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One-dimensional hydrodynamical model including phase transition
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Analytical solution of a one-dimensional hydrodynamical model is derived, where phase transition from
the quark-gluon plasma state to the hadronic state is effectively taken into account. The single-particle rapidity
distribution of charged π mesons observed in relativistic heavy ion collisions is analyzed by the model. Space-time
development of the fluid is also investigated.
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I. INTRODUCTION

It is widely recognized that at the initial stage of relativistic
heavy ion collisions, quark-gluon plasma (QGP) is formed,
and it breaks up into thousand of hadrons in the final states.
It is also considered that the hydrodynamical approach is one
of the effective tools [1–3] to analyze such multiple-particle
production processes.

In most numerical calculations of three-dimensional hydro-
dynamical models, the phase transition from the QGP state to
the hadronic state is taken into account [4–6]. For reviews of
recent works, see Ref. [7].

Recently, exact solutions of one-dimensional hydrodynam-
ical model have been investigated [8–11]. However, the phase
transition from the QGP state is not introduced into the
analytical formulations.

The hydrodynamical model consists of the energy momen-
tum conservation, the baryon number conservation (or entropy
conservation), and the equation of state. The phase transition
from the QGP state to the hadronic state can be expressed by
the change in the velocity of sound from that of the perfect
fluid, c0 = 1/

√
3, to some constant value, cs , at the critical

temperature. We assume that shear viscosity, bulk viscosity,
and heat conductivity are negligibly small in the hadronic state.
We also assume that the baryon number can be neglected.

The one-dimensional hydrodynamical model of the perfect
fluid can be solved with an appropriate initial condition. If the
change in the velocity of sound is introduced into the model,
we can formulate a hydrodynamical model including the phase
transition from the QGP state to the hadronic state.

In Sec. II, the one-dimensional hydrodynamical model
following Landau’s approach is reviewed, and a solution for
potential χ is derived under an idealized initial condition. In
Sec. III, a one-dimensional hydrodynamical model including
the phase transition from the QGP state to the hadronic
state is formulated. In Sec. IV, the single-particle distribution
under the Cooper-Frye approach is shown. The single-particle
rapidity distribution observed in relativistic nucleus-nucleus
(AA) collisions is analyzed in Sec. V. The space-time evolution
of fluid elements is also investigated there. The final section is
devoted to concluding remarks.

*suzuki@matsu.ac.jp

II. ONE-DIMENSIONAL HYDRODYNAMICAL MODEL

A. Equations for the hydrodynamical model

The hydrodynamical model proposed by Landau [1–3]
is composed of the energy-momentum conservation of the
perfect fluid and the equation of state. The energy-momentum
conservation is given by

∂

∂xν
T µν = 0, µ, ν = 0, 1, (1)

where Tµν denotes the energy momentum tenser of the perfect
fluid,

Tµν = (ε + p)uµuν − pgµν. (2)

In Eq. (2), ε denotes the energy density and p the pressure of
a fluid element. The velocity of the fluid element is denoted
uµ, which satisfies uµuµ = 1, and gµν = diag(1,−1).

The equation of state is expressed as a function of the
energy density ε of the pressure p. This will differ depending
on whether the fluid is in the QGP state or in the hadronic
state. At present we assume that the relation dp/dε = c0

2

holds, where c0 is a positive constant.
In addition, thermodynamical relations,

ε + p = T s, dε = T ds, (3)

are used, where T denotes the temperature and s is the entropy
density of the fluid element. Equation (3) holds whether the
fluid is in the QGP state or in the hadronic state.

Projection of Eq. (1) to the direction of uµ gives the entropy
conservation,

∂(suν)

∂xν
= 0. (4)

After Eq. (1) is projected to the direction perpendicular to uµ,
we obtain

− ∂T

∂xµ
+ ∂(T uν)

∂xµ
uν = 0, µ = 0, 1. (5)

The rapidity η of the fluid element is defined by

(u0, u1) = (cosh η, sinh η). (6)

Then both Eqs. (5) reduce to

∂

∂t
(T sinh η) + ∂

∂x
(T cosh η) = 0. (7)

0556-2813/2010/81(4)/044911(6) 044911-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.044911


NAOMICHI SUZUKI PHYSICAL REVIEW C 81, 044911 (2010)

From Eq. (7), there is a function φ that satisfies

∂φ

∂t
= T cosh η,

∂φ

∂x
= −T sinh η. (8)

By use of the Legendre transform,

dχ = d(φ − tT cosh η + xT sinh η),

we obtain the equations for the potential χ [2,3]:

∂χ

∂T
= −t cosh η + x sinh η,

(9)
1

T

∂χ

∂η
= −t sinh η + x cosh η.

Then space-time variables of the fluid elements t and x are
given, respectively, as

t = 1

T0
eω

(
∂χ

∂ω
cosh η + ∂χ

∂η
sinh η

)
,

(10)

x = 1

T0
eω

(
∂χ

∂ω
sinh η + ∂χ

∂η
cosh η

)
,

where T0 is the initial temperature of the fluid and ω =
ln(T0/T ).

The entropy conservation, Eq. (4), is rewritten as

∂

∂t
(s cosh η) + ∂

∂x
(s sinh η) = 0. (11)

After changing the variables from x,t to η,T in Eq. (11), we
obtain

T

s

ds

dT

(
∂2χ

∂η2
− T

∂χ

∂T

)
− T 2 ∂2χ

∂T 2
= 0.

B. Solution for potential χ

Using the relation (T/s)ds/dT = c0
2 and the variable

ω = − ln(T/T0), we obtain the partial differential equation
for potential χ :

∂2χ

∂ω2
− 2β0

∂χ

∂ω
− 1

c0
2

∂2χ

∂η2
= 0,

(12)

β0 = 1 − c0
2

2c0
2

= 1.

Equation (12) is called the equation of telegraphy.
The initial condition for Eq. (12) is taken with a constant

Q0 as

χ |ω=0 = g(η) = 0,
∂χ

∂ω

∣∣∣
ω=0

= G(η) = Q0δ(η). (13)

The hydrodynamical model is applicable mainly to the
central region [12]. As can be seen from Eq. (17), the main
contribution to the fragmentation comes from the function
g(η). Therefore, we assume that g(η) = 0. At the initial stage,
fluid would be formed in the very small region of rapidity
space, and we set G(η) proportional to the δ function in the
rapidity space as an idealized case [13].

Introducing the new variable χ1 as

χ (η,ω) = χ1(η,ω)eβ0ω, (14)

we have the partial differential equation for χ1,

∂2χ1

∂ω2
− β0

2χ1 − 1

c0
2

∂2χ1

∂η2
= 0, (15)

and the initial condition for Eq. (15),

χ1|ω=0 = g(η) = 0,
(16)

∂χ1

∂ω

∣∣∣
ω=0

= G(η) − β0g(η) = Q0δ(η).

The solution for χ1 is given, in general, as [14]

χ1(η,ω) = 1

2
{g(η + ω/c0) + g(η − ω/c0)}

+ c0

2

∫ ω/c0

−ω/c0

dz {G(z + η)

−β0g(η)}I0(β0

√
ω2 − c0

2z2)

+ β0c0ω

2

∫ ω/c0

−ω/c0

dz g(z + η)
I1(β0

√
ω2 − c0

2z2 )√
ω2 − c0

2z2
.

(17)

This reduces to

χ1(η,ω) = Q0c0

2
I0(β0

√
ω2 − c0

2η2) (18)

for |η| < ω/c0.
Then the solution for Eq. (12) under the initial condition

(13) is given by

χ (η,ω) = Q0c0

2
eβ0ωI0(β0

√
ω2 − c0

2η2). (19)

III. HYDRODYNAMICAL MODEL INCLUDING
A PHASE TRANSITION

A. Introduction of the phase transition

In our formulation, the phase transition from the QGP state
to the hadronic state is expressed by the change in the velocity
of sound. The evolution of fluid is described by the parameter
ω = ln(T0/T ), where T0 is the initial temperature. The fluid
formed just after the collision of nuclei is assumed to be in
the QGP state. The velocity of sound in it is denoted c0 (c0 =
1/

√
3). It expands from ω = 0 to ω = ωc − 0, where ωc =

ln(T0/Tc) > 0 with the critical temperature Tc. The phase
transition from the QGP to the hadronic state occurs at ω = ωc.
From ω = ωc + 0 to ω = ωf , where ωf = ln(T0/Tf ) > ωc

with the freeze-out temperature Tf , the fluid is in the hadronic
state. The velocity of sound in it is assumed to be constant and
is denoted cs (0 < cs � c0).

The equation of state is assumed to be

p =
{

c0
2ε − (1 + c0

2)B, for 0 < ω < ωc,

cs
2ε, for ωc < ω < ωf ,

(20)

where B is the bag constant of hadrons. From Eq. (20), the
velocity of sound is given by√

dp

dε
=

{
c0, for 0 < ω < ωc,

cs, for ωc < ω < ωf .
(21)
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FIG. 1. Velocity of sound as a function of ω from ω = 0 to
ω = ωf .

As shown in Fig. 1, the velocity of sound is discontinuous at
ω = ωc.

B. Potential χ (η,ω) in quark-gluon plasma fluid

We assume that the fluid in the QGP phase, where the
velocity of sound is c0 = 1/

√
3, continues from ω = 0 to ω =

ωc − 0. Then the partial differential equation for the potential
χ (η,ω) is given by Eq. (12):

∂2χ

∂ω2
− 2β0

∂χ

∂ω
− 1

c0
2

∂2χ

∂η2
= 0, (22)

where β0 = (1 − c0
2)/2c0

2 = 1. The initial condition for
Eq. (22) is taken as Eq. (13):

χ |ω=0 = g(η) = 0,
∂χ

∂ω

∣∣∣∣
ω=0

= G(η) = Q0δ(η). (23)

The solution for Eq. (22) under the initial condition,
Eq. (23), is given by

χ (η,ω) = Q0c0

2
eβ0ωI0(β0

√
ω2 − c0

2η2). (24)

C. Potential χ (η,ω) in hadronic fluid

In the hadronic phase, the fluid expands from ω = ωc + 0
to ω = ωf . During the expansion of the hadronic fluid, the
velocity of sound is cs .

For ωc < ω < ωf , the partial differential equation for
potential χ is given by

∂2χ

∂ω2
− 2β

∂χ

∂ω
− 1

cs
2

∂2χ

∂η2
= 0, β = 1 − cs

2

2cs
2

� 1. (25)

For |η| < [(ω − ωc)/cs] + (ωc/c0), the solution of Eq. (25) is
given by

χ (η,ω) = A(ω)I0(λ),
(26)

A(ω) = Q0c0

2
eβ(ω−ωc)+β0ωc ,

where

λ = βcs

√
η2

max − η2,
(27)

ηmax = [(ω − ωc)/cs] + (ωc/c0).

If cs = c0 (β = β0), the potential χ (η,ω) in Eq. (26)
coincides with Eq. (24), which is the solution for Eq. (22)
under the initial condition, Eq. (23).

D. Effect of phase transition on potential χ (η,ω)

In our formulation, the velocity of sound is changed from
c0 to cs according to the phase transition from the QGP state
to the hadronic state. This effect would appear in potential
χ (η,ω) in the neighborhood of ω = ωc.

At ω = ωc − 0, where the fluid is in the QGP state, the
potential is given from Eq. (24) as

χ (η,ωc − 0) = Q0c0

2
eβ0ωcI0(β0

√
ωc

2 − c0
2η2). (28)

At ω = ωc + 0, where the fluid is in the hadronic state, it is
given from Eqs. (26) and (27) as

χ (η,ωc + 0) = Q0c0

2
eβ0ωcI0

(
βcs

c0

√
ωc

2 − c0
2η2

)
. (29)

From Eqs. (28) and (29), we obtain

χ (η,ωc + 0)

χ (η,ωc − 0)
=

I0

(
βcs

c0

√
ωc

2 − c0
2η2

)
I0

(
β0

√
ωc

2 − c0
2η2

) �= 1. (30)

The potential χ (η,ω) becomes discontinuous at ω = ωc owing
to the phase transition. This fact will affect the space-time
behavior of the fluid element.

IV. SINGLE-PARTICLE RAPIDITY DISTRIBUTION

To analyze the rapidity distribution of observed particles,
the Cooper-Frye approach [15] is used. Then the single-particle
rapidity distribution dn/dy of particles with mass m and
transverse momentum pT in nucleus-nucleus collisions is
given by

dn

dy
= πRA

2

(2π )3

∫
σ

(
cosh y

dx

dη
− sinh y

dt

dη

)∣∣∣∣
ω=ωf

× mT

exp[mT cosh(y − η)/Tf ] − 1
dηd2pT , (31)

where RA denotes the radius of colliding nuclei and mT =√
pT

2 + m2 denotes the transverse mass of observed particles.
Space-time variables t and x in Eq. (31) are given by Eq. (10).
Under the assumption that the Bose-Einstein distribution can
be approximated by the Maxwell-Boltzmann distribution,
Eq. (31) is written as

dn

dy
= RA

2Tf
2

4π

∫ ηmax

−ηmax

dη

[
− ∂

∂η

(
χ + ∂χ

∂ω

)∣∣∣∣
ω=ωf

tanh(y − η)

+ cs
2 ∂

∂ω

(
χ + ∂χ

∂ω

)∣∣∣∣
ω=ωf

] (
m2

Tf
2 + 2m

Tf cosh(y − η)

+ 2

cosh2(y − η)

)
e−m cosh(y−η)/Tf . (32)
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If the term multiplied by tanh(y − η) in the square bracket on
the right-hand side of Eq. (32) is neglected, the single-particle
rapidity distribution coincides with Milekhin’s approach
[16,17] except for the normalization factor.

By the use of Eqs. (26) and (27), the single-particle
distribution is given by

dn

dy
= RA

2Tf
2

4π
(βcs)

2A(ωf )
∫ ηmax

−ηmax

dη

[
βη

λ

{
βcsηmax

λ
I0(λ)

+
(

β + 1

β
− 2

βcsηmax

λ2

)
I1(λ)

}
tanh(y − η)

+
{(

1 + β

β
+ (βcsηmax)2

λ2

)
I0(λ) + β

λ

(
ηmax

cs

+ 1

− 2
(βcsηmax)2

λ2

)
I1(λ)

}] (
m2

Tf
2 + 2m

Tf cosh(y − η)

+ 2

cosh2(y − η)

)
e−m cosh(y−η)/Tf . (33)

Space-time variables of the fluid element are written from
Eqs. (10) and (26) as

t = 1

T0
A(ω)eω

[
β

{
I0(λ) + βcs

ηmax

λ
I1(λ)

}
cosh η

− (βcs)
2 η

λ
I1(λ) sinh η

]
, (34)

x = 1

T0
A(ω)eω

[
β

{
I0(λ) + βcs

ηmax

λ
I1(λ)

}
sinh η

− (βcs)
2 η

λ
I1(λ) cosh η

]
. (35)

V. DATA ANALYSIS

The single-particle rapidity distribution of charged π

mesons in Au-Au collisions at 200 AGeV at the RHIC [18] is
analyzed by Eq. (33). In the analysis, the initial temperature T0

is fixed at 0.95 GeV, the critical temperature Tc at 0.18 GeV,
and the freeze-out temperature Tf at 0.12 GeV. The nuclear
radius RA is parametrized as RA = 1.2 × A1/3, where A

denotes the mass number of the nucleus and A = 197 for Au.
Then two parameters, Q0 and cs , remain in our formulation.
Estimated parameters are listed in Table I, and the result of
the single-particle rapidity distribution of charged π mesons
is shown in Fig. 2.

The space-time evolution of fluid elements at ω = constant
in the x-t plane is shown in Fig. 3. The profile at T = Tc =
0.180 GeV is overlapped at the origin (x,t) = (0,0). The dotted
curve denoted BJ represents Bjorken’s scaling solution, τ =√

t2 − x2 = constant [19].

TABLE I. Estimated values of parameters Q0

and cs
2 from Au + Au → [(π+ + π−)/2] + X

Q0 (4.78 ± 1.15) × 10−2

cs
2 0.117 ± 0.005

χ 2
min/n.d.f. 41.4/12

50

100

150

200

250

300

350

- 4 - 2 0 2 4

Au+Au→(π++π−)/ 2, 200 AGeV

dn/ dy

data

dn
/d

y

y

FIG. 2. Analysis of the single-particle rapidity distribution of
charged pions (π+π−)/2 by Eq. (33).

To investigate the space-time evolution of fluid elements
around ω = ωc or T = Tc, details of it are shown in Fig. 4.
The profile at ω = ωc − 0 or T = Tc + 0 is in the QGP state.
It is calculated by Eq. (24). The profiles at ω > ωc and T < Tc

are in the hadronic states. These are calculated by Eqs. (26)
and (27). As shown in Fig. 4, the region between the profile at
T = Tc + 0 and that at T = Tc − 0 corresponds to the mixed
phase where the QGP state and the hadronic state coexist.

The temperature dependence of fluid element at η =
constant is shown as a function of proper time, τ = √

t2 − x2,
in Fig. 5. The temperature profiles of fluid elements for
T > 0.200 GeV are abbreviated. Fluid elements with a larger
rapidity in the absolute value are cooled faster, as shown in the
figure. The fluid starts expansion from T = T0 at η = 0 and

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Space–time evolution
of fluid element

t(η =0.5)
t(η =1)
t(η =1.5)
t(η =2)
t(T=0.18)
t(T=0.16)
t(T=0.14)
t(T=0.12)
BJ
t=x

t

x

FIG. 3. (Color online) Space-time evolution of fluid elements at
a fixed temperature.
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FIG. 4. (Color online) Space-time evolution of fluid elements at
a fixed temperature from T = 0.180 GeV to T = 0.170 GeV.

at τ = 0. For example, the fluid element at η = 0 is cooled
down from T = T0 at τ = 0 to T = Tc at τ = 0.238 fm/c. It
remains at T = Tc from τ = 0.238 fm/c to τ = 4.957 fm/c.
Therefore, the mixed phase in the neighborhood of η = 0
is to continue about 4.7 fm/c. The fluid element at η = 0
is cooled down to T = Tf at τ = 134.9 fm/c. The dotted
curve denoted BJ corresponds to Bjorken’s scaling solution,
T = Tc(τc/τ )cs

2
with cs

2 = 0.117, which is normalized to Tc

at (τ, T ) = (τc, Tc) = (0.238, 0.18).
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0 20 40 60 80 100 120 140 160

Temperature of fluid element
at fixed rapidity

T(η =0)
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T(η =1.5)
T(η =2)
T(η =2.5)
T(η =3)
T(η =3.5)
T(η =4)
BJ

T

τ

FIG. 5. (Color online) Temperature profiles of fluid elements at
fixed rapidity.

VI. CONCLUDING REMARKS

We have formulated a one-dimensional hydrodynamical
model including the phase transition from the QGP state to the
hadronic state. At first, following Landau’s hydrodynamical
model, the equation of the telegraphy for potential χ (η,ω) is
solved under the simplified initial condition in the η-ω space
with the velocity of sound, c0 = 1/

√
3. Then the solution of

it in the hadronic state with a constant velocity of sound, cs

(cs �= c0), is found so as to coincide with the solution in the
QGP state if cs = c0.

The space-time evolution of fluid elements from ω = 0 (or
T = T0) to ω = ωf (or T = Tf ) is calculated by our model.
The nonzero finite region emerges between the profile at ω =
ωc − 0 (or T = Tc + 0) and that at ω = ωc + 0 (or T = Tc −
0). This is caused by the discontinuity of the potential χ (η,ω)
at ω = ωc (or T = Tc) caused by the change in the velocity of
sound from c0 in the QGP state to cs (cs < c0) in the hadronic
state at ω = ωc. In our calculation, the fluid element at η = 0
freezes out at τ = 134.9 fm/c.

In computer simulations of the three-dimensional hydrody-
namical models, the evolution of fluid elements is calculated
as a function of the proper time τ . For example, the initial
condition is taken as τ = 0.6 fm/c and T0 = 0.36 GeV at
200 AGeV [6].

In our one-dimensional hydrodynamical model, the initial
condition is taken as τ = 0 fm/c and T0 = 0.95 GeV. The
fluid element at η = 0 is cooled down to T = 0.36 GeV at
τ = 0.036 fm/c. Therefore, the temperature of the fluid in
our calculation at τ = 0.6 fm/c is not higher than that in the
three-dimensional hydrodynamical model.

In computer simulations at 200 AGeV, the fluid element
expands a few hundred femtometers along the direction of
colliding nuclei before freeze-out, although the value of τ at
freeze-out is about 15 fm/c [20].

The proper time of fluid elements at η = 0 at freeze-
out in our calculation is 1 order larger than the proper
time of fluid elements at freeze-out in the three-dimensional
computer simulation. In the one-dimensional hydrodynamical
model, the expansion of fluid into the transverse dimension
is neglected, contrary to the three-dimensional calculations.
Therefore, the temperature of the fluid element, especially in
the neighborhood of η = 0, would decrease more slowly than
that calculated by the three-dimensional computer simulation,
where the transverse expansion of the fluid is taken into
account. However, the scale of expansion of the fluid element
in the space variable in our calculation shown in Fig. 3 is
comparable to that along the direction of colliding nuclei in
the computer simulation.

In recent lattice QCD calculations, it is shown that the
crossover phase transition occurs at chemical potential µ = 0
[21,22]. Let the crossover transition take place in the region
[ωc − (�ω/2), ωc + (�ω/2)]. In our formulation, it would
be expressed by the smooth change in the velocity of sound
from c0 to cs . The sound of velocity cv(ω) in [ωc − (�ω/2),
ωc + (�ω/2)] is assumed to be a continuous function with
a positive value and to satisfy cv[ωc − (�ω/2)] = c0 and
cv[ωc + (�ω/2)] = cs .
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The potential χ (ω) in [0, ωc − (�ω/2)] is the same with
Eq. (24). The potential χ (ω), after the crossover transition, in
[ωc + (�ω/2), ωf ] would be given by the equation

χ (η,ω) = A(ω)I0(λ), (36)

where

A(ω) = Q0c0

2
exp

{
[β[ω − ωc − (�ω/2)]

+ β0[ωc − (�ω/2)] +
∫ ωc+(�ω/2)

ωc−(�ω/2)
βv(x)dx

}
,

βv(x) = 1 − cv(x)2

2cv(x)2 , (37)

λ = βcs

√
η2

max − η2,

ηmax = {[ω − ωc − (�ω/2)]/cs} + {[ωc − (�ω/2)]/c0}

+
∫ ωc+(�ω/2)

ωc−(�ω/2)

1

cv(x)
dx. (38)
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