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Novel approach to modeling hybrid stars
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We extend the hadronic SU(3) nonlinear σ model to include quark degrees of freedom. The choice of potential
for the deconfinement order parameter as a function of temperature and chemical potential allows us to construct
a realistic phase diagram from the analysis of the order parameters of the system. These parameters are the chiral
condensate for the chiral symmetry restoration, and the scalar field � (as an effective field related to the Polyakov
loop) for the deconfinement to quark matter. Besides reproducing lattice QCD results, for zero and low chemical
potential, we are in agreement with neutron-star observations for zero temperature.
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The models used to describe neutron stars can generally be
divided into two classes. The first class includes approaches
in which the constituent particles are hadrons [1–3]. Some
of them incorporate certain symmetries from QCD, like chiral
symmetry, but they do not include deconfinement. Examples of
these are hadronic σ models [4–7]. The second class includes
quark star models, which usually do not directly incorporate
hadronic degrees of freedom in the model formulation.
Examples of these are bag-model studies [8], as well as quark-
Nambu-Jona-Lasinio (NJL) model and quark σ models [9].

Using these approaches hybrid neutron stars, which consist
of a hadronic and a quark phase, are normally described by
adopting two different models with separate equations of state
for hadronic and quark matter (see, e.g., Ref. [10]). They are
connected at the chemical potential in which the pressure of
the quark equation of state exceeds the hadronic one, signaling
the phase transition to quark matter. Within our approach we
employ a single model for the hadronic and for the quark
phase.

The extension of the hadronic SU(3) nonlinear σ model to
quark degrees of freedom is constructed in a spirit similar to the
Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model
[11], in the sense that it is a nonlinear σ model that introduces
a scalar field that suppress the quark degrees of freedom at low
densities or temperatures. In QCD this scalar field was named
Polyakov loop and is defined via � = 1

3 Tr[exp (i
∫

dτA4)],
where A4 = iA0 is the temporal component of the SU(3) gauge
field. In our case, this scalar field is also called �, in analogy to
the PNJL approach with an effective potential for the field, as
discussed below, that drives the phase transition in the field �

representing a phenomenological description of the transition
from the confined to the deconfined phase.

The Lagrangian density of the nonlinear σ model in mean
field approximation reads

L = LKin + LInt + LSelf + LSB − U, (1)
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where, besides the kinetic energy term for hadrons, quarks,
and leptons (included to ensure charge neutrality) the terms

LInt = −
∑

i

ψ̄i[γ0(giωω + giφφ + giρτ3ρ) + M∗
i ]ψi, (2)
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πfπσ +
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kfk − 1√
2
m2

πfπ

)
ζ, (4)

represent the interactions between baryons (and quarks) and
vector and scalar mesons, the self-interactions of scalar and
vector mesons, and an explicit chiral symmetry breaking term,
responsible for producing the masses of the pseudoscalar
mesons. The � potential U will be discussed in the following.
The underlying flavor symmetry of the model is SU(3) and
the index i denotes the baryon octet and the three light
quarks. The mesons included are the vector-isoscalars ω

and φ, the vector-isovector ρ, the scalar-isoscalars σ and
ζ (strange quark-antiquark state), and the scalar-isovector
δ. The isovector mesons affect isospin-asymmetric matter
and are consequently important for neutron-star physics. The
coupling constants of the model are shown in Table I. They
were fitted to reproduce the vacuum masses of the baryons
and mesons, nuclear saturation properties (density, ρ0 =
0.15 fm−3; binding energy per nucleon, B/A = −16.00 MeV;
nucleon effective mass, M∗

N = 0, 67 MN ; compressibility,
K = 297.32 MeV), asymmetry energy (Esym = 32.50 MeV),
and reasonable values for the hyperon potentials (U� =
−28.00 MeV, U
 = 5.35 MeV, U� = −18.36 MeV). The vac-
uum expectation values of the scalar mesons are constrained
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TABLE I. Coupling constants for the model containing
only baryons.

gNω = 11.90 gNφ = 0 gNρ = 4.03
gNσ = −9.83 gNδ = −2.34 gNζ = 1.22
g�ω = 7.93 g�φ = −7.32 g�ρ = 0
g�σ = −5.52 g�δ = 0 g�ζ = −2.30
k0 = 1.19 k1 = −1.40 k2 = 5.55
k3 = 2.65 k4 = −0.06 g4 = 38.9

by reproducing the pion and kaon decay constants. A detailed
discussion of the purely hadronic part of the Lagrangian can
be found in Refs. [4,12,13].

The mesons are treated as classical fields within the mean-
field approximation [14]. Finite-temperature calculations in-
clude the heat bath of hadronic and quark quasiparticles within
the grand canonical potential of the system. It is the defined as

�

V
= −LInt − LSelf − LSB − LVac

∓ T
∑

i

γi

(2π )3

∫ kFi

0
d3k ln{1 ± e− 1

T
[E∗

i (k)−µ∗
i ]}, (5)

where LVac in the vacuum energy, γi the fermionic degener-

acy, E∗
i (k) =

√
k2 + M∗

i
2 the single-particle effective energy,

and µ∗
i = µi − giωω − gφφ − giρτ3ρ the effective chemical

potential of each species. The chemical potential for each
species µi comes from the chemical equilibrium conditions.
Finite temperature calculations also include a gas of free pions
and kaons. As they have very low mass, they dominate the
low-density/high-temperature regime. All calculations were
performed considering zero net strangeness except the zero-
temperature star-matter case because, for neutron stars, the
time scale is large enough for strangeness not to be conserved.

The effective masses of the baryons and quarks are
generated by the scalar mesons except for a small explicit
mass term M0 (equal to 150 MeV for nucleons, 354 MeV for
hyperons, 5 MeV for up and down quarks, and 150 MeV for
strange quarks) and the term containing �:

M∗
B = gBσσ + gBδτ3δ + gBζ ζ + M0B

+ gB��2, (6)

M∗
q = gqσ σ + gqδτ3δ + gqζ ζ + M0q

+ gq�(1 − �). (7)

With the increase of temperature or density, the σ field
(nonstrange chiral condensate) decreases its value, causing
the effective masses of the particles to decrease toward chiral
symmetry restoration. The field � assumes nonzero values
with the increase of temperature or density and, because of its
presence in the baryons effective mass [Eq. (6)], suppresses
their presence. However, the presence of the � field in the
effective mass of the quarks, included with a negative sign
[Eq. (7)], ensures that they will not be present at low
temperatures or densities. As can be seen from the different
orders of � and different signs in the new effective mass terms,
the motivation for this construction is not derived from QCD.
It is a simple effective way to change degrees of freedom
within the same model. Note that in the PNJL approach
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FIG. 1. (Color online) Order parameters for chiral symmetry
restoration and deconfinement to quark matter as a function of
baryonic chemical potential for star matter at zero temperature.

the coupling of the quarks to the Polyakov loop can be
derived to be included in the quark and antiquark distribution
functions in the grand canonical potential. However, this leads
to nonvanishing quasiquark contributions at any temperature
below Tc, which we avoid in our phenomenological approach
[Eqs. (6) and (7)].

The behavior of the order parameters of the model is
shown in Fig. 1 for neutron star matter at zero temperature.
The difference between this kind of matter and the so-called
symmetric matter comes from the assumption of charge
neutrality, essential for the stability of neutron stars, and β

equilibrium. In this case, the chiral symmetry restoration,
which is a crossover for purely hadronic matter, turns into
a first-order phase transition by the influence of the strong
first-order transition to deconfined matter. The model is
consistent in the sense that both order parameters are related.
The small increase in the chiral condensate value during the
transition is attributable to the smaller quark baryon number
(1/3) compared to the baryonic one.

The effective normalized masses of baryons and quarks
show the relation between these quantities and the order
parameters responsible for the dynamics of the model (Figs. 1
and 2). Because the coupling constants in the � term of the
effective mass formulas are high but still finite, the effective
masses of the degrees of freedom not effectively present in each
phases are high but also finite. The effective masses normalized
by the baryonic number are shown in Fig. 2. These quantities
are directly related to the onset of the particles’ appearance in
the system, which reads

µBonset = M∗
i

QBi

+ µe

Qi

QBi

− µS

QSi

QBi

+ giωω+ giφφ+ giρτ3ρ

QBi

,

(8)

where QBi
is the baryonic number, µe is the electron chemical

potential, Qi is the electric charge, µS the strange chemical
potential, and QSi

the strangeness of each species.
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FIG. 2. (Color online) Effective normalized mass of different
species as a function of baryonic chemical potential for star matter at
zero temperature.

Continuing the analogy to the PNJL model, the potential U

for � reads

U = (a0T
4 + a1µ

4 + a2T
2µ2)�2

+ a3T
4

0 log (1 − 6�2 + 8�3 − 3�4). (9)

It is a simplified version of the potential used in
Refs. [15,16] and adapted to also include terms that depend on
the chemical potential. The two extra terms (that depend on
the chemical potential) are not unique, but the most simple
natural choice whose parameters are chosen to reproduce
the main features of the phase diagram at finite densities.
While in the first part of the potential �2 ensures U to
be bound from below, in the second part of the potential
T 4

0 log (1 − 6�2 + 8�3 − 3�4) ensures that � is always (for
any region of the phase diagram) bound between zero and one.

The coupling constants for the quarks are shown in
Table II and are chosen to reproduce lattice data, as well as
known information about the phase diagram. The lattice data
includes a first-order phase transition at T = 270 MeV and
a pressure functional P (T ) similar to those in Refs. [15,16]
at µ = 0 for pure gauge, a crossover at vanishing chemical
potential with a transition temperature of 171 MeV (deter-
mined as the peak of the change of the chiral condensate
and �), and the location of the critical end point (at µc =
354 MeV, Tc = 167 MeV for symmetric matter in accordance
with one of the existent calculations [17]). The phase diagram
information includes a continuous first-order phase transition
line that terminates on the zero-temperature axis at four times
saturation density.

TABLE II. Additional coupling constants for the model
containing baryons and quarks.

gqω = 0 gqφ = 0 gqρ = 0
gqσ = −3.00 gqδ = 0 gqζ = −3.00
a0 = −1.85 a1 = −1.44 × 10−3 a2 = −0.08
a3 = −0.40 gB� = 1500 MeV gq� = 500 MeV
T0 = 200 MeV T0 = 270 MeV for pure gauge case
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FIG. 3. (Color online) Phase diagram showing temperature versus
baryonic chemical potential. The lines represent first-order transi-
tions. The circles mark the critical end points.

As can be seen in Fig. 3, the transition from hadronic
to quark matter obtained is a crossover for small chemical
potentials. Beyond the critical end points a first-order transition
lines for symmetric as well as for star matter begin. The critical
temperatures for chiral symmetry restoration coincide with the
ones for deconfinement in both cases. Because the model is
able to reproduce nuclear matter saturation at realistic values
for the saturation density, nuclear binding energy, as well as
the compressibility and asymmetry energy, we also show a line
in the phase diagram for the nuclear-matter liquid-gas phase
transition.

One way to test the model and to compare its predic-
tions with known observational data is to study the high-
density/low-temperature part of the phase diagram and com-
pare our results with neutron-star observations. The critical
point for star matter lies at a slightly higher chemical potential
than for the symmetric case and the first-order transition line
terminates on the zero-temperature axis at µB = 1345 MeV
(gray line in Fig. 3). Up to this point, the charge neutrality
was considered to be local, meaning that each phase had to be
charge neutral by itself. At finite temperature the two phases
contain mixtures of hadrons and quarks, which are dominated
by hadrons or quarks, depending on the respective phase. At
vanishing temperature there is no mixture; that is, the system
exhibits a purely hadronic phase and a purely quark phase
(Fig. 4). The density of electrons and muons is significant in
the hadronic phase but not in the quark phase. The reason for
this behavior is that because the down and strange quarks are
also negatively charged, there is no necessity for the presence
of electrons to generate charge neutrality, and only a small
amount of leptons remains to assure β equilibrium.

The quarks are totally suppressed in the hadronic phase
and the hadrons are suppressed in the quark phase until a
certain chemical potential (above 1700 MeV for T = 0). This
behavior comes from the fact that the coupling constants in the
� term of the effective mass formulas are high but still finite,
so at very high chemical potential the threshold in Eq. (8)
can be reached a second time for hadrons. This threshold,
which is higher than the density in the center of neutron
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FIG. 4. (Color online) Population (baryonic density for different
species as a function of baryonic chemical potential) for star matter
at zero temperature using local charge neutrality.

stars, establishes a limit for the applicability of the model.
The hyperons, in spite of being included in the calculation,
are suppressed by the appearance of the quark phase. Only
a very small amount of � appears right before the phase
transition (Fig. 4). The strange quarks appear after the other
quarks and also do not make substantial changes in the
system.

The possible neutron star masses and radii are calculated
solving the Tolmann-Oppenheimer-Volkof equations [18,19].
The solutions for hadronic (same model but without quarks)
and hybrid stars are shown in Fig. 5, where besides our
equation of state for the core, a separate equation of state
was used for the crust [20]. The maximum mass supported
against gravity in our model is 2.1M� in the first case and
around 2.0M� in the second. Because the equation of state for
quark matter is much softer than the one for hadronic matter,
the star becomes unstable right when the central density is
higher than the phase transition threshold.

There is still another possible option for the configuration
of the particles in the neutron star [21]. If instead of local we
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FIG. 5. (Color online) Mass-radius diagram.
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FIG. 6. (Color online) Population (baryonic density for different
species as a function of baryonic chemical potential) for star matter
at zero temperature using global charge neutrality.

consider global charge neutrality, we find a mixture of phases.
This possibility, which is a more realistic approach, changes
the particle densities in the coexistence region, making them
appear and vanish in a smoother way (Fig. 6). Therefore, the
maximum mass allowed for the star is slightly lower in this case
than in the previous one, as can be seen from the dotted line
in Fig. 5; however, this possibility allows stable hybrid stars
with a small amount of quarks. The mixed phase constitutes
the inner core of the star up to a radius of approximately 2 km.
The equation of state for both cases is shown in Fig. 7. The
large jump in the pressure in the local charge neutrality case
explains why the neutron stars become immediately unstable
after the phase transition in this configuration.

We conclude that our model is suitable for the description of
neutron stars. The maximum mass predicted is around the most
massive pulsars observed [22–26]. The radii lie in the allowed
range being practically the same for hadronic or hybrid stars.
A major advantage of our work compared to other studies
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FIG. 7. (Color online) Equation of state (pressure as a function
of energy density) for star matter at zero temperature using local and
global charge neutrality.
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of hybrid stars is that because we have only one equation of
state for different degrees of freedom, we can study in detail
the way in which chiral symmetry is restored and the way
deconfinement occurs at high temperature or density. Because
the properties of the physical system, for example, the density
of particles in each phase, are directly connected to the order
parameter for deconfinement �, it is not surprising that we
obtain different results in a combined description of the degrees

of freedom compared to a simple matching of two separate
equations of state.

Because the model additionally shows a realistic structure
of the phase transition over the whole range of chemical
potentials and temperatures, as well as phenomenologically
acceptable results for saturated nuclear matter, this approach
presents an ideal tool for the study of ultrarelativistic heavy-ion
collisions. Calculations along this line are in progress [27].

[1] N. K. Glendenning, F. Weber, and S. A. Moszkowski, Phys. Rev.
C 45, 844 (1992).

[2] F. Weber and M. K. Weigel, Nucl. Phys. A 505, 779 (1989).
[3] J. Schaffner and I. N. Mishustin, Phys. Rev. C 53, 1416

(1996).
[4] P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich,

H. Stocker, and W. Greiner, Phys. Rev. C 59, 411 (1999).
[5] E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A 571, 713

(1994).
[6] G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A 603, 367

(1996); 608, 514(E) (1996).
[7] L. Bonanno and A. Drago, Phys. Rev. C 79, 045801 (2009).
[8] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005), and references

therein.
[9] M. Buballa, Phys. Rep. 407, 205 (2005).

[10] H. Heiselberg, C. J. Pethick, and E. F. Staubo, Phys. Rev. Lett.
70, 1355 (1993).

[11] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[12] P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stocker,

and W. Greiner, Phys. Rev. C 57, 2576 (1998).
[13] V. Dexheimer and S. Schramm, Astrophys. J. 683, 943

(2008).

[14] J. D. Walecka, Theoretical Nuclear and Subnuclear Physics
(World Scientific, Singapore, 2004), 2nd ed.

[15] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73, 014019
(2006).

[16] S. Rossner, C. Ratti, and W. Weise, Phys. Rev. D 75, 034007
(2007).

[17] Z. Fodor and S. D. Katz, J. High Energy Phys. 04 (2004) 050.
[18] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[19] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
[20] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299

(1971).
[21] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[22] D. Barret, J. F. Olive, and M. C. Miller, Mon. Not. R. Astron.

Soc. 361, 855 (2005).
[23] F. Ozel, Nature (London) 441, 1115 (2006).
[24] D. J. Champion et al., arXiv:0805.2396.
[25] J. Casares, J. I. G. Hernandez, G. Israelian, and R. Rebolo,

arXiv:0910.4496 [astro-ph].
[26] T. Guver, F. Ozel, A. Cabrera-Lavers, and P. Wroblewski,

Astrophys. J. 712, 964 (2010).
[27] J. Steinheimer, V. Dexheimer, H. Petersen, M. Bleicher,

S. Schramm, and H. Stoecker, arXiv:0905.3099.

045201-5

http://dx.doi.org/10.1103/PhysRevC.45.844
http://dx.doi.org/10.1103/PhysRevC.45.844
http://dx.doi.org/10.1016/0375-9474(89)90041-9
http://dx.doi.org/10.1103/PhysRevC.53.1416
http://dx.doi.org/10.1103/PhysRevC.53.1416
http://dx.doi.org/10.1103/PhysRevC.59.411
http://dx.doi.org/10.1016/0375-9474(94)90717-X
http://dx.doi.org/10.1016/0375-9474(94)90717-X
http://dx.doi.org/10.1016/0375-9474(96)80007-E
http://dx.doi.org/10.1016/0375-9474(96)80007-E
http://dx.doi.org/10.1016/0375-9474(96)00305-3
http://dx.doi.org/10.1016/0375-9474(96)00305-3
http://dx.doi.org/10.1016/j.ppnp.2004.07.001
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1103/PhysRevLett.70.1355
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1103/PhysRevC.57.2576
http://dx.doi.org/10.1086/589735
http://dx.doi.org/10.1086/589735
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1088/1126-6708/2004/04/050
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1103/PhysRevD.46.1274
http://dx.doi.org/10.1111/j.1365-2966.2005.09214.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09214.x
http://dx.doi.org/10.1038/nature04858
http://arXiv.org/abs/arXiv:0805.2396
http://arXiv.org/abs/arXiv:0910.4496
http://dx.doi.org/10.1088/0004-637X/712/2/964
http://arXiv.org/abs/arXiv:0905.3099

