
the resonance region remains unexplained [3,4]. However,
a detailed knowledge of the p(e,e′π+)n reaction above the
resonances W > 2 GeV is mandatory for the interpretation
of the color transparency signal observed in this reaction off
nuclei [23,24].

A possible description of σT at JLAB has been proposed in
Ref. [25]. The approach followed there is to complement the
hadronlike interaction types in the t channel, which dominate
in photoproduction and low-Q2 electroproduction, with the
direct interaction of virtual photons with partons followed by
string (quark) fragmentation into π+n. Then σT can be readily
explained, and both σL and σT can be described from low up
to high values of Q2. In Ref. [25], the reaction p(e,e′π+)n is
treated as an exclusive limit, z → 1, of semi-inclusive DIS

p(e,e′π+)X
z→1−→ p(e,e′π+)n (1)

in the spirit of an exclusive-inclusive connection [26]. The
transverse cross section in n(e,e′, π−)p has been predicted to
be smaller than in p(e,e′, π+)n. The model in Ref. [27] has
also been applied to values of (Q2,W ) in the DIS region at
HERMES [7]. In Ref. [27], σT in DIS gets much smaller in
the forward π+ production, but still dominates the off-forward
region.

However, in Refs. [25,27] the transverse cross section σT

itself was modeled and the solution of the problem on the
amplitude level is still missing. Both the soft hadronic and the
hard partonic parts of the amplitude can in principle interfere,
making nonadditive contributions to σL and to interference
σTT and σLT cross sections. One might describe this transverse
strength in the language of perturbative QCD by considering
higher twist corrections to a generalized-parton-distribution
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(GPD)-based handbag diagram. This approach has been
followed in Ref. [28], where p(γ ∗,π+)n is considered using
the handbag approach with a π -pole contribution. Indeed, the
data from JLAB demonstrate [3,4] that the magnitude and
sign of the interference cross sections are not compatible with
the simple exchange of a pion trajectory in the t channel.
Because the contributions from exchange of heavy mesons
are small [25], this would suggest the presence of a large
transverse resonance or partonic interfering background in the
meson-pole contributions.

In this work we attempt a phenomenological approach to
model the hard scattering or, using a duality argument, the
presence of nucleon resonances beyond the t-channel meson-
pole amplitudes. The meson-exchange processes dominate in
high-energy photoproduction and low-Q2 electroproduction
above the resonance region. One way to describe this region
is to assume that the coherent sum of baryon resonance
contributions would be expected by duality arguments to
be equivalent to a sum over t-channel Regge trajectories.
However, in electroproduction, with plausible assumptions
concerning the coupling constants and transition form factors,
the exchange of heavy mesons alone does not explain the
transverse cross section and turns out to be marginal [25]. It
is also a generic rule that single t-channel meson-exchange
processes vanish in the forward π+ direction. However, pion
exchange does play an important role at near forward directions
and must be included, as must be the nucleon-pole charge term
to satisfy gauge invariance. The nucleon magnetic transitions
vanish in the forward production and can be neglected [29].
For instance, in photoproduction this suggests an extreme
phenomenological scenario, known as an electric model,
where the only relevant contributions to π± production at
forward angles are the ones from π -exchange and the nucleon
Born term where the inclusion of the latter is mandatory to
conserve gauge invariance.

By Reggeizing the π exchange one takes into account
higher mass and higher spin excitations. At forward angles
considered here, the momentum transfer −t is small and the
exchanged π trajectory is close to its first materialization.
However, the nucleons in the s(u)-channel pole amplitudes are
highly off mass shell and with increasing values of (Q2,W )
the effect of nucleon resonances should become more and
more important. This is because of the well-known hardening
of the higher mass resonance transition form factors which
are subject to the scaling properties of deep inelastic structure
functions in inclusive scattering [30,31]. We shall follow this
suggestion and model the contribution of nucleon resonances
using a local Bloom-Gilman connection between the exclusive
and inclusive processes.

Another question that we address here is a possible
contribution of the resonance (or partonic) background to
the longitudinal cross section σL, which is presently used
to get the information about the pion form factor. Indeed,
the same resonance or partonic background also affects the
longitudinal cross section, making the π -pole dominance in
the longitudinal response rather questionable. Based on a
quantitative description of electroproduction data achieved
in this work in a large range of (Q2,W ) from JLAB to the
DIS region at HERMES, the present results may assist in the

experimental analysis and extraction of the pion charge form
factor to minimize systematic uncertainties. Recall that it is
essential to use theoretical model input for the extraction of
the pion form factor [5].

The outline of the present article is as follows. In Sec. II we
briefly recall the kinematics and definition of the cross sections
in exclusive (e,e′π±) electroproduction reaction. In Sec. III
we discuss our treatment of gauge-invariant π exchange in
the Regge pole model. In Sec. IV we consider the effect of
nucleon resonances and derive the transition form factors using
an exclusive-inclusive connection. In Sec. V we consider the
contribution of vector ρ(770) and axial-vector a1(1260) and
b1(1235) Regge trajectories. In Sec. VI we briefly discuss
the π± photoproduction at forward angles. Then the model is
extended to electroproduction. In Secs. VII–IX the results are
compared to the experimental data from JLAB, DESY, and
Cornell. In Sec. X we compare our results with the HERMES
data. The Q2 behavior of the cross sections is studied in
Sec. XI. The polarized beam-spin asymmetry and the role
played by the axial-vector mesons in (�e,e′π±) are discussed
in Sec. XII. In Sec. XIII the model predictions for JLAB at
12 GeV are presented. The conclusions are summarized in
Sec. XIV. Some details of the calculations are relegated to the
Appendices.

II. KINEMATICS AND DEFINITIONS

We recall briefly the kinematics in exclusive π electropro-
duction,

e(l) + N (p) → e′(l′) + π (k′) + N ′(p′), (2)

and specify the notations and definitions of variables. The
reaction (2) in the laboratory is shown in Fig. 1, where the
target nucleon is at rest, the z axis is directed along the three-
momentum �q = (0, 0,

√
ν2 + Q2) of the exchanged virtual

photon γ ∗ with q = l − l′ = (ν, �q), Q2 = −q2, ν = Ee − E′
e,

and l(l′) is the four-momentum of incoming (deflected)
electrons. In Fig. 1, φ stands for the azimuthal angle between
the electron scattering (e,e′) plane and the γ ∗N → πN ′

γ

π

N′

reaction plane

scattering plane

z

e

e′

φ

FIG. 1. (Color online) Exclusive reaction N (e,e′π )N ′ in the
laboratory. φ stands for the azimuthal angle between the electron
scattering (e,e′) plane and reaction N (γ ∗,π )N ′ plane.
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reaction plane. φ is zero when the pion is closest to the outgoing
electron [32].

In exclusive reaction (e,e′π ) we shall deal with an unpolar-
ized target and both unpolarized and polarized lepton beams.
The differential cross section is given by

dσ

dQ2dνdtdφ

= �

2π

[
dσT

dt
+ ε

dσL

dt
+

√
2ε(1 + ε)

dσLT

dt
cos(φ)

+ ε
dσTT

dt
cos(2φ) + h

√
2ε(1 − ε)

dσLT′

dt
sin(φ)

]
, (3)

where dσT is the transverse cross section, dσL is the longitudi-
nal cross section, dσTT is the cross section originating from the
interference between the transverse components of the virtual
photon, dσLT is the cross section arising from the interference
between the transverse and longitudinal polarizations of the
virtual photon, and dσLT′ is the beam-spin polarized cross
section resulting from the interference between the transverse
and longitudinal photons and helicity h = ±1 of the incoming
electron.

The virtual photon flux is conventionally defined as [33]

� = π

Ee(Ee − ν)

(
αe

2π2

Ee − ν

Ee

K
Q2

1

1 − ε

)
, (4)

with αe � 1/137, K = (W 2 − M2
N )/2MN , and

ε = 1

1 + 2 ν2+Q2

4Ee(Ee−ν)−Q2

(5)

is the ratio of longitudinal to transverse polarization of the
virtual photon. The longitudinal/transverse (L/T) separated

virtual-photon nucleon cross sections are given in Appendix A.
The t-differential cross section for N (γ ∗,π )N ′ integrated over
φ is denoted here as

dσU

dt
= dσT

dt
+ ε

dσL

dt
. (6)

The longitudinal beam single-spin asymmetry (SSA) in
(�e,e′π ) scattering is defined so that

ALU(φ) ≡ dσ→(φ) − dσ←(φ)

dσ→(φ) + dσ←(φ)
, (7)

where dσ→ refers to positive helicity h = +1 of the incoming
electron. The azimuthal moment associated with the beam SSA
is given by [32]

A
sin(φ)
LU =

√
2ε(1 − ε)dσLT′

dσT + εdσL
. (8)

III. GAUGING THE PION EXCHANGE

The diagrams describing the π+ and/or π− electropro-
duction amplitudes in exclusive reactions p(e,e′π+)n and
n(e,e′π−)p are shown in Fig. 2. At high energies the particles
exchanged in the t channel are understood as the Regge
trajectories. In p(e,e′π+)n the s-channel nucleon-pole term
(diagram Ib in Fig. 2) is added to the t-channel π -pole
exchange (diagram Ia) to conserve the charge of the system.
Similarly, diagram IIa and u-channel nucleon-pole diagram IIb
form a gauge-invariant amplitude in n(e,e′π−)p. The remain-
ing two diagrams (III and IV) correspond to the exchange of
vector V = ρ(770) and axial-vector A = a1(1260), b1(1235)
Regge trajectories.

The π -exchange currents describing the reactions
p(γ ∗,π+)n and n(γ ∗,π−)p take the form [24]

III

π

γ V

N

e

e′

N′

IV

π

γ A
e

e′

N

N′

IIa

Ib

IIb

Ia

π

e′

e
γ

πe′

N′
N

e

π

πγ

N

e

e′

N′
γ

e′

N′
e

π
N

π

N′

N

γ

(p)

(k)
(p′)

(k′)

(q)

FIG. 2. Diagrams describing the π+ and/or π− electroproduction amplitudes in exclusive reactions p(e,e′π+)n and n(e,e′π−)p. In
p(e,e′π+)n the s-channel nucleon-pole term (diagram Ib) is added to the t-channel π -pole exchange (diagram Ia) to conserve the charge of the
system. Similarly, diagram IIa and the u-channel nucleon-pole diagram IIb form gauge-invariant amplitude in n(e,e′π−)p. The remaining two
diagrams (III and IV) correspond to the exchange of vector V = ρ(770) and axial-vector A = a1(1260) and b1(1235) Regge trajectories. The
momentum flows are shown in the diagram Ia.
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−iJ µ
s (γ ∗p → π+n)

=
√

2gπNN ūs ′ (p′)γ5

[
Fγππ (Q2, t)

(k + k′)µ

t − m2
π + i0+

+Fs(Q
2, s, t)

(p + q)σ γ σ γ µ + Mpγ µ

s − M2
p + i0+

+ [Fγππ (Q2, t) − Fs(Q
2, s, t)]

(k − k′)µ

Q2

]
us(p), (9)

−iJ µ
u (γ ∗n → π−p)

= −
√

2gπNN ūs ′ (p′)
[
Fγππ (Q2, t)

(k + k′)µ

t − m2
π + i0+

−Fu(Q2, u, t)
γ µ(p′ − q)σ γ σ + Mpγ µ

u − M2
p + i0+

+ [Fγππ (Q2, t) − Fu(Q2, u, t)]
(k − k′)µ

Q2

]
γ5us(p),

(10)

where Fγππ (Q2, t) denotes the transition form factor of the
pion and Fs(u)[Q2, s(u), t] stands for the proton s(u)-channel
transition form factor. In Eqs. (9) and (10), gπNN = 13.4 is
the pseudoscalar πN coupling constant, t = k2, s = W 2, k =
k′ − q = p − p′, and other notations are obvious.

The amplitudes are gauge invariant and the current con-
servation condition, qµJ

µ

s(u) = 0, is satisfied in the presence
of different form factors, Fγππ and Fs(u), which in general
can depend on values of [Q2, s(u), t]. Equations (9) and
(10) are obtained using the requirement that the modified
electromagnetic vertex functions entering the amplitude obey
the same Ward-Takahashi identities as the bare ones [34–36].
Further aspects concerning the gauged electric amplitude are
relegated to Appendix B.

At high energies the exchange of high-spin and high-mass
particles lying on the π -Regge trajectory has to be taken
into account. Then, to continue the electric amplitude to high
energies, we define the half off-shell form factor

Fγππ (Q2, t) = Fγππ (Q2)
(
t − m2

π

)
R[απ (t)]. (11)

In the π -pole term this procedure replaces the Feynman
propagator by the Regge propagator suggested by the high-
energy limit of the amplitude

D(t) = 1

t − m2
π + i0+

=⇒ R[απ (t)]

=
[

1 + e−iπαπ (t)

2

]
(−α′

π )
[−απ (t)]eαπ (t) ln(α′
π s),

(12)

where απ (t) = α′
π (t − m2

π ) is the Regge trajectory of π

with a slope α′
π = 0.74 GeV−2 and 
 function results from

suppression of singularities in the physical region. Close to
the pole position t → m2

π the Regge propagator is reduced
to 1/(t − m2

π ) and we approach the Feynman amplitude
describing the first π (140) materialization of the trajectory.

We further treat the nucleon-pole part as an indispensable
part of the π -pole amplitude. At the real photon point, gauge

invariance requires for the nucleon-pole term the same phase
and t dependence as in the π -Regge amplitude [29],

Fs(u)[Q
2, s(u), t] = Fs(u)[Q

2, s(u)]
(
t − m2

π

)
R[απ (t)]. (13)

This assumption is justified by the observation that there
exists a gauge where the π -exchange vanishes and the π -pole
contribution is generated kinematically by the nucleon-pole
term itself [37].

For the pion transition form factor Fγππ we use a monopole
parametrization,

Fγππ (Q2) = [
1 + Q2

/
�2

γππ

]−1
, (14)

with a cutoff �γππ as a fit parameter. In general, the cutoff
can be a function of t , �γππ = �γππ (t), reflecting the off-
shellness of the pion in the t channel and the underlying space-
time pattern of direct partonic interactions at high values of
−t [38]. In the forward π+ production the momentum transfer
t is rather small and the exchanged pion is close to its mass
shell. In the fit to data we shall not allow large deviations from
the vector-meson dominance (VMD) value.

Because the π -pole contribution is replaced by an exchange
of Reggeon-pion, the relation to the on-shell pion form factor
might be lost [39] and Fγππ (Q2) should be understood as an
effective transition form factor.

IV. EFFECT OF NUCLEON RESONANCES

Similar arguments should apply to the transition form factor
in the s(u)-channel nucleon-pole terms. A simplest choice
would be to use in Eq. (13)

Fs(u)[Q
2, s(u)] = F

p

1 (Q2), (15)

where F
p

1 (Q2) is the proton Dirac form factor. However,
because the nucleon is highly off mass shell, this assumption
might be too naive [40]. Indeed, this prescription underes-
timates the JLAB data for σT [25] and results in a wrong
interference pattern between L/T components.

A way to model an intermediate state which is highly off
mass shell is to increase the Fock space available for the virtual
nucleon, allowing the latter to excite into resonances. Similar
to the Reggeized exchange, these resonances with higher
masses and spins may lie on the nucleon Regge trajectory
or correspond to higher mass states with the same angular
momentum as the nucleon. We replace the Born term in the
s channel for π+ production with a sum over all resonance
excitations,

Fs(Q2,Mp)

s − M2
p + i0+ →

∑
i

r(Mi)c(Mi)
F

(
Q2,M2

i

)
s − M2

i + i0+ , (16)

where the sum runs from the nucleon-pole contribution, Mi is
the ith resonance mass, and r and c are the electromagnetic
and strong couplings, respectively, relative to the lowest-lying
nucleon state, that is, r(Mp)c(Mp) = 1. For π− production we
use a similar expansion over the u-channel contributions

Fu(Q2,Mp)

u − M2
p + i0+ →

∑
i

r(Mi)c(Mi)
F

(
Q2,M2

i

)
u − M2

i + i0+ . (17)
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In the region of interest for the experiments to be discussed
later in this article, the invariant mass is W >∼ 2 GeV and thus in
a region where the DIS regime starts. To make a connection to
our earlier work in which we modeled the transverse cross
section by a partonic subprocess [25,27], we now invoke
duality for the exclusive processes treated here. We start with
the Bloom-Gilman duality [31] in the local form,

F
p

2 (xB,Q2) =
∑

i

(
M2

i − M2
p + Q2

)
W (Q2,Mi)δ

(
s − M2

i

)
,

(18)

where xB stands for a Bjorken scaling variable and the deep
inelastic structure function F

p

2 (xB,Q2) is expressed as a sum
of resonances. In Eq. (18) the hadronic basis is used as a
substitute for the quark basis. When Q2 is large, the bulk
structure of the resonances becomes less and less important
and we are justified when taking the zero-width approximation
[41]. W (Q2,Mi) defines the ith resonance contribution to
the γ ∗p forward-scattering amplitude; it is essentially the
electromagnetic coupling constant r(Mi) times a resonance
form factor F (Q2,Mi) normalized to unity at Q2 = 0 [42]:

W (Q2,Mi) = r2(Mi)[F (Q2,Mi)]
2, F (0,Mi) = 1. (19)

A resonance with mass Mi contributes to the structure function
at Bjorken xi = Q2/(M2

i − M2
p + Q2).

To be in line with measurements in the DIS region, the
resonance form factors F (Q2,M2

i ) must fall with Q2 at least
as fast as the nucleon dipole form factor. Futhermore, to be
consistent with the scaling behavior of deep inelastic structure
functions, the cutoff in the dipole transition form factors must
increase as the mass of the resonance is increases [30,42].
Therefore, we assume [41]

F
(
Q2,M2

i

) =
⎛
⎝ 1

1 + ξ Q2

M2
i

⎞
⎠

2

, (20)

where the value of ξ is a common average cutoff parameter.
This scenario suggests a hardening of the resonance form
factors with increasing values of Mi [42].

At high energies the level density of resonances ρ(M2
i ) is

large and we can replace the sum in Eq. (18) over a discrete
spectrum of resonances by a continuous integral,

∑
i

→
∫ ∞

M2
p

dM2
i ρ

(
M2

i

)
. (21)

This is clearly a rough approximation in the resonance region
itself, but it makes no difference when we restrict ourselves to
the experimental data above the resonance region. Performing
the integration over Mi yields

F
p

2 (xB,Q2) = (
s − M2

p + Q2
)
r2(s)[F (Q2, s)]2ρ(s). (22)

The structure function F
p

2 can be written in the form of a
polynomial in 1 − 1/ω′, where ω′ = 1 + W 2/Q2 is a Bloom-
Gilman variable. As Q2/W 2 → ∞ or ω′ → 1, the leading
term yields the Drell-Yan-West behavior,

F
p

2 (ω′) ∝ (ω′ − 1)3, (23)

which shows that the power-law behavior of the form factor
is related to the suppression of the structure functions in the
limit where one quark carries all of the hadron’s momentum.
The approximation (23) is supposed to be reasonable down to
xB � 0.2. Expanding the resonance form factors for ω′ → 1,
the leading term reads

F (Q2, s) = (ω′ − 1)2

ξ 2
+ O[(ω′ − 1)3]. (24)

The duality relation [Eq. (22)] can be written in the form

(ω′ − 1)3 ∝ Q2 (ω′ − 1)4

ξ 4
r2(s)ρ(s). (25)

This translates into

r2(s)ρ(s) ∝ 1

Q2(ω′ − 1)
= 1

s
. (26)

Because the level density grows with increasing s, for instance,
ρ ∝ exp(const × Mi), the coupling strength to resonances is
decreasing; that is, r(si) ∝ [siρ(si)]−1/2, where si = M2

i . This
simple result has a remarkable consequence. Although an
infinite tower of resonances can contribute to the structure
function, the weight of resonances decreases as 1/s with
increasing values of s.

A vanishing coupling of the higher spin (mass) resonances
to πN is expected from the chiral phenomenology [43]. The
latter claim is consistent with our observation that the more we
excite the nucleon, the less it decays into the exclusive channel.
Assuming for the strong coupling a similar form c(si) ∝
[s(2β−1)

i ρ(si)]−1/2 with β � 1, the integration in Eqs. (16)
and (17) is superconvergent and can be carried out analytically.
Without an explicit assumption about the behavior of the level
density, we get the following form for the product:

ρ(si)r(si)c(si) = 1

λ
s
−β

i , (27)

where λ is a normalization constant and β � 1 accounts for
the behavior of coupling constants, as well as a deviation of the
level density contributing to the exclusive channel compared
to the total inclusive density of states.

We now absorb all the effects of the higher-lying resonances
into the nucleon-pole term by setting

∑
i

r(Mi)c(Mi)
F

(
Q2,M2

i

)
s − M2

i + i0+

=⇒
∫ ∞

M2
p

dM2
i ρ

(
M2

i

)
r
(
M2

i

)
c
(
M2

i

) F
(
Q2,M2

i

)
s − M2

i + i0+

=
∫ ∞

M2
p

dsi

s
−β

i

λ

F (Q2, si)

s − si + i0+ ≡ Fs(Q2, s)

s − M2
p + i0+ , (28)

where the sum in Eq. (16) over discrete spectrum of resonances
has been replaced again by a continuous integral. Fs(Q2, s) is
the form factor on the right-hand side of Eq. (13). Similarly,
we proceed for the transition form factor Fu(Q2, u) in the u

channel [Eq. (17)]. The integration covers the full region from
the nucleon pole Mp up to ∞. Furthermore, the normalization
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constants λ are determined by the charge conservation at the
real photon point Q2 = 0, that is,

λ

∣∣∣
s channel

= (
s − M2

p

) ∫ ∞

M2
p

dsi

ρ(si)r(si)c(si)

s − si + i0+ , (29)

λ

∣∣∣
u channel

= (u − M2
p)

∫ ∞

M2
p

dsi

ρ(si)r(si)c(si)

u − si + i0+ , (30)

for the s and u channels, respectively. This merely guarantees
that the effective form factors are normalized to unity,
Fs(u)[0, s(u)] = 1. With this prescription we demand that
the contributions of resonances show up in the modified
off-mass-shell behavior of the nucleon transition form factors.

The s- and u-channel form factors read

Fs(Q
2, s) =

∫ ∞
M2

p
dsi

s
−β

i

s−si+i0+

(
1

1+ξ Q2

si

)2

∫ ∞
M2

p
dsi

s
−β

i

s−si+i0+

, (31)

Fu(Q2, u) =

∫ ∞
M2

p
dsi

s
−β

i

u−si+i0+

(
1

1+ξ Q2

si

)2

∫ ∞
M2

p
dsi

s
−β

i

u−si+i0+

. (32)

Because of the singularity at si = s + i0+, the s-channel
integrals develop an imaginary part that is missing in the
u-channel contribution where the branch point sits in the
unphysical region.

Concerning the terminology for regions like the one at
JLAB, it would be appropriate to use the words resonance
effect. However, in the DIS region at HERMES it would
be more natural to describe the effect as of partonic origin.
Because both descriptions are dual in the context of the present
approach, we shall, in line with Refs. [25,27], refer to the
terms derived previously as the resonance or partonic (R/P)
contributions.

V. VECTOR AND AXIAL-VECTOR REGGE
TRAJECTORIES

The mesonic Regge trajectories can be characterized by
the signature and parity. The signature determines whether
the Regge poles in the scattering amplitude will occur for
even or odd positive integer value of the trajectory α(t) = J

(the spin). The leading mesons contributing to (e,e′π±) are the
natural P = (−1)J parity vector ρ(770) and the unnatural P =
(−1)J+1 parity axial-vector mesons a1(1260) and b1(1235).
The Regge trajectories α(t) considered here are shown
in Fig. 3.

The absolute contribution of the Reggeized ρ-exchange
amplitude to (e,e′π±) turns out to be small, but by its
interference with the s- and u-channel terms considered

0 1 2 3 4 5 6

t [GeV
2
]
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1

2

3
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α 
(t

)
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− −
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− −

π0
− +

π2
− +

π4
− +

b
1

+ -

b
3

+ -

a
1

+ +

a
3

+ +

a
2

+ +

a
4

+ +

FIG. 3. (Color online) ρ(770)/a2(1320) (solid line), π/b1(1235)
(dashed line), and a1(1260) (dash-dotted line) Regge trajectories.

previously, it is responsible for the π−/π+ asymmetry in
photoproduction and gives a sizable contribution to the π−/π+
ratio in electroproduction.

In the axial-vector sector, the experimental isolation of
the amplitudes with axial-vector quantum numbers would
be of great interest. For instance, using a proton target
polarized perpendicular to the reaction plane and photons
polarized parallel to the reaction plane, one can directly
access the difference between recoil and the polarized target
asymmetries which is proportional to the exchange of the
a1(1260) trajectory [44]. However, being suppressed by the
Regge factor ∼e

−α′
a1

ln(α′
a1

s)m2
a1 at t = 0, its contribution to

the forward unpolarized cross section turns out to be small.
With our choice of the b1NN tensor coupling, the contribution
of b1(1235) exchange is even smaller. However, as we shall see,
it is absolutely essential to consider the exchange of a1(1260)
Regge trajectory in the polarization (�e,e′π ) observables like
the beam spin azimuthal asymmetry considered in the follow-
ing. Other aspects related to a possible role of a1(1260) in
(e,e′π ) are discussed in Ref. [45].

A. Vector-isovector I G( J PC ) = 1+(1−−) exchange currents

The currents Jµ
ρ describing the exchange of the natural

parity ρ(770)-meson Regge trajectory are given by⎡
⎣−iJ µ

ρ (γ ∗p → π+n)

−iJ µ
ρ (γ ∗n → π−p)

⎤
⎦

= −i
√

2GργπGρNNFργπ (Q2)εµναβqνkαūs ′ (p′)

×
[

(1 + κρ)γβ − κρ

2Mp

(p + p′)β

]
us(p)

×
[

1 − e−iπαρ (t)

2

]
(−α′

ρ)
[1 − αρ(t)]eln(α′
ρs)[αρ (t)−1],

(33)
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where GρNN = 3.4 and κρ = 6.1 are the standard vector
and anomalous tensor coupling constants, respectively. The ρ

trajectory adopted here reads αρ(t) = 0.53 + α′
ρt with a slope

α′
ρ = 0.85 GeV−2. The 
 function in Eq. (33) contains the pole

propagator ∼1/ sin[παρ(t)] but no zeros and the amplitude
zeros occur only through the factor 1 − e−iπαρ (t).

The ργπ coupling constants Gργπ can be deduced from
the radiative γπ decay widths of ρ:


(ρ± → γπ±) = αe

24

G2
ργπ

m3
ρ

(
m2

ρ − m2
π

)3
. (34)

The measured width [46] 
ρ±→γπ± = (68 ± 7) keV, where
the central value corresponds to Gργπ = 0.728 GeV−1.
For the transition form factor Fργπ (Q2), we use a VMD model
Fργπ (Q2) = (1 + Q2/�2

ργπ )−1 with �ργπ = mω(782).

B. Axial-vector I G( J PC ) = 1−(1++) exchange currents

The axial-vector a1(1260) meson with IG(JPC) = 1−(1++)
has a large width into the a1(1260)± → γπ± channel [46]. A
conversion of a1 into γπ is described by the a1γπ vertex
La1γπ = −ie

4 Ga1γπFµν〈Q[Aµν, ϕ]〉, where Fµν denotes the
field tensor of photons, Aµν stands for the field tensor of the
axial-vector meson with Aµν = ∂µAν − ∂νAµ, and

Aµ =
(

a0
1

√
2a+

1√
2a−

1 −a0
1

)
µ

. (35)

ϕ is a standard SU(2) pion matrix, Q = diag(2/3,−1/3) is
a quark charge matrix, and 〈· · ·〉 and [· · ·] denote a trace
and a commutator of fields, respectively. The hadronic a1NN

interaction is described by

La1NN = Ga1NNψ̄γ µγ5Aµψ, (36)

where ψ = (p, n)T. Because of G-parity conservation in the
vertex, there is no tensor coupling of a1 to nucleons.

In the reactions p(γ ∗,π+)n and n(γ ∗,π−)p, the currents
describing the exchange of a1(1260) trajectory read⎡
⎣−iJ

µ
a1 (γ ∗p → π+n)

−iJ
µ
a1 (γ ∗n → π−p)

⎤
⎦

=
⎡
⎣+

−

⎤
⎦ √

2Ga1NNGa1γπFa1γπ (Q)[kµqν − (qk)gµν]

× ūs ′ (p′)γνγ5us(p)

[
1 − e−iπαa1 (t)

2

] (−α′
a1

)
×
[1 − αa1 (t)]eln(α′

a1
s)[αa1 (t)−1]

. (37)

The a1 Regge trajectory adopted here is αa1 (t) = αρ(t) − 1,
where αρ(t) is the trajectory of ρ. The γ ∗ → a1π transition is
isovector and contributes with opposite signs to γ ∗p → π+n

and γ ∗n → π−p reactions.
To estimate the a1-nucleon coupling constant Ga1NN ,

one can relate, say, Ga1pp to the observed axial-vector
coupling constant using axial-vector dominance [47,48]
gA

gV
=

√
2fa1 Ga1pp

m2
a1

, where the weak decay constant fa1 is deduced

from τ decay: τ → a1 + ντ . With gA/gV = 1.267, fa1 =
(0.19 ± 0.03) GeV2, one gets the following estimate: Ga1pp =
Ga1NN = 7.1 ± 1.0.

The radiative decay width a1 → γπ is given by


a+
1 →γπ+ = αe

24

G2
a1γπ

m3
a1

(
m2

a1
− m2

π

)3
. (38)

The empirical width a+
1 → γπ+ is 
a+

1 →γπ+ � (640 ±
246) keV [46]. The coupling constant Ga1γπ � 1.1 GeV−1

corresponds to the central value. In a VMD picture a conver-
sion of γ to ρ with subsequent a1ρπ interaction generates
the monopole form factor Fa1γπ (Q2) = (1 + Q2/�2

a1γπ )−1

with �a1γπ = mρ(770). This form is used to model the Q2

dependence of the a1γ
∗π vertex.

C. Axial-vector I G( J PC ) = 1+(1+−) exchange currents

We consider the exchange of b1(1235) axial-vector meson
with IG(JPC) = 1+(1+−). The conversion of b1 → γπ is de-
scribed by the vertex Lb1γπ = eGb1γπ

4 Fµν〈Q{Bµν, ϕ}〉, where
{··} anticommutes and Bµν = ∂µBν − ∂νBµ, with

Bµ =
(

b0
1

√
2b+

1√
2b−

1 −b0
1

)
µ

. (39)

The b1(1235) coupling to nucleons takes the form of axial-
tensor interaction

Lb1NN = i
Gb1NN

4MN

ψ̄σµνγ5Bµνψ, (40)

where σµν = i
2 [γ µ, γ ν]. The hadronic currents −iJ

µ

b1
describ-

ing the exchange of b1(1235) Regge trajectory read⎡
⎣−iJ

µ

b1
(γ ∗p → π+n)

−iJ
µ

b1
(γ ∗n → π−p)

⎤
⎦

=
√

2

3

Gb1NN

2MN

Gb1γπFb1γπ (Q)[kµqν − (qk)gµν]

× (p + p′)ν ūs ′ (p′)γ5us(p)

[
1 − e−iπαb1 (t)

2

] (−α′
b1

)
×
[1 − αb1 (t)]eln(α′

b1
s)[αb1 (t)−1]

. (41)

The radiative decay width of b±
1 → γπ± is 
b±

1 →γπ± =
(230 ± 60) keV [46]. Making use of an expression similar
to Eq. (38), one gets Gb1γπ/3 = 0.647 GeV−1. The π and
b1(1235) Regge trajectories are nearly degenerate (dashed
curve in Fig. 3). Therefore, we assume αb1 (t) = απ (t). In
the b1γ

∗π vertex we use the VMD form factor Fb1γπ (Q2) =
(1 + Q2/�2

b1γπ )−1 with �b1γπ = mω(782).
It was proposed [29] that the polarized photon asymmetry

in p(γ,π0)p reaction at high energies can be used to estimate
the product of the b1 electromagnetic and strong coupling
constants. In Ref. [29] the b0

1(1235) is coupled to the
axial-vector current and the axial-tensor interaction has been
neglected. However, the axial-vector γ µγ5 vertex is C-parity
even and cannot couple to the b0

1(1235) meson, which has
negative C parity. This is opposed to the a1(1260), which
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couples to γ µγ5. By C(G) parity, only a tensor b1NN coupling
[Eq. (40)] is possible. We have checked and found that with
the proper b1NN vertex this extraction is not obvious. With
the tensor interaction, the exchange of the b1(1235) trajectory
is negligibly small and can be readily neglected. For instance,
using Gb1NN = Ga1NN or even increasing considerably the
latter value does not produce any noticeable effects on the
observables considered here.

VI. ELECTROPRODUCTION ABOVE THE
RESONANCE REGION

In this section we demonstrate the resonance interpretation
proposed in this work and fix the model parameters using
the JLAB data. At first, we briefly consider the real photon
limit of the Regge amplitudes at high energies. In π+ and
π− photoproduction at very forward angles the Reggeized
electric amplitudes [see Eqs. (9) and (10)] are supposed to
be dominant. Because the vector and axial-vector meson-
exchange contributions vanish at forward angles, Eqs. (9)
and (10) are parameter free, provided the intercept of the π

trajectory and the gπNN coupling constant are fixed. However,
further assumptions concerning a choice of the phases in the
Regge amplitudes have to be made. In the gauged π -Regge
amplitudes [Eqs. (9) and (10)], an assumption concerning
an exact degeneracy of π and axial-vector b1(1235) Regge
trajectories with a choice of rotating phase in π+ and a constant
phase in π− photoproduction yields a remarkable consistency
with data [29]. The degeneracy of ρ(770)/a2(1320) Regge
trajectories and G-parity arguments result in a rotating phase

in π+ and a constant phase in π− production described by
the ρ-exchange amplitude [Eq. (33)]. Here, to be consistent
with the real photon limit, we follow these assumptions [29].
However, in the high-Q2 electroproduction a particular choice
of phases in the Regge amplitudes is of minor importance.
The virtual photon (γ ∗,π±) results presented here can be
well reproduced with the standard Regge propagators. From
the meson spectrum there is no conclusive evidence that a
leading Regge trajectory for an unnatural parity ρ2 state exists.
Therefore, we do not make any assumptions on a degeneracy
pattern of a1(1260).

The resulting Regge model based on Reggeized gauge
invariant Feynman amplitudes describes the high-energy π±
photoproduction data relevant for the present studies reason-
ably well. These include the differential cross sections above
the resonance region, the π−/π+ ratio of the n(γ, π−)p and
p(γ, π+)n differential cross sections, and polarized photon
asymmetries. Our description of photoproduction data is
quantitatively similar to the results of Ref. [29] and we do
not repeat this comparison with experimental data here.

An extension of the model to electroproduction is straight-
forward provided the Q2-dependent transition form factors
are defined. In Fig. 4 we plot the transverse dσT/dt (left)
and longitudinal dσL/dt (right) π+ electroproduction data
from JLAB and DESY (old data) scaled to the same values
of Q2 = 0.7 GeV2 and W = 2.19 GeV [4]. The value of the
momentum cutoff �γππ in the pion form factor [Eq. (14)] is
largely constrained by the magnitude of dσL/dt at forward
angles. In the following, the JLAB data are considered to
be a guideline for fixing the model parameters. The dashed
curves correspond to �2

γππ = 0.46 GeV2 and describe the
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FIG. 4. (Color online) −t dependence of the transverse dσT/dt (left) and longitudinal dσL/dt (right) differential cross sections in exclusive
reaction p(γ ∗,π+)n. The compilation of JLAB and old DESY data are from Ref. [4] and have been scaled to common values of W =
2.19 GeV and Q2 = 0.7 GeV2. The solid curves describe the model results, which include the effect of resonances and exchange of π/b1(1235),
ρ(770)/a2(1320), and a1(1260) Regge trajectories. The same is true for the dash-dash-dotted curves but without the DIS slope of Eq. (45).
The dashed curves correspond to the contribution of the π -Reggeon exchange only. The dash-dotted curves describe the model results, which
include the exchange of Regge trajectories and on-mass-shell parametrization of the proton Dirac form factor.
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contribution of the π -Reggeon exchange only. The exchange of
π dominates in dσL/dt at forward angles. However, in dσT/dt

the π exchange is not compatible with data and also vanishes
in the forward direction. The dash-dotted curves correspond to
the gauged electric model with the on-shell Dirac form factor
[see Eq. (15)],

F
p

1 (Q2) = G
p

E(Q2)
/
G

p

M (Q2) + Q2
/

4M2
p

1 + Q2
/

4M2
p

G
p

M (Q2), (42)

and exchange of ρ(770)/a2(1320) and a1(1260) Regge trajec-
tories. In Eq. (42) the electric form factor G

p

E decreases linearly
as a function of Q2 with respect to the magnetic form factor G

p

M

with a node around Q2
0 � 8 GeV2 [49] provided µpG

p

E/G
p

M =
1 − Q2/Q2

0. However, up to �5 GeV2 the magnetic form
factor is a dipole G

p

M = µp/(1 + Q2/0.71 GeV2)2, where
µp = 2.793 is the magnetic moment of the proton.

As one can see, this model (dash-dotted curves) with
the nucleon-pole (gauge invariance), vector, and axial-vector

meson-exchange Regge trajectories describes dσL/dt well
and grossly underestimates dσT/dt . Variations of the cutoffs
in the vector and axial-vector meson transition form factors
do not improve the description. This preliminary comparison
with data shows that being consistent with photoproduction
the preceding simple extension of the Regge model to
electroproduction is not able to describe the data already at
values of Q2 as low as Q2 � 1 GeV2. The discrepancies with
data increase with increasing values of Q2 [4].

Next, consider the resonance contributions using the tran-
sition form factors as defined in Eq. (31). We have two
parameters at hand: the parameter β, which is related to
the level density of states, and a parameter ξ describing the
average cutoff in the resonance transition form factors. All the
exclusive p(γ ∗,π+)n and n(γ ∗,π−)p electroproduction data
considered in this work from JLAB, DESY, and Cornell to DIS
region at HERMES can be well described by the choice β = 3
and ξ = 0.4. The formulas for the transition form factors given
in Eqs. (31) and (32) can be integrated and yield (for β = 3)

Fs(Q
2, s) =

s ln
[

ξQ2

M2
p

+ 1
]

(2ξQ2+s)
(ξQ2)2 − s(ξQ2+s)

ξQ2
(
ξQ2+M2

p

) + ln
[

s−M2
p

M2
p

]
− iπ

(
ξQ2

s
+ 1

)2 (
s2+2sM2

p

2M4
p

+ ln
[

s−M2
p

M2
p

]
− iπ

) , (43)

Fu(Q2, u) =
u ln

[
ξQ2

M2
p

+ 1
]

(2ξQ2+u)
(ξQ2)2 − u(ξQ2+u)

ξQ2
(
ξQ2+M2

p

) + ln
[

M2
p−u

M2
p

]
(

ξQ2

u
+ 1

)2 (
u2+2uM2

p

2M4
p

+ ln
[

M2
p−u

M2
p

]) . (44)

In Fig. 5 we plot the Q2 dependence of the absolute value
of the transition form factor |Fs(Q2, s)| (dashed curve)
at W = √

s = 2.2 GeV in comparison with the on-shell
parametrization of the proton’s Dirac form factor F

p

1 (Q2)
[Eq. (42)] (solid curve). It is clearly seen that Fs is considerably
harder than F

p

1 . This difference reflects the influence of the
higher-lying resonances.

There is an additional effect that we take into account. In
Refs. [25,27] it has been observed that in exclusive reaction
(e,e′π+) the slope of partonic contributions that is driven
by the intrinsic transverse momentum distribution of partons
decreases slightly with increasing values of Q2. Because
in our present description the contribution of resonances
is dual to direct partonic interaction, we accommodate this
anti-shrinkage effect in the transition form factors Fs(u) [see
Eq. (13)] using the slope parameter

α′
π → α′

π

1 + a Q2

W 2

, (45)

with a � 2.4. This behavior has been found from the fit to
the (Q2,W ) dependence of the transverse partonic DIS slope
of [25,27]. Equation (45) is effective in electroproduction and
in the resonance transition form factors Fs(u) [Eq. (13)] only.

For real photons the phase of Fs(u) is that of Fγππ and a proper
Regge limit of [29] is guaranteed.

Then, using the R/P transition form factor [Eq. (43)],
the transverse cross section dσT/dt gets large (solid curve)
in agreement with JLAB data (see Fig. 4). The effect of
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FIG. 5. (Color online) The Q2 dependence of the absolute value
of the transition form factor |Fs(Q2, s)| (dashed curve) [Eq. (43)]
at

√
s = 2.2 GeV. The solid curve describes the proton Dirac form

factor [Eq. (42)] in comparison with data.
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TABLE I. A summary table of a model parameters (see text for the details).

Regge Parameters p(γ ∗,π+)n n(γ ∗,π−)p Regge trajectory
exchange αi(t) = α0

i + α′
i t

π (140)/b1(1235) gπNN = 13.4 +e−iπαπ (t) 1 απ (t) = α′
π (t − m2

π )
α′

π = 0.74

GρNN = 3.4
ρ(770)/a2(1320) κρ = 6.1 −e−iπαρ (t) 1 αρ(t) = 0.53 + 0.85t

Gργπ = 0.728GeV−1

�ργπ = mω(782)

Ga1NN = 7.1

a1(1260) Ga1γπ = 1.1GeV−1 1−e
−iπαa1 (t)

2
1−e

−iπαa1 (t)

2 αa1 (t) = αρ(t) − 1
�a1γπ = mρ(770)

απ (t)

Resonances β = 3, ξ = 0.4 +e−iπαπ (t) 1 with α′
π → α′

π

1+a
Q2

W2

a = 2.4

resonances is much smaller in the longitudinal response
dσL/dt but it improves the description of data at higher values
of −t . As we shall see, the same effect will strongly influence
the interference cross sections and make it possible to explain
both the sign and the magnitude of dσTT/dt and dσLT/dt . The
solid curves include the effect of the DIS slope [Eq. (45)].
The dash-dash-dotted curves correspond to the results without
Eq. (45); the effect is rather small at forward angles and could
be partially absorbed in a redefinition of ξ . To be in line
with [25,27], we keep this phenomenological behavior.

The model parameters are summarized in Table I. The
Regge phase pattern discussed previously and used in the
calculations is also shown for different Reggeon exchange con-
tributions. The cutoff �γππ in the pion form factor [Eq. (14)]
is a fit parameter. From the fit to the longitudinal data we
observe essentially three regions. At small values of Q2 <

0.4 GeV2 the model results are remarkably consistent with a
VMD value of �2

γππ = m2
ρ(770) � 0.59 GeV2. The interme-

diate region 0.6 < Q2 < 1.5 GeV2 in Fπ -1 experiment [2]
demands somewhat smaller value of �2

γππ � 0.4 GeV2. In the
deep (Q2,W ) region the JLAB, Cornell, and DESY data can be
well described using �2

γππ � 0.46 GeV2. In our calculations
we shall follow these prescriptions for �γππ .

VII. JLAB Fπ -1, Fπ -2, AND π -CT DATA

In this section we study the R/P effects in partial π+
electroproduction cross sections measured at JLAB. We
compare the model results with the differential cross sections
in the p(γ ∗,π+)n reaction from the Fπ -1 [2], Fπ -2 [1], and
π -CT [3] experiments. At JLAB the reaction n(γ ∗,π−)p has
also been measured off the deuteron target and π− data will
be soon reported [50].

In Fig. 6 we show our results for the p(γ ∗,π+)n reaction
together with the high-Q2 data from Refs. [1,3]. The data
points in each (Q2,W ) bin correspond to slightly different

values of Q2 and W for the various −t bins. The numbers
displayed in the plots are the average (Q2,W ) values. For
simplicity we perform the calculations for values of (Q2,W )
corresponding to the first −t bin. A proper binning of the
curves does not change much the results [25].

At first, we consider again the Reggeized π exchange
only. The value of the cutoff in the pion from factor is
�2

γππ = 0.46 GeV2. In Fig. 6 the dashed curves describe
this contribution. As one can see, the steep fall of dσL/dt

away from forward angles comes entirely from the rapidly
decreasing π -exchange amplitude. The π exchange practically
saturates the longitudinal response dσL/dt . At these values of
Q2 > 1.5 GeV2, the contribution of the π -Reggeon exchange
to the transverse cross section dσT/dt is already marginal.
The π exchange is effective in the interference cross sections.
However, experimentally, the cross section dσTT/dt is negative
and dσLT/dt is positive. The exchange of π contributes here
just with opposite signs.

We gauge the π exchange by adding the nucleon-pole
term. The exchanges of ρ(770)/a2(1320) and a1(1260) Regge
trajectories are also added. This result corresponds to the
dash-dotted curves in Fig. 6. As one can see, the longitudinal
cross section dσL/dt is barely changed. The transverse cross
section dσT/dt is negligibly small but finite at forward angles.
The sign of the interference cross section dσTT/dt now
respects the experimental data but the magnitude of the cross
section is compatible with zero. The cross section dσLT/dt

has been increased by about a factor of two but is still largely
negative.

In the last step we use the R/P transition form factor to
include the effect of resonances. The solid curves in Fig. 6
correspond to this description. As one can see, all the cross sec-
tions are now very well described. Furthermore, the magnitude
of dσT/dt is strongly correlated with the sign and magnitude
of the interference cross sections dσTT/dt and dσLT/dt .
The description of dσT/dt translates at once into a remarkable
description of both interference cross sections. For instance,
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FIG. 6. (Color online) −t dependence of L/T partial transverse dσT/dt , longitudinal dσL/dt , and interference dσTT/dt and dσLT/dt

differential cross sections in exclusive reaction p(γ ∗,π+)n. The experimental data are from the Fπ -2 [1] and π -CT [3] experiments at
JLAB. The numbers displayed in the plots are the average (Q2, W ) values. The dashed curves correspond to the exchange of the π -Regge
trajectory alone. The dash-dotted curves are obtained with the on-mass-shell form factors in the nucleon-pole contribution and exchange of
the ρ(770)/a2(1320) trajectory. The solid curves describe the model results with the resonance contributions. The data points in each (Q2, W )
bin correspond to slightly different values of Q2 and W for the various −t bins. The calculations are performed for values of Q2 and W

corresponding to the first −t bin. The histograms for dσT/dt are the results from Ref. [25].

dσLT/dt changes sign to positive and dσTT/dt gets large and
negative. The contribution of resonances to the longitudinal
cross section dσL/dt is sizable at forward angles where
the pion form factor is extracted [5] and increases with
increasing values of Q2. However, the effect is particularly
pronounced in dσT/dt and interference cross sections dσTT/dt

and dσLT/dt . For instance, at Q2 = 2.45 GeV2 and Q2 =
3.91 GeV2 dσT/dt has been increased by about two orders
of magnitude.

The histograms in Fig. 6 for dσT/dt are from Ref. [25].
The assumption used in Ref. [25] for γ ∗p → π+n is that at
the invariant masses reached at JLAB nucleon resonances can
contribute to the 1π channel as well. Then, similar to the
use of Regge trajectories in the t-channel that takes higher
meson excitations into account, one has to consider the direct
hard interaction of virtual photons with partons (DIS) because
DIS involves all possible transitions of the nucleon from its
ground state to any excited state [51]. Modeling the resonance
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FIG. 7. (Color online) −t dependence of L/T partial differential cross sections in exclusive reaction p(γ ∗,π+)n. The experimental data are
from the Fπ -1 experiment at JLAB [2]. The notations for the curves are the same as in Fig. 6.

contributions by DIS-like processes, followed by hadroniza-
tion into the π+n channel, result in histograms shown in Fig. 6.
Our present treatment of resonance contributions produces
a result that is very close to that obtained in our previous
work [25]. However, the present approach goes beyond the
two-component hadron-parton model of Ref. [25] and makes it
possible to study the interference and non-π -pole background
effects on the amplitude level.

The transverse dσT/dt component is insensitive to the
variation of the cutoff in the pion form factor �γππ . On
the contrary, the magnitude of dσL/dt is driven by this
parameter. In Fig. 7 we compare the model results with data
measured at lower values of (Q2,W ) in the Fπ -1 experiment
[2]. The calculations are performed for values of (Q2,W )
corresponding to the first −t bin [2,4]. The notations for the
curves are the same as in Fig. 6. In these calculations we

used the value of �2
γππ = 0.4 GeV2. Also here we find a

pronounced resonance contribution in dσT/dt , dσTT/dt , and
dσLT/dt . The slope and magnitude of dσL/dt at forward angles
are also affected by the resonances.

An extraction of L/T partial differential cross sections
requires besides the Rosenbluth separation a fit of different
harmonics in the azimuthal φ-angle distribution of the mea-
sured unseparated double differential cross sections. In the
actual experiment, one measures d2σ/dtdφ for two different
ε bins. In Fig. 8 we show the φ dependence of 2πd2σ/dtdφ

in the reaction p(γ ∗,π+)n at fixed −t and two (high and low)
values of ε. This is a representative example of φ-dependent
exclusive cross sections. In Fig. 8 the solid curves are the
model results and experimental data are from Refs. [1–3]. As
in Fig. 6, the dashed curves correspond to the contribution of
the π exchange and dash-dotted curves do not account for the
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resonances. The upper set of solid, dashed, and dash-dotted
curves belongs to the higher value of ε.

In Fig. 9 we confront the result of our calculations with the
new JLAB p(γ ∗,π+)n data [52] for unseparated cross sections
dσU/dt [see Eq. (6)] at values of W � 2.2–2.4 GeV and for
different values of (Q2, ε) bins. The square symbols connected
by solid lines describe the model results. The discontinuities
in the curves result from the different values of (Q2,W, ε) for
the various −t bins. The data are very well reproduced by the
present model in the measured Q2 range from Q2 � 1 GeV2

to 5 GeV2. In Fig. 9 we also show the contributions of the
longitudinal εdσL (dash-dotted curves) and transverse dσT

(dashed curves) cross sections to the total unseparated cross
sections (solid curves) for the lowest and highest average
values of Q2 = 1.1 GeV2 and Q2 = 4.7 GeV2. The cross
sections at high values of Q2 are flat and totally transverse.
At forward angles a strong peaking of the cross section at

Q2 = 1.1 GeV2 comes from the large longitudinal component
in this case. The off-forward region is transverse. This behavior
agrees with the results from Ref. [25]. As we shall see, the
same behavior is observed in the DIS regime at HERMES [7],
where the value of W is higher. At HERMES, because of
the Regge shrinkage of the π -Reggeon exchange and smaller
transverse component, the forward peak just has a steeper −t

dependence [27].
We now turn to π− production at JLAB. In Ref. [25]

the transverse response dσT/dt in the exclusive reaction
n(γ ∗,π−)p was found to be smaller than in the reaction
p(γ ∗,π+)n. The present results for the π− channel are pa-
rameter free. The u-channel transition form factors [Eq. (44)]
entering n(γ ∗,π−)p have different behavior because, contrary
to the s-channel form factors that depend on (s,Q2), now they
depend on u and Q2 with

u = −s + 2M2
p − t + M2

π − Q2. (46)
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FIG. 9. (Color online) The differen-
tial cross sections dσU/dt = dσT/dt +
εdσL/dt in exclusive reaction p(γ ∗,π+)n
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JLAB [52]. The square symbols connected
by solid lines describe the model results.
The discontinuities in the curves result
from the different values of (Q2,W, ε) for
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dashed curves describe the contributions of
the longitudinal εdσL and transverse dσT

cross sections, respectively, to the total un-
separated cross sections (solid curves) for
the the lowest and highest average values
of Q2 = 1.1 GeV2 and Q2 = 4.7 GeV2.
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FIG. 10. (Color online) −t + tmin

dependence of the ratio of longitudinal
RL = dσπ−

L /dσπ+
L (dashed curves) and

transverse RT = dσπ−
T /dσπ+

T (solid
curves) differential cross sections,
n(γ ∗,π−)p/p(γ ∗,π+)n, for different
values of (Q2, W ) at JLAB@5. The
dash-dash-dotted and the dash-dotted
curves describe RT and RL, respectively,
without ρ-Reggeon exchange.

Here we calculate the ratio of π−/π+ partial cross sections,
which is of present interest in the dedicated experiments at
JLAB [50]. In Fig. 10 we show the results for the ratio of
longitudinal RL = dσπ−

L /dσπ+
L (dashed curves) and transverse

RT = dσπ−
T /dσπ+

T (solid curves) cross sections as a function
of −t + tmin, where −tmin denotes the minimum value of −t for
a given Q2 and W . The curves have been calculated for the val-
ues of W = 1.95 GeV (top panels) and W = 2.2 GeV (bottom
panels). The values of Q2 vary from Q2 = 0.6 GeV2 (left top)
and Q2 = 1 GeV2 (right top) to Q2 = 1.6 GeV2 (left bottom)
and Q2 = 2 GeV2 (right bottom). At forward angles the
longitudinal ratio RL is close to unity and shows a slow increase
followed by a decrease at higher values of −t . On the contrary,
the ratio RT is practically constant. For Q2 = 0.6 GeV2 it is
around RT � 0.6. With increasing values of Q2 the ratio RT

tends to decrease further and at Q2 = 2 GeV2, RT � 0.26.
An important mechanism that contributes to the π−/π+

asymmetry is an exchange of the ρ trajectory. It is destructive
in π− and constructive in π+ channels, respectively. In Fig. 10
the dash-dotted (longitudinal ratio) and dash-dash-dotted
curves (transverse ratio) correspond to the results without the
exchange of ρ. We conclude that dσT/dt in the π− channel is
much smaller than in the π+ production. Also, the interference
cross sections follow this behavior because smaller transverse
strength translates into smaller dσTT/dt and dσLT/dt .

VIII. p(γ ∗,π+)n AND n(γ ∗,π−) p AT DESY

The early DESY data (Refs. [13–16] and [12]) provide
an access to the p(γ ∗,π+)n and n(γ ∗,π−)p reaction cross
sections in essentially the same (Q2,W ) region as at JLAB.
For the proper comparison with data some differences in the
conventions used by the two different groups (Refs. [13–16]
and [12]) have to be taken into account. The φ convention used
here follows Refs. [13–16]. In Ref. [12] the azimuthal angle
is related to that in Refs. [13–16] by φ → π − φ. The latter

results in different signs of the measured interference cross
section dσLT/dt .

In Fig. 11 we show the results and the experimental data [16]
for the ratio of exclusive π−/π+ double differential cross
sections dσ 2/dtdφ at the average value of W = 2.19 GeV
and for the average values of Q2 = 0.7 GeV2, ε = 0.86 (left
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FIG. 11. (Color online) −t dependence of the π−/π+ ratio
of double differential cross sections dσ 2/dtdφ for the value of
W = 2.19 GeV and at values of Q2 = 0.7 GeV2, ε = 0.86 (left) and
Q2 = 1.35 GeV2, ε = 0.84 (right). The experimental data are from
Ref. [16]. The cross sections are integrated in the range of 120◦ <

φ < 240◦ out-of-plane angles. The solid curves are the model results.
The dash-dotted curves describe the results without the resonance
contributions. In the left panel the dashed curve represents the results
without the exchange of the ρ(770)/a2(1320) trajectory. The squares
are the compilation of experimental data for the ratio of π−/π+

in photoproduction [53]. The dot-dot-dashed curve corresponds to
the ratio of cross sections in photoproduction at Q2 = 0 and Eγ =
16 GeV. The ratio of transverse cross sections at the value of
Q2 = 0.7 GeV2 is given by the dash-dash-dotted curve.
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FIG. 12. (Color online) The differential cross sections dσU/dt = dσT/dt + εdσT/dt (top), dσTT/dt (middle), and dσLT/dt (bottom) in
exclusive reactions p(γ ∗,π+)n (left panels) and n(γ ∗,π−)p (right panels) in the kinematics of DESY experiments for the average values of
Q2 = 0.7 GeV2, W = 2.19 GeV, ε = 0.86 and Q2 = 1.35 GeV2, W = 2.19 GeV, ε = 0.84. The notations for the curves are the same as in Fig. 6.
The experimental data are from Ref. [13,14].

panel) and Q2 = 1.35 GeV2, ε = 0.84 (right panel). The cross
sections are integrated in the 120◦ < φ < 240◦ azimuthal
degree range [16]. The solid curves are the model results.
Because the parameters of the model are constrained using
the JLAB p(γ ∗,π+)n data only, this agreement with data for
the ratio p(γ ∗,π+)n/n(γ ∗,π−)p of cross sections is indeed
remarkable [see the discussion around Eq. (46)]. In Fig. 11 (left
panel) the dashed curves are the results without the exchange
of the ρ(770)/a2(1320)-Regge trajectory. It is seen that the
π−/π+ ratio is indeed sensitive to the ρ-exchange amplitude.
In the left panel we also show the compilation of experimental
data for the ratio of π−/π+ photoproduction cross sections
at high energies [53]. For comparison we also show the ratio
of only the transverse cross sections in electroproduction at
Q2 = 0.7 GeV2 (dash-dash-dotted curve).

The dot-dot-dashed curve in Fig. 11 (left panel) corresponds
to our results for the ratio of photoproduction (Q2 = 0) cross
sections at Eγ = 16 GeV in the laboratory. The π−/π+
asymmetry seen in the photoproduction results mainly from
the contribution of the ρ-Regge trajectory. However, in electro-
production the π−/π+ asymmetry is driven by the resonance
contributions through the different [Q2, s(u)] dependence of
the transition form factors [Eqs. (43) and (44)] in the π+ and
π− channels. For instance, the dash-dotted curves in Fig. 11

do not account for the contributions of resonances; the π−/π+
ratio is bigger than unity. In the right panel we show the results
for the values of Q2 = 1.35 GeV2 and ε = 0.84.

Our dash-dotted curves which describe the Regge model
without the R/P effects are at variance with the results reported
in Ref. [54] where the gauge-invariant Regge model with the
nucleon-pole contribution has been shown to be in remarkable
agreement with the π−/π+ electroproduction ratio. This is
surprising because the model of Ref. [54] is not compatible
with the JLAB L/T data in the same (Q2,W ) region [4].

Before drawing definite conclusions concerning
these discrepancies, we compare in Fig. 12 our model
results with the measured differential cross sections
dσU/dt = dσT/dt + εdσT/dt (top), dσTT/dt (middle), and
dσLT/dt (bottom) in exclusive reactions p(γ ∗,π+)n (left
panels) and n(γ ∗,π−)p (right panels). The experimental data
are from Refs. [13,14]. The average values of (Q2,W, ε)
are the same as in Fig. 11 for the π−/π+ ratio. The dashed
curves, which refer to the contribution of the π -exchange, are
equal in both channels. The solid curves describe the model
results and, as one can see, it is not surprising why the π−/π+
ratio of double differential cross sections, which involves all
four L/T components, is well reproduced. A model without
the resonance contributions (dash-dotted curves in Fig. 12)
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fails in both the p(γ ∗,π+)n and the n(γ ∗,π−)p channels and
the behavior of the corresponding results (dash-dotted curves
in Fig. 11) is expected for the π−/π+ ratio.

In Fig. 13 (left column) we compare the results of our cal-
culations with L/T separated p(γ ∗,π+)n data from Ref. [12]
with average values of Q2 = 0.35 GeV2 and W = 2.1 GeV.
These data are kinematically close to the real photon point
where one does not expect a variation of the pion form factor
from its VMD value with �2

γππ = m2
ρ(770) � 0.59 GeV2. The

curves correspond to this choice of �γππ . In the right column
we also show the L/T separated cross section at Q2 =
0.7 GeV2 and W = 2.19 GeV. The notations for the curves
are the same as in Fig. 12. As one can see, because of different
conventions for φ, the signs of the measured interference cross
section dσLT are different for the two data sets.

The interference pattern between the meson-exchange and
resonance contributions is different in the π+ and π− channels.
For π− production there are no data for the longitudinal
and transverse cross sections. However, we conclude that the
present model describes rather well the available π+ and
π− data for the unseparated cross sections dσU/dt and the
interference cross sections dσTT/dt and dσLT/dt . Concerning
the π−/π+ ratio, we have seen that the resonance contributions
are important and that, contrary to the results of Ref. [54], the
model based on Reggeon exchanges is not compatible with the
observed ratio.1

IX. DEEPLY VIRTUAL p(e,e′π+)n AT HERMES

The HERMES data at DESY [7] in exclusive reaction
p(e,e′π+)n extend the kinematic region to higher values of
W 2 � 16 GeV2 toward the DIS region and higher values of
−t . At HERMES the kinematic requirement Q2 > 1 GeV2

has been imposed on the scattered electron to select the hard
scattering regime. The resulting range is 1 < Q2 < 11 GeV2

and 0.02 < xB < 0.55 for the Bjorken variable. The measured
cross sections have been integrated over the azimuthal angle
φ and a separation of the transverse and longitudinal parts
was not feasible. With the 27.6-GeV HERA beam energy the
ratio of longitudinal to transverse polarization of the virtual
photon ε is close to unity.

The results for the unseparated differential cross sections
dσU/dt = dσT/dt + εdσL/dt in deeply virtual p(γ ∗,π+)n
reaction at HERMES are shown in Fig. 14. We perform the
calculations for the average (Q2, x) values in a given Q2 and
xB bin [55]. In Fig. 14, instead of t , the quantity −t + tmin is
again used, where −tmin denotes the minimum value of −t for
a given Q2 and xB. The different panels in Fig. 14 correspond
to the different Q2 and x bins. In the calculations we use the
cutoff �2

γππ = 0.46 GeV2 in the pion form factor [Eq. (14)].
This is an optimal value needed for the description of high-Q2

1Attempting to resolve the latter discrepancy we assumed that in
Figs. 2 and 3 of Ref. [54] the convention of Ref. [12] is used for φ.
This is fine for the data set from Ref. [12] in Fig. 3 of Ref. [54], but
is not correct for the data set from Ref. [14] presented in Fig. 2 of
Ref. [54]. Interestingly, then the π−/π+ ratios of Ref. [54] are very
well reproduced.
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FIG. 13. (Color online) The L/T partial differential cross sections
in the reaction p(γ ∗,π+)n in the kinematics of DESY experiments.
The notations for the curves are the same as in Fig. 6. The
experimental data for values of Q2 = 0.35 GeV2 are from Ref. [12]
and those for Q2 = 0.7 GeV2 are from Ref. [16].

data at JLAB. In Fig. 14 the model results, which include both
the meson-exchange and the R/P contributions are shown
by the solid curves. The dash-dotted and the dashed curves
correspond to the longitudinal εdσL/dt and to the transverse
dσT/dt components of the cross section, respectively. The
dash-dash-dotted curves describe the results without the R/P
contributions.
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FIG. 14. (Color online) −t + tmin dependence of the differential cross section dσU/dt = dσT/dt + εdσL/dt in exclusive reaction
p(γ ∗,π+)n at HERMES. The experimental data are from Ref. [7]. The calculations are performed for the average values of (Q2, xB) in a given
Q2 and Bjorken xB bin. The solid curves are the full model results. The dash-dotted curves correspond to the longitudinal εdσL/dt and the dashed
curves to the transverse dσT/dt components of the cross section. The dash-dash-dotted curves describe the results without the R/P effects.

Interestingly, the physics of p(γ ∗,π+)n in the DIS region at
HERMES is essentially the same as at JLAB, where the value
of W is smaller (2 GeV vs 4 GeV). Just contrary to the situation
in the JLAB experiment, the longitudinal cross section at
HERMES determines the total differential cross section at
small −t . As at JLAB, the transverse cross section at HERMES
is dominated by the R/P mechanism. At JLAB the transverse
cross section is somewhat larger and at forward angles
comparable with the longitudinal cross section. In deeply
virtual production of π+ at HERMES the transverse cross
section gets smaller at forward angles and the cross section is
dominated by the exchange of Regge trajectories, with π being
the dominant trajectory. The π -Reggeon exchange contributes
mainly to the longitudinal response σL and at low momentum
transfer −t the variation of the forward cross section with
Q2 falls down as the electromagnetic form factor of the pion
σL ∝ [Fγππ (Q2)]2. In the off-forward region, −t > 1 GeV2,
because of the exponential falloff of Regge contributions as
a function of −t , the meson-exchange processes are already
negligible. Above −t > 1 GeV2 the model cross section points
mainly toward the direct coupling of the virtual photons to
partons. Indeed, this is rather natural, because with increasing
−t at fixed Q2 smaller distances can be accessed. This
is opposed to t-channel meson-exchange processes which
involve peripheral production of π+.

Contrary to the two-component model of Ref. [27], in the
present model there is a sizable longitudinal R/P component,
which is effective in the off-forward π+ production at low
values of Bjorken xB. For instance, the dip in εdσL/dt (see
the dash-dotted curves in Fig. 14) results from the interference
between the meson-exchange and the R/P contributions. In
Fig. 15 we show the different contributions to εdσL/dt for the
lowest xB bin. The solid and dash-dotted curves in Fig. 15 are
the same as in Fig. 14 (left panel). The contribution of the π

exchange to εdσL/dt is shown by the dashed curve. The latter
falls exponentially down as a function of −t . The dash-dash-
dotted curve describes the R/P contribution to εdσL/dt . It
vanishes at forward angles and by the destructive interference
with the π -Reggeon exchange produces a dip in εdσL/dt . With

increasing −t the partonic component of εdσL/dt continues
to dominate the longitudinal response.

In Fig. 15 the dot-dot-dashed curve describes the real pho-
ton limit Q2 = 0 of the model cross section for Eγ = 8 GeV
(W � 4 GeV). The photoproduction data are from Ref. [56].
This is the same W region as in the HERMES electroproduc-
tion data. The model is in agreement with both the photo- and
electroproduction data.

In Fig. 16 we present the results for the interference
cross sections at HERMES energies. dσTT/dt and dσLT/dt

are sizable and follow a behavior observed already at JLAB
energies. For instance, if the cross section would be dominated
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FIG. 15. (Color online) dσU/dt in exclusive reaction p(γ ∗,π+)n
for the average values of Q2 = 1.4 GeV2 and xB = 0.08. The
HERMES data, the solid and the dash-dotted curves are the same
as in the left panel of Fig. 14. The dashed and dash-dash-dotted
curves describe the contributions of the π -exchange and R/P
mechanisms to εdσL/dt , respectively. The dot-dot-dashed curve
describe the π+ photoproduction for Eγ = 8 GeV (W � 4 GeV).
The photoproduction data are from Ref. [56].
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FIG. 16. (Color online) −t + tmin dependence of the interference cross sections dσTT (dashed curves) and dσLT (solid curves) at HERMES.
The average values of Q2 and xB used for different (Q2, xB) bins are the same as in Fig. 14. In the left panel the dash-dotted and dash-dash-dotted
curves describe the contribution of the π -Reggeon exchange to dσTT and dσLT, respectively.

by the π -Reggeon exchange, then dσTT/dt would be positive
(dash-dotted curves in the left panel) and dσLT/dt negative
(dash-dash-dotted curves in the left panel). The interference
between the π trajectory and R/P contributions change the sign
of both dσTT/dt and dσLT/dt . The solid and dashed curves de-
scribe the model results for dσLT/dt and dσTT/dt , respectively.

X. Q2 DEPENDENCE OF THE CROSS SECTIONS

It has been proposed that the Q2 dependence of L/T
separated exclusive p(γ ∗,π+)n cross sections may provide
a test of the factorization theorem [19] in the separation of
long-distance and short-distance physics and the extraction of
GPD. The leading twist GPD scenario predicts for σL ∼ 1/Q6

and σT ∼ 1/Q8. An observation of the Q2 power-law scaling is
considered as a model independent test of QCD factorization.

The Q2 behavior of cross sections in exclusive reaction
p(γ ∗,π+)n has been studied at JLAB in Ref. [3]. It was
shown that while the scaling laws are reasonably consistent
with the Q2 dependence of the longitudinal σL data, they fail
to describe the Q2 dependence of the transverse σT data. The
Q2 dependence of the p(γ ∗,π+)n cross section in DIS has
been also studied at HERMES [55]. It was found that the
Q2 dependence of the data is in general well described by
the calculations from GPD models which include the power
corrections (see Ref. [55] and references therein). However, the
magnitude of the theoretical cross section is underestimated.
The Regge model of Ref. [38] was shown to be compatible
with, both −t and Q2 dependencies of the HERMES data. In
the following, we check this predicted σL/σT ∼ Q2 scaling
within our model calculations.

A. JLAB data

In Fig. 17 we show our results for the Q2 dependence
of p(γ ∗,π+)n reaction cross sections dσL/dt and dσT/dt at
fixed −t and Bjorken variable xB . The experimental data are
from Ref. [3] and correspond to the forward π+ production.
The solid curves are the model predictions and describe the
available data very well. The dashed curves describe the con-

tribution of the π -Reggeon exchange to the Q2 scaling curves
only. The dash-dotted curves are the model results without
the resonance contributions. The latter effect is again large in
the transverse cross section and gives only small correction to
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xB. The solid curves are the model predictions for the scaling curves.
The dashed curves correspond to the contribution of the π -Reggeon
exchange alone. The dash-dotted curves are the model results without
the contributions of resonances. The experimental data are from
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the longitudinal cross section dσL/dt . The Q2 dependence of
dσL/dt is essentially driven by the pion form factor.

The Q2 dependence of the ratio of longitudinal dσL/dt to
transverse dσT/dt differential cross sections for the forward
π+ production is shown in Fig. 18. The different curves
correspond to different values of xB. All the curves start at
the value of W � 1.9 GeV. For small and intermediate values
of xB the model results show an increase of the ratio dσL/dσT

as a function of Q2. Only at small values of Bjorken xB the
ratio dσL/dσT is qualitatively in agreement with the predicted
∼Q2 behavior. In the valence quark region above xB � 0.6
the cross section ratio scales and is actually independent of
the value of Q2. In this region the transverse component
σT dominates the π+ electroproduction cross section. In the
experimental determination of the pion transition form factor
from forward σL data, one can, therefore, better isolate the
longitudinal response by minimizing the Bjorken xB.

B. HERMES data

In Sec. IX we concluded that the physics content of the
HERMES deep exclusive p(γ ∗,π+)n data is essentially
the same as at JLAB. Figure 19 shows the Q2 dependence of
the measured cross sections in DIS for different xB bins [7,55].
These are the same data sets from HERMES (see previous
section) integrated over −t . The Q2 dependence of the
experimental data is well described by the calculations (solid
curves) from the present model. The dashed and dash-dotted
curve describe the longitudinal εσL and the transverse σT

components, respectively.
In the region of small Bjorken xB (see left panel in

Fig. 19), the integrated longitudinal component dominates over
the transverse cross section. With increasing xB the strength
of the transverse component is increasing and for values of
xB in the third bin the transverse cross section σT becomes the
dominant part of the exclusive cross section. An increase of the
relative contribution of σT as a function of xB can be clearly
seen in the right panel of Fig. 19, where 0.26 < xB < 0.55.
There the first Q2 bin corresponds to the average value of xB =
0.29 and the last Q2 bin to the average value of xB = 0.44 [55].

XI. BEAM SPIN ASYMMETRY

In this work we have restricted ourselves to exclusive
(e,e′π±) reactions with an unpolarized target. With a polarized
beam (�e,e′π±) and with an unpolarized target there is an
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FIG. 19. (Color online) Q2 dependence of the integrated cross sections σU = σT + εσL in exclusive reaction p(γ ∗,π+)n at HERMES. The
different panels correspond to different xB bins. The solid curves are the model results. The dashed and dash-dotted curves correspond to the
longitudinal εσL and transverse σT components of the cross section, respectively. The experimental data are from Ref. [7]
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additional component σLT′ [Eq. (3)], which is proportional to
the imaginary part of an interference between the L/T photons
and therefore sensitive to the relative phases of amplitudes.

In general, a nonzero σLT′ or the corresponding beam SSA
ALU(φ) [Eq. (7)] demands interference between single-helicity
flip and nonflip or double-helicity flip amplitudes. In Regge
models the asymmetry may result from Regge cut corrections
to single Reggeon exchange [57]. This way the amplitudes
in the product acquire different phases and therefore relative
imaginary parts. A nonzero beam SSA can be also generated
by the interference pattern of amplitudes where particles with
opposite parities are exchanged.

In the following we discuss briefly the generic features of
the beam SSA in the present model. The comparative analysis
of the SSA at JLAB and HERMES will be presented in the
forthcoming publication.

In the left panel of Fig. 20 we plot the CLAS data [6]
for the azimuthal moment A

sin(φ)
LU associated with the beam

SSA [Eq. (8)] in the reaction p(�e,e′π+)n. These data have
been collected in hard scattering kinematics Ee = 5.77 GeV,
W > 2 GeV, and Q2 > 1.5 GeV2. The experiment shows a
sizable and positive beam SSA. In the left and right panels of
Fig. 20 we present the results for the azimuthal moments A

sin(φ)
LU

in the reactions p(�e,e′π+)n and n(�e,e′π−)p, respectively. The
(Q2,W ) binning of the experimental data point is not available.
In the following the calculations are done for the lowest
(Q2,W ) bin corresponding to the values of Q2 = 1.5 GeV2

and W 2 = 4 GeV2.
At first, we consider A

sin(φ)
LU generated by the exchange

of Regge trajectories. In Fig. 20 the dashed curves describe
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FIG. 20. (Color online) (Left) The beam spin azimuthal moment
A

sin(φ)
LU in exclusive reaction p(γ ∗,π+)n as a function of −t . The

CLAS/JLAB data [6] were collected for hard scattering kinematics
with values of Ee = 5.77 GeV, Q2 > 1.5 GeV2, and W 2 > 4 GeV2.
The dashed curves describe the results (the asymmetry is zero)
without the resonance contributions and neglecting the exchange of
unnatural parity a1(1260) Regge trajectory. The dash-dotted curves
correspond to the addition of the axial-vector a1(1260)-Reggeon
exchange. The solid curves are the model results and account for
the R/P effects. (Right) The beam spin azimuthal moment A

sin(φ)
LU in

exclusive reaction n(γ ∗,π−)p. The notations for the curves are the
same as in the left panel.

the model results without the R/P effects and neglecting the
exchange of the axial-vector a1(1260) Regge trajectory. This
model results in a zero A

sin(φ)
LU and therefore a zero beam SSA.

The addition of the unnatural parity a1(1260) exchange gener-
ates by the interference with the natural parity ρ(770) exchange
a sizable A

sin(φ)
LU in both channels. This result corresponds to

the dash-dotted curves in Fig. 20. In the rest of the observables
discussed previously the effect of the axial-vector a1(1260) is
small. However, as one can see, the contribution of a1(1260)
is important in the polarization observables. For instance, a
strong interference pattern of the a1(1260)-Reggeon exchange
makes the polarization observables, like the beam SSA, very
sensitive to the different scenarios [45] describing the structure
and behavior of a1(1260) in high-Q2 processes.

In the last step we account for the R/P contribution. The
latter strongly influences the asymmetry parameter A

sin(φ)
LU .

The model results (solid curves) are in agreement with the
positive A

sin(φ)
LU in the π+ channel and predict much smaller

A
sin(φ)
LU in the π− channel. A sizable and positive A

sin(φ)
LU has

been also observed at HERMES in π+ SIDIS close to the
exclusive limit z → 1 [58].

XII. A BENCHMARK FOR JLAB AT 12 GEV:
p(γ ∗,π+)n AT CORNELL

A forthcoming upgrade of the JLAB to 12 GeV will make it
possible to measure p(e,e′π+)n and n(e,e′π−)p reactions for
values of Q2 = 1.64–6.0 GeV2 and W near 3 GeV [59]. This
is just an intermediate region between the present JLAB and
the deep exclusive HERMES data. In this (Q2,W ) region there
are old Cornell data [10] around W � 3.1 GeV and values of
Q2 � 1.2 and 1.7 GeV2. These data may serve as a benchmark
for the JLAB 12-GeV predictions.
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FIG. 21. (Color online) The differential cross sections for the
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without the R/P contributions. The data are from Ref. [10]. The values
of (W,Q2, ε) are the average ones. The theoretical cross sections have
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Figure 21 shows the Cornell data [10] and the calculated
differential cross sections for the electroproduction of π+
meson as a function of −t . As an example, we selected
data with the virtual-photoproduction planes of the emitted
pions on average parallel −45◦ < φ < 45◦ to the electron
scattering plane. The solid curves in Fig. 21 describe the
model results and the dashed curves correspond to the results
without the resonance contributions. The cross sections have
been integrated over the corresponding range of azimuthal
out-of-plane angles. Figure 22 shows the calculated ratio of π−
and π+ differential cross sections (solid curve) as a function
of −t . The data are from Reff. [10]. As in Fig. 21, the cross

sections have been integrated over the range of azimuthal
out-of-plane acceptance −45◦ < φ < 45◦.

The difference between the solid and dashed curves in
Fig. 21 comes from the contribution of resonances. The latter
effect is expected to be important at JLAB@12 (see Sec. XIII
for the results).

XIII. JLAB AT 12 GEV

Finally, in this section we provide the predictions for
the L/T separated π± differential cross sections at forward
angles in the (Q2,W ) kinematics proposed for the forthcoming
Fπ -12 experiment [59] at JLAB. The primary goal of the
measurements is an extraction of the pion form factor from the
longitudinal data at high values of Q2.

In Figs. 23 and 24 we plot the −t + tmin dependence of
the L/T partial differential cross sections dσT/dt (solid),
dσL/dt (dashed), dσLT/dt (dash-dotted), and dσTT/dt (dash-
dash-dotted) in the reactions p(γ ∗,π+)n and n(γ ∗,π−)p,
respectively. In these calculations we used the value of �2

γππ =
0.46 GeV2.

As one can see, at JLAB@12 in exclusive reaction
p(γ +, π+)n the transverse cross section dσT/dt gets smaller
compared to JLAB@5 (see solid curves in Fig. 23). However,
dσT/dt still gives important contributions at forward angles.
The ratios R = dσT/dσL of the transverse and longitudinal
cross sections at forward π+ angles t = tmin for W reached
at JLAB@5 and JLAB@12 are compared in Table II. For the
comparison, the values of Q2 = 1.6 and 2.45 GeV2 are used.
With increasing values of W at fixed Q2, the ratio gets smaller
and makes an accurate determination of the longitudinal cross
section needed for the extraction of the pion from factor
feasible.

In the π− channel the contribution of the tranverse and
interference cross sections is predicted to be much smaller.
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FIG. 24. (Color online) −t +
tmin dependence of L/T separated
differential cross sections dσT/dt

(solid), dσL/dt (dashed), dσLT/dt

(dash-dotted), and dσTT/dt (dash-
dash-dotted) in exclusive reaction
n(γ ∗,π−)p in the (Q2, W ) kine-
matics at JLAB@12.

As one can see in Fig. 24 the π− electroproduction cross
section is largely longitudinal (dashed curves). If true, this may
provide a complimentary and probably more reliable access to
the pion form factor from exclusive π− electroproduction off
the deuteron target.

XIV. SUMMARY

In summary, a description of exclusive charged pion
electroproduction (e,e′π±) off nucleons at high energies is
proposed. Following a two-component hadron-parton picture
of Refs. [25,27], the model combines a Regge pole approach
with residual effects of nucleon resonances. The contribution
of nucleon resonances has been assumed to be dual to direct
partonic interaction and therefore describes the hard part of the
model cross sections. The R/P effects are taken into account
using a Bloom-Gilman connection between the exclusive
hadronic form factors and inclusive deep inelastic structure
functions. In the soft hadronic sector the exchanges of π (140),
vector ρ(770) and axial-vector a1(1260) and b1(1235) Regge
trajectories have been considered.

TABLE II. The ratio R = dσT/dσL of the transverse and longi-
tudinal cross sections at forward angles t = tmin in a kinematics of
JLAB@5 with W = 2.2 GeV and JLAB@12 with W = 3 GeV and
values of Q2 = 1.6 and 2.45 GeV2.

JLAB Q2 W R = dσT/dσL

(GeV2) (GeV)

5 GeV 1.60 2.2 0.43
2.45 2.2 0.68

12 GeV 1.60 3.0 0.28
2.45 3.0 0.32

We have shown that with only a few physical assump-
tions a quantitative description of exclusive π+ and π−
electroproduction data can be achieved in a large range
of (Q2,W ) from JLAB to the DIS region at HERMES.
In particular, the L/T partial longitudinal, transverse, and
interference cross sections measured at JLAB and DESY
are reproduced. Our principal result is that a longstanding
problem concerning the description of the transverse and
interference cross sections can be solved by the R/P effects
in line of the DIS mechanism proposed in Refs. [25,27].
However, the present model goes beyond the two-component
approach of Refs. [25,27] and makes it possible to treat the R/P
contributions on the amplitude level. The latter show up as a
large transverse background contribution to the π quasielastic
knockout mechanism. As in Refs. [25,27], we find that at high
values of Q2 the resonances dominate in σT.

The contribution of resonances in the forward longitudinal
response σL is rather small and makes an experimental
isolation of the pion-pole amplitude and the pion transition
form factor in the region of Bjorken xB < 0.5 feasible.
The interference pattern of the π -exchange and resonance
contributions is sufficient to explain the sign and magnitude of
the interference σTT and σLT cross sections measured at JLAB
and DESY. The same R/P mechanism is responsible for the
positive azimuthal beam SSA observed in p(�e,e′π+)n. On the
contrary, the beam SSA in deep exclusive π− production off
the neutrons is predicted to be much smaller in magnitude
and very sensitive to the different scenarios concerning the
structure of the a1(1260) meson.

The Q2 behavior of the model exclusive p(γ ∗,π+)n
reaction cross sections is in agreement with JLAB and deeply
virtual HERMES data.

We have furthermore calculated the ratio of π−/π+
cross sections, which is of present interest in the dedicated
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experiments at JLAB. Model predictions for JLAB at 12
GeV are also provided. On the experimental side, the present
results may be used as a guideline in the experimental
analysis of background contributions to the π quasielastic
knockout mechanism. The latter is important for the extraction
of the pion transition form factor to minimize systematic
uncertainties.
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APPENDIX A: THE PARTIAL VIRTUAL-PHOTON
NUCLEON CROSS SECTIONS

The L/T separated photon-nucleon cross sections take the
forms

1

N
dσL

dt
= (

Jµε0
µJ ν†ε†0

ν

)
, (A1)

1

N
dσT

dt
= 1

2

∑
λ=±1

(
Jµελ

µJ ν†ε†λν

)
, (A2)

1

N
dσTT

dt
= −1

2

∑
λ=±1

(
Jµελ

µJ ν†ε†−λ
ν

)
, (A3)

1

N
dσLT

dt
= − 1

2
√

2

∑
λ=±1

λ
[(

Jµε0
µJ ν†ε†λν

) + (
Jµελ

µJ ν†ε†0
ν

)
],

(A4)
1

N
dσLT′

dt
= − 1

2
√

2

∑
λ=±1

λ
[(

Jµε0
µJ ν†ε†λν

) − (
Jµελ

µJ ν†ε†0
ν

)]
,

(A5)

where (. . .) stands for the sum and average over the initial and
final nucleon spins. The normalization factor reads

N = αe

4π

2πM2
N(

W 2 − M2
N

)
Wq∗ , (A6)

where q∗ is a three-momentum of the incoming virtual photon
in the γ ∗N center of mass frame. ελ

µ are the basis vectors

of circular polarization for the virtual photon with helicities
λ= ± 1, 0 quantized along the three-momentum �q, that is,

ε±
µ = ∓ 1√

2
(0, 1,±i, 0), (A7)

ε0
µ = 1√

Q2
(
√

ν2 + Q2, 0, 0, ν), (A8)

and Jµ is the nuclear transition axial-vector current describing
the pion production in the momentum space.

APPENDIX B: ON THE GAUGED ELECTRIC AMPLITUDE

The Lorentz tensor-vector decomposition of the nucleon-
pole term in Eq. (9) is given by

ūs ′ (p′)γ5
(p + q)σ γ σ γ µ + Mpγ µ

s − M2
p + i0+ us(p)

= ūs ′ (p′)γ5

[
iσµσ qσ

s − M2
p + i0+ + (p + p′ + k′)µ

s − M2
p + i0+

]
us(p),

(B1)

where σµσ = i
2 [γ µ, γ σ ]. The axial-tensor term in the right-

hand side of Eq. (B1) is gauge invariant by itself. It turns out
that only the orbital part proportional to p + p′ + k′ is needed
to conserve the charge in the sum with the π -pole amplitude,
the first term in Eq. (9). In photoproduction the orbital part
has no physical significance because it appears in the physical
scattering amplitude multiplied by the polarization vector ελ

µ.
Because qµε±

µ = pµε±
µ = 0, the product (p + p′ + k′)ε±

µ =
(2p + q)ε±

µ = 0. The nucleon-pole term generates a large
axial-tensor background to the meson-pole amplitude, which
has important consequences in photoproduction. For instance,
because the interference of π with ρ(770) is trivially zero, it
is σµσγ5 in the nucleon-pole term which, by interference with
ρ, is responsible for the π−/π+ asymmetry. It is also this term
that explains the forward peak in the forward π± production
and the rapid variation of the polarized photon asymmetry in
the same region.
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