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Hot and dense hadronic matter in an effective mean-field approach
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We investigate the equation of state of hadronic matter at finite values of baryon density and temperature
reachable in high-energy heavy-ion collisions. The analysis is performed by requiring the Gibbs conditions on
the global conservation of baryon number, electric charge fraction, and zero net strangeness. We consider an
effective relativistic mean-field model with the inclusion of � isobars, hyperons, and the lightest pseudoscalar
and vector meson degrees of freedom. In this context, we study the influence of the �-isobar degrees of freedom
in the hadronic equation of state and, in connection, the behavior of different particle-antiparticle ratios and
strangeness production.
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I. INTRODUCTION

The determination of the properties of nuclear matter as
functions of density and temperature is a fundamental task in
nuclear and subnuclear physics. Heavy-ion collision experi-
ments open the possibility to investigate strongly interacting
compressed nuclear matter by exploring in the laboratory the
structure of the QCD phase diagram [1–4]. The extraction
of information about the equation of state (EOS) at different
densities and temperatures by means of intermediate- and
high-energy heavy-ion collisions is a very difficult task and can
be realized only indirectly by comparing the experimental data
with different theoretical models, such as, for example, fluid-
dynamical models. The EOS at density below the saturation
density of nuclear matter (ρ0 ≈ 0.16 fm−3) is relatively well
known due to the large amount of experimental nuclear data
available. At larger density there are many uncertainties; the
strong repulsion at short distances of nuclear force makes,
in fact, the compression of nuclear matter quite difficult.
However, in relativistic heavy-ion collisions the baryon density
can reach values of a few times the saturation nuclear density
and/or high temperatures. The future CBM (compressed bary-
onic matter) experiment of the FAIR (Facility of Antiproton
and Ion Research) project at GSI Darmstadt will make it
possible to create compressed baryonic matter with a high
net baryon density [5–7]. In this direction interesting results
have been obtained at low energy at the CERN Super Proton
Collider (SPS) and are foreseen at a low-energy scan at BNL
Relativistic Heavy Ion Collider (RHIC) [8–12].

Furthermore, the information coming from experiments
with heavy ions in intermediate- and high-energy collisions
is that the EOS depends on the energy beam but also on
the electric charge fraction Z/A of the colliding nuclei,
especially at not too high temperature [13,14]. Moreover, the
analysis of observations of neutron stars, which are composed
of β-stable matter for which Z/A � 0.1, can also provide
hints on the structure of extremely asymmetric matter at high
density [15,16].

To well understand the structure of the phase diagram and
the supposed deconfinement quark-gluon phase transition at
large density and finite temperature, it is crucial to know
accurately the EOS of the hadronic as well as the quark-gluon

phase. Concerning the hadronic phase, hadron resonance gas
models have turned out to be very successful in describing
particle abundances produced in (ultra)relativistic heavy-ion
collisions [17–19]. In this framework, to take phenomenolog-
ically into account the interaction between hadrons at finite
densities, finite size corrections have been considered in the
excluded volume approximation [20–25].

From a more microscopic point of view, the hadronic EOS
should reproduce properties of equilibrium nuclear matter such
as, for example, saturation density, binding energy, symmetric
energy coefficient, and compression modulus. Some other
constraints on the behavior of the EOS come from analysis
of the experimental flow data of heavy-ion collisions at
intermediate energy [26] and, moreover, there are different
indirect contraints/indications related to astrophysical bounds
on high-density β-equilibrium compact stars [15,27]. In
connection with these matters, Walecka-type relativistic mean-
field (RMF) models have been widely successfully used for
describing the properties of finite nuclei as well as dense
and finite temperature nuclear matter [28–32]. It is relevant
to point out that such RMF models usually do not respect
chiral symmetry. Furthermore, the repulsive vector field is
proportional to the net baryon density; therefore, standard
RMF models do not appear, in principle, fully appropriate
for very low-density and high-temperature regimes. In this
context, let us observe that a phenomenological RMF model
has been recently proposed to calculate the EOS of hadronic
matter in a broad density-temperature region by considering
masses and coupling constants depending on the σ -meson
field [33]. In that approach, motivated by the Brown-Rho
scaling hypothesis, a nonchiral symmetric model simulates
a chiral symmetric restoration with a temperature increase.
However, sophisticated relativistic chiral SU(3) models have
also been developed to take into account particle ratios at
RHIC and baryon resonances impact on the chiral phase
transition [34,35].

In a regime of finite values of density and temperature,
a state of high-density resonance matter may be formed
and the �(1232)-isobar degrees of freedom are expected to
play a central role [36]. Transport model calculations and
experimental results indicate that an excited state of baryonic
matter is dominated by the � resonance at the energies
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from the BNL Alternating Gradien Synchrotron (AGS) to
RHIC [37–42]. Moreover, in the framework of the nonlinear
Walecka model, it has been predicted that a phase transition
from nucleonic matter to �-excited nuclear matter can take
place and the occurrence of this transition sensibly depends on
the �-meson coupling constants [43,44]. Referring to QCD
finite-density sum rule results, which predict that there is a
larger net attraction for a � isobar than for a nucleon in the
nuclear medium [45], the range of values for the �-meson
coupling constants has been confined within a triangle relation
[46]. Whether stable �-excited nuclear matter exists or not is
still a controversial issue because little is actually known about
the � coupling constants with the scalar and vector mesons. In
any case, it has been pointed out that the existence of degrees of
freedom related to � isobars can be very relevant in relativistic
heavy-ion collisions and in the core of neutron stars [44,47,48].
Although several articles have investigated the influence of
� isobars on the nuclear EOS, we believe that, especially
in presence of asymmetric and strange hadronic matter, a
systematic investigation at finite densities and temperatures
has been lacking.

In this article, we study the hadronic EOS by means
of an effective RMF model with the inclusion of the full
octet of baryons, the �-isobar degrees of freedom, and the
lightest pseudoscalar and vector mesons. These last particles
are considered in the so-called one-body contribution, taking
into account their effective chemical potentials depending on
the self-consistent interaction between baryons. The main
goal is to investigate how the constraints on the global
conservation of the baryon number, electric charge fraction,
and strangeness neutrality, in the presence of �-isobar degrees
of freedom, hyperons, and strange mesons, influence the
behavior of the EOS in a regime of finite values of baryon
density and temperature. Moreover, we show the relevance
of � isobars for different coupling constants and how their
presence influences several particle ratios and strangeness
production for three different parameters sets, compatible with
experimental constraints.

This article is organized as follows. In Sec. II, we present
the model with a detailed discussion on the hyperon-meson
couplings and on the chemical equilibrium conditions. To
better clarify the role of � isobars and strange particles in
symmetric and asymmetric nuclear matter, our results are
presented in Sec. III, which is divided into three subsections: in
A, we study the equation of state of nucleons and � isobars in
symmetric nuclear matter at zero and finite temperature; in B,
the investigation is extended by including hyperons, non-
strange mesons, and strange mesons in asymmetric nuclear
matter and by requiring the zero net strangeness condition; and
in C, strangeness production and different particle-antiparticle
ratios are considered. Finally, the main conclusions are
summarized in Sec. IV.

II. HADRONIC EQUATION OF STATE

The basic idea of the RMF model, first introduced by
Walecka [49] and Boguta and Bodmer [50] in the mid-1970s,
is the interaction between baryons through the exchange of
mesons. In the original version we have an isoscalar-scalar

σ meson field which produces the medium range attraction
and the exchange of isoscalar-vector ω mesons responsible for
the short range repulsion. The saturation density and binding
energy per nucleon of nuclear matter can be fitted exactly
in the simplest version of this model but other properties
of nuclear matter, for example, incompressibility, cannot be
well reproduced. To overcome these difficulties, the model
has been modified introducing in the Lagrangian two terms of
self-interaction for the σ mesons that are crucial to reproduce
the empirical incompressibility of nuclear matter and the
effective mass of nucleons M∗

N . Moreover, the introduction
of an isovector-vector ρ meson allows one to reproduce the
correct value of the empirical symmetry energy [51], and an
isovector-scalar field, a virtual a0(980) δ meson, has been
been studied for asymmetric nuclear matter and for heavy-ion
collisions [13,52].

The total Lagrangian density L can be written as

L = Lom + L� + Lqfm, (1)

where Lom stands for the full octet of the lightest baryons
(p, n, �, �+, �0, �−, 	0, 	−) interacting with σ -, ω-, ρ-,
δ-meson fields; L� corresponds to the degrees of freedom for
the � isobars (�++, �+, �0, �−), and Lqfm is related to a
(quasi)free gas of the lightest pseudoscalar and vector mesons
with an effective chemical potential (details are given later in
this article). In regime of density and temperature in which
we are mostly interested, we expect that the inclusion of the
other decuplet baryons will produce only a small change in the
overall results.

The RMF model for the self-interacting full octet of baryons
(JP = 1/2+) was originally studied by Glendenning [53] with
the following standard Lagrangian,

Lom =
∑

k

ψk[iγµ∂µ − (Mk − gσkσ − gδk�t · �δ) − gωkγµωµ

− gρkγµ�t · �ρ µ]ψk + 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − U (σ )

+ 1

2
m2

ωωµωµ + 1

4
c
(
g2

ωNωµωµ
)2 + 1

2
m2

ρ �ρµ · �ρ µ

+ 1

2

(
∂µ

�δ∂µ�δ − m2
δ
�δ2

) − 1

4
FµνF

µν − 1

4
�Gµν

�Gµν,

(2)

where the sum runs over the full octet of baryons, Mk is the
vacuum baryon mass of index k, the quantity �t denotes the
isospin operator that acts on the baryon, and the field strength
tensors for the vector mesons are given by the usual expressions
Fµν ≡ ∂µων − ∂νωµ and �Gµν ≡ ∂µ �ρν − ∂ν �ρµ. The U (σ ) is a
nonlinear self-interaction potential of the σ meson,

U (σ ) = 1
3a(gσNσ )3 + 1

4b(gσNσ 4), (3)

introduced by Boguta and Bodmer [50] to achieve a reasonable
compressibility for equilibrium normal nuclear matter. We
have also taken into account the additional self-interaction
ω-meson field, c(g2

ωNωµωµ)2/4, suggested by Bodmer [54]
to get a good agreement with Dirac-Brückner calculations at
high density and to achieve a more satisfactory description of
the properties of finite nuclei in the mean-field approximation.
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By taking into account only the on-shell �’s, the
Lagrangian density concerning the � isobars can be expressed
as [44]

L� = ψ�ν[iγµ∂µ − (M� − gσ�σ ) − gω�γµωµ]ψν
�, (4)

where ψν
� is the Rarita-Schwinger spinor for the � baryon.

Because of the uncertainty on the �-meson coupling constants,
we limit ourselves to consider only the coupling with the σ - and
ω-meson fields, more of which are explored in the literature
[43–46].

In the RMF approach, baryons are considered as Dirac
quasiparticles moving in classical mesons fields and the field
operators are replaced by their expectation values. In this
context, it is relevant to remember that the RMF model does
not respect chiral symmetry and the contribution coming from
the Dirac sea and the quantum fluctuation of the meson fields
are neglected. As a consequence, the field equations in the
RMF approximation have the following form

(iγµ∂µ − M∗
k − gωkγ

0ω − gρkγ
0t3kρ)ψk = 0, (5)

(iγµ∂µ − M∗
� − gω�γ 0ω)ψ� = 0, (6)

m2
σ σ + ag3

σNσ 2 + bg4
σNσ 3 =

∑
i

gσ iρ
S
i , (7)

m2
ωω + cg4

ωNω3 =
∑

i

gωiρ
B
i , (8)

m2
ρρ =

∑
i

gρi t3iρ
B
i , (9)

m2
δδ =

∑
i

gδi t3iρ
S
i , (10)

where σ = 〈σ 〉, ω = 〈ω0〉, ρ = 〈ρ0
3 〉, and δ = 〈δ3〉 are the non-

vanishing expectation values of mesons fields. The effective
mass of kth baryon octet, in Eq. (5), is given by

M∗
k = Mk − gσkσ − gδkt3kδ, (11)

and the effective mass of �-isobar, in Eq. (6), is given by

M∗
� = M� − gσ�σ. (12)

In the meson-field equations, Eqs. (7)–(10), the sums run over
all considered baryons (octet and �’s) and ρB

i and ρS
i are the

baryon density and the baryon scalar density of the particle of
index i, respectively. They are given by

ρB
i = γi

∫
d3k

(2π )3
[fi(k) − f i(k)], (13)

ρS
i = γi

∫
d3k

(2π )3

M∗
i

E∗
i

[fi(k) + f i(k)], (14)

where γi = 2Ji + 1 is the degeneracy spin factor of the ith
baryon (γoctet = 2 for the baryon octet and γ� = 4) and
fi(k) and f i(k) are the fermion particle and antiparticle
distributions:

fi(k) = 1

exp{(E∗
i (k) − µ∗

i )/T } + 1
, (15)

f i(k) = 1

exp{(E∗
i (k) + µ∗

i )/T } + 1
. (16)

The baryon effective energy is defined as E∗
i (k) =√

k2 + Mi
∗2. The chemical potentials µi are given in terms of

the effective chemical potentials µ∗
i by means of the following

relation,

µi = µ∗
i + gωiω + gρi t3iρ, (17)

where t3i is the third component of the isospin of the ith baryon.
Because we are going to describe the nuclear EOS at finite

density and temperature with respect to strong interaction, we
have to require the conservation of three “charges”: baryon
number (B), electric charge (C), and strangeness number (S).
Each conserved charge has a conjugated chemical potential
and the systems is described by three independent chemical
potentials: µB , µC , and µS . Therefore, the chemical potential
of particle of index i can be written as

µi = biµB + ciµC + siµS, (18)

where bi , ci , and si are, respectively, the baryon, the electric
charge, and the strangeness quantum numbers of ith hadronic
species.

The thermodynamical quantities can be obtained from the
grand potential �B in the standard way. More explicitly, the
baryon pressure PB = −�B/V and the energy density εB can
be written as

PB = 1

3

∑
i

γi

∫
d3k

(2π )3

k2

E∗
i (k)

[fi(k) + f i(k)]

− 1

2
m2

σ σ 2 − U (σ ) + 1

2
m2

ωω2 + 1

4
c(gωNω)4

+ 1

2
m2

ρρ
2 − 1

2
m2

δδ
2, (19)

εB =
∑

i

γi

∫
d3k

(2π )3
E∗

i (k)[fi(k) + f i(k)]

+ 1

2
m2

σ σ 2 + U (σ ) + 1

2
m2

ωω2 + 3

4
c(gωNω)4

+ 1

2
m2

ρρ
2+ 1

2
m2

δδ
2. (20)

The numerical evaluation of theses thermodynamical quan-
tities can be performed if the meson-nucleon, meson-�, and
meson-hyperon coupling constants are known. Concerning the
meson-nucleon coupling constants (gσN , gωN , gρN , gδN ), they
are determined to reproduce properties of equilibrium nuclear
matter such as the saturation densities, the binding energy, the
symmetric energy coefficient, the compression modulus, and
the effective Dirac mass at saturation. Because of a valuable
range of uncertainty in the empirical values that must be fitted,
especially for the compression modulus and for the effective
Dirac mass, in the literature there are different sets of coupling
constants. In Table I, we report the parameters sets used in
this work. The set marked GM3 is from Glendenning and
Moszkowski [55], that labeled NLρδ is from Refs. [52,56],
and that labeled TM1 is from Ref. [57]. As evident in the
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TABLE I. Nuclear matter properties and nucleon coupling constants of the parameters sets used in the calculation. The energy per
particle is E/A = 16.3 MeV, calculated at the saturation density ρ0 with a compression modulus K and effective mass M∗

N (the nucleon
mass MN is fixed to 939 MeV for GM3 and NLρδ, and MN = 938 MeV in the TM1 parameters set). The symmetry energy is denoted by
asym. In the parameter set NLρδ the additional coupling to the δ meson is fixed to gδN/mδ = 3.162 fm.

ρ0 K M∗
N/MN asym

gσN

mσ

gωN

mω

gρN

mρ
a b c

(fm−3) (MeV) (MeV) (fm) (fm) (fm) (fm−1)

GM3 0.153 240 0.78 32.5 3.151 2.195 2.189 0.04121 −0.00242 –
NLρδ 0.160 240 0.75 30.5 3.214 2.328 3.550 0.0330 −0.0048 –
TM1 0.145 281 0.63 36.9 3.871 3.178 2.374 0.00717 0.00006 0.00282

next section, we have limited our investigation to these three
parameters sets that are compatible with intermediate heavy-
ion collision constraints and extensively used in various high-
density astrophysical applications. Please note that the first
two parameters sets have the same saturated compressibility K

and an almost equal value of the nucleon effective mass M∗
N ,

significantly larger than the TM1 one. Therefore, the GM3
and NLρδ models will fail to reproduce the correct spin-orbit
splittings in finite nuclei [58]. However, the TM1 parameter
set has a larger value of K but a sensibly lower value of M∗

N .
As will be seen, these different saturation properties of nuclear
matter are strongly correlated with the formation of �-isobar
matter at finite density and temperature.

The implementation of hyperon degrees of freedom comes
from determination of the corresponding meson-hyperon cou-
pling constants that have been fitted to hypernuclear properties.
Following Refs. [59–63], the SU(6) simple quark model can
be used to obtain the relations

1
3gωN = 1

2gω� = 1
2gω� = gω	,

gρN = 1
2gρ� = gρ	, gρ� = 0, (21)

gδN = 1
2gδ� = gδ	, gδ� = 0.

In addition, we can fix the scalar σ -meson–hyperon (gσY )
coupling constants to the potential depth of the corresponding
hyperon in normal dense matter taking into account the
following recent results [63–66]:

UN
� = −28 MeV, UN

� = +30 MeV, UN
	 = −18 MeV.

(22)

In Table II, the obtained ratios xσY = gσY /gσN are reported,
and the vacuum hyperon masses are listed in Table III. In this
context, note that the two additional meson fields f0(975) and
φ(1020), usually introduced to simulate the hyperon-hyperon
attraction observed in �-� hypernuclei [62,63], do not play

TABLE II. Ratios of the scalar σ -meson coupling constants for
hyperons: xσY = gσY /gσN .

xσ� xσ� xσ	

GM3 0.606 0.328 0.322
NLρδ 0.606 0.361 0.320
TM1 0.616 0.447 0.319

a significant role in the considered range of density and
temperature and, therefore, their contributions are neglected.

As discussed in the Introduction, the aim of this work is to
describe the EOS at finite values of density and temperature.
Especially at low baryon density and high temperature, the
contribution of the lightest pseudoscalar and vector mesons to
the total thermodynamical potential (and, consequently, to the
other thermodynamical quantities) becomes very important.
However, the contribution of the π mesons (and other pseu-
doscalar and pseudovector fields) vanishes at the mean-field
level. From a phenomenological point of view, we can take
into account the meson particle degrees of freedom by adding
their one-body contribution to the thermodynamical potential,
that is, the contribution of an ideal Bose gas with an effective
chemical potential µ∗

j , depending self-consistently from the
meson fields. Following this scheme, it is possible to evaluate
the pressure PM , the energy density εM , and the particle density
ρM

j of mesons as

PM = 1

3

∑
j

γj

∫
d3k

(2π )3

k2

Ej (k)
gj (k), (23)

εM =
∑

j

γj

∫
d3k

(2π )3
Ej (k) gj (k), (24)

ρM
j = γj

∫
d3k

(2π )3
gj (k), (25)

where γj = 2Jj + 1 is the degeneracy spin factor of the
j th meson (γ = 1 for pseudoscalar mesons and γ = 3 for
vector mesons), the sum runs over the lightest pseudoscalar
mesons (π , K , K , η, η′) and the lightest vector mesons (ρ,
ω, K∗, K

∗
, φ), considering the contribution of particle and

antiparticle separately. In Eqs. (23)–(25) the function gj (k) is
the boson particle distribution (the corresponding antiparticle
distribution gj (k) will be obtained with the substitution µ∗

j →
−µ∗

j ) given by

gj (k) = 1

exp{(Ej (k) − µ∗
j )/T } − 1

, (26)

where Ej (k) = √
k2 + m2

j and mj is the j th meson mass
(see Table III). Moreover, the boson integrals are subjected
to the constraint |µ∗

j | � mj , otherwise Bose condensation
becomes possible (as seen in the next section, this condition
is never achieved in the range of density and temperature
investigated in this article). The values of the effective meson
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TABLE III. Vacuum masses (given in MeV) of the considered hadronic particles.

MN M� M� M� M	 Mπ MK Mη Mη
′ MK∗ Mρ Mω Mφ

939 1116 1189 1232 1315 140 494 547 958 892 771 782 1020

chemical potentials µ∗
j are obtained from the “bare” ones

µj , given in Eq. (18), and subsequently expressed in terms
of the corresponding effective baryon chemical potentials,
respecting the strong interaction.1 For example, we have
from Eq. (18) that µπ+ = µρ+ = µC ≡ µp − µn and the
corresponding effective chemical potential can be written as

µ∗
π+(ρ+) ≡ µ∗

p − µ∗
n

= µp − µn − gρNρ, (27)

where the last equivalence follows from Eq. (17).
Analogously, by setting xω� = gω�/gωN , we have

µ∗
K+(K∗+) ≡ µ∗

p − µ∗
�(�0)

= µp − µ� − (1 − xω�)gωNω − 1
2gρNρ, (28)

µ∗
K0(K∗0) ≡ µ∗

n − µ∗
�(�0)

= µn − µ� − (1 − xω�)gωNω + 1
2gρNρ, (29)

while the others’ strangeless neutral mesons have a vanish-
ing chemical potential. Thus, the effective meson chemical
potentials are coupled with the meson fields related to the
interaction between baryons. As seen in the next section, this
assumption represents a crucial feature in the EOS at finite
density and temperature and can be seen somehow in analogy
with the hadron resonance gas within the excluded-volume
approximation. There the hadronic system is still regarded as
an ideal gas but in the volume reduced by the volume occupied
by constituents (usually assumed as a phenomenological
model parameter), here we have a (quasifree) meson gas
but with an effective chemical potential that contains the
self-consistent interaction of the meson fields.

Finally, the total pressure and energy density will be

P = PB + PM, (30)

ε = εB + εM. (31)

At a given temperature T , all the aforementioned equations
must be evaluated self-consistently by requiring the conser-
vation of the baryon, electric charge fraction, and strangeness
numbers [68]. Therefore, at a given baryon density ρB , a given
Z/A net electric charge fraction (ρC = Z/AρB ) and a zero net
strangeness of the system (ρS = 0), the chemical potentials
µB , µC , and µS are univocally determined by the following
equations

ρB =
∑

i

biρi(T ,µB,µC,µS), (32)

ρC =
∑

i

ciρi(T ,µB,µC,µS), (33)

1An analog assumption, limited to the pions’ contribution, has been,
for example, adopted in Ref. [67].

ρS =
∑

i

siρi(T ,µB,µC,µS), (34)

where the sums run over all considered particles.

III. RESULTS AND DISCUSSION

A. Equation of state of pn� symmetric nuclear matter

Let us start our numerical investigation by considering the
symmetric hadronic EOS using the model discussed here. To
better focalize the role of �-isobar degrees of freedom, this
first subsection is limited to the consideration of only protons,
neutrons, and � particles.

In Fig. 1, the pressure as a function of the baryon density
(in units of the nuclear saturation density ρ0) in the limit of
zero temperature is reported. Among the several parameter
sets, we choose the three sets, GM3, NLρδ, and TM1 (see
Table I for details), that meet in a satisfactory way the region,
reported as the shaded area, of pressures consistent with the
experimental flow data of heavy-ion collisions at intermediate
energy, analyzed by using the Boltzmann equation model [26].
Furthermore, these parameters sets are largely used to describe
the hadronic EOS on high-density β-equilibrium compact stars
[13,27,32].

At the scope of giving a roughly indication of the presence
of the �-isobar degrees of freedom from the point of view of
the stiffness of the EOS, in Fig. 1, we show the behavior
of the pressure corresponding only to nucleons (monotonic
curves) and nucleons and � (nonmonotonic curves) with
the scalar rs = gσ�/gσN and vector rv = gω�/gωN meson-�
coupling ratios. Let us note in this context that, when
a metastable condition for � isobars is not realized (see
subsequent discussion), decays rates are not taken into account.
Moreover, a further softening of the EOS can occur considering

GM3
TM1
NLρδ

rs 1.2, rv 1

rs 1.3, rv 1
rs 1.2, rv 1

2 3 4 5 6
ρB ρ0

10

20

50

100

200

P
M

eV
fm

3

FIG. 1. Pressure as a function of the baryon density (in units of the
nuclear saturation density ρ0) for the symmetric nuclear matter at zero
temperature for three different EOSs and � coupling ratios (absence
of � contribution in the monotonic curves). The shaded region
corresponds to the limits obtained from the analysis of Ref. [26].
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GM3

a

b

c

d
e

f

1 2 3 4 5 6
ρB ρ0

50

100

150

∋ ρ B
M

N
M

eV

FIG. 2. The energy per baryon versus baryon density at zero
temperature and GM3 parameter set with (a) without �; (b) non-
interacting � (rs = rv = 0); (c) rs = 1.3, rv = 1, (d) rs = 1.41,
rv = 1), (e) rs = 1.45, rv = 1, (f) rs = 1.5, rv = 1.

the degrees of freedom of the other hadronic particles. At
zero temperature and symmetric nuclear matter these effects
occur at very high density and, as anticipated, are considered
separately in the next subsections.

To better understand the dependence of the EOS on the
meson-� coupling constants for the different parameters sets,
we start by reporting in Fig. 2 the energy per baryon versus
baryon density at zero temperature and GM3 parameter set.
The curves (labeled with a, b, c, d, e, f) represent different
values of the scalar rs and vector rv meson-� coupling ratios.
In setting these coupling constants we have required, as in
Ref. [46], that (i) the second minimum of the energy per baryon
lies above the saturation energy of normal nuclear matter, that
is, in the mixed �-nucleon phase only a metastable state can
occur; (ii) there are no � isobars present at the saturation
density; and (iii) the scalar field is more (equal) attractive and
the vector potential is less (equal) repulsive for �’s than for
nucleons, in accordance with QCD finite-density calculations
[45]. Of course, the choice of couplings that satisfies the these
conditions is not unique but exists as a finite range of possible
values (represented as a triangle region in the plane rs-rv)
that depends on the particular EOS under consideration [46].
Without loss of generality, we can limit our investigation to
move only in a side of such a triangle region by fixing rv = 1
and varying rs from unity to a maximum value compatible
with the aforementioned conditions. Similar conclusions are
obtained with any other compatible choice of the two coupling
ratios.

In Fig. 3, we compare the energy per baryon for different
parameters sets but at a fixed value of the scalar and vector
� coupling constants. At variance of the parameters sets there
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FIG. 3. (Color online) The same as Fig. 2 but for different
parameter sets and fixed rs = 1.3 and rv = 1.

TABLE IV. Values of the r II
s corresponding to the appearance of

the second minimum on the energy per baryon and the maximum
values rmax

s obtained by requiring that in the mixed �-nucleon phase
only a metastable state can occur.

GM3 NLρδ TM1

r II
s 1.41 1.32 1.27

rmax
s 1.50 1.41 1.33

is a very different behavior; however, comparable features for
the three considered parameters sets are obtained by means of
a rescaling of the � couplings. To better clarify this aspect,
Table IV shows, for the three parameters sets and fixing rv = 1,
the values of r II

s corresponding to the appearance of the second
minimum on the energy per baryon and the values of rmax

s

corresponding to the maximum values of rs compatible with
the constraint that the second minimum of the energy per
baryon lies above the saturation energy of normal nuclear
matter.

To get a deeper insight into the dependence of the � isobars
from the coupling constants and from the temperature, in
Fig. 4 the behavior of the effective mass M∗

� for different
temperatures and � coupling constants (rs = rv = 1 for upper
curves and rs = 1.32 and rv = 1 for lower curves) in the NLρδ

parameter set is shown. Note that the coupling ratio of the lower
curves corresponds to the appearance of the second minimum
of the energy per baryon at zero temperature (metastable state).
As we can see, the different behavior of the effective � mass
from the coupling constants is strongly linked to the different
behavior of the energy per baryon versus baryon density and
temperature.

Figure 5 shows the energy per baryon as a function of
the baryon density at T = 40–100 MeV for two different
� scalar coupling ratios rs and for the TM1 parameter set.
As stated before, at zero temperature and fixed rv = 1, there is
no second minimum if rs = 1 while it takes place if rs = 1.3
(see Fig. 3 and Table IV). As the temperature increases, the
behavior is remarkably different in the case of rs = 1.3 where
the first minimum disappears and only the second minimum
remains. In Figs. 4 and 5, the results are reported only for one
parameter set; however, similar behaviors are obtained with

T 0 MeV
T 40 MeV
T 80 MeV
T 120 MeV

rs 1

rs 1.32

0 1 2 3 4 5 6
ρB ρ0

0.0

0.2

0.4

0.6

0.8

1.0

M
M

FIG. 4. The � effective mass ratios versus the baryon density with
rs = rv = 1 (upper curves) and with rs = 1.32 and rv = 1 (lower
curves) for different temperatures. The parameter set used in the
calculation is NLρδ.
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FIG. 5. The energy per baryon versus baryon density for sym-
metric nuclear matter at different values of temperature and TM1
parameter set. The solid lines correspond to the � coupling ratios
rs = rv = 1 and the dashes lines correspond to rs = 1.3 and rv = 1.

the other sets, if we use comparable meson-� coupling ratios.
To better clarify this aspect, Fig. 6 shows the variation of the
baryon density, with respect to temperature, corresponding to
the position of the second minimum of the energy per baryon
for the three different parameter sets. In the comparison, rs is
fixed to the average value rm between the values r II

s and rmax
s

listed in Table IV for each parameters sets (rs = 1.46 for GM3,
rs = 1.37 for NLρδ, rs = 1.30 for TM1). For all three sets,
the position of the second minimum appears approximately
at a constant value of baryon density ρB ≈ 3–4 ρ0 until
T ≈ 80–100 MeV. At higher temperatures, as observed in
Fig. 5, the first minimum disappears and the second minimum
moves rapidly at lower baryon densities. At fixed temperature,
the different positions of the second minimum are a direct
consequence of the different saturated nucleon effective mass
M∗

N in the considered parameter sets. In agreement with the
results of Ref. [44], we see, in fact, that a smaller value of M∗

N

favors the appearance of a second minimum of the energy per
baryon at a lower baryon density. Therefore, as a result the
position of the second minimum is at a sensibly lower baryon
density for the TM1 set with respect to the NLρδ and GM3
ones.

Figure 7 shows the nucleon (solid lines) and the �-isobar
(dashed lines) density, normalized to the baryon density,
versus the baryon density for different values of temperature
(in MeV). We observe that, although the �-isobar density
seems to be negligible at low temperatures up to very high

GM3
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T MeV
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ρ 0

FIG. 6. (Color online) Variation of the baryon density, with
respect to temperature, corresponding to the position of the second
minimum of the energy per baryon for different parameter sets (see
text for details).
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FIG. 7. The relative nucleon (solid lines) and � (dashed lines)
density versus the baryon density with rs = rv = 1 (upper panel)
and with rs = 1.32 and rv = 1 (lower panel) for different values of
temperature (in MeV). The parameter set used in the calculation is
NLρδ.

densities, it becomes relevant by increasing the temperature
even for rs = rv = 1 (upper panel). Moreover, in the case of
rs = 1.32 and rv = 1 (lower panel), the �-particle density
becomes comparable to the nucleon density in the range of
T ≈ 80–120 MeV and ρB ≈ 1–2.5 ρ0; values that can be
reached in high-energy heavy-ion collisions. This behavior has
been obtained for the NLρδ parameter set but is common for all
three considered sets even if, at fixed temperature and baryon
density, different values of particle densities are obtained for
different EOSs. To better focus this matter of fact, in Fig. 8, the
variation of the baryon density, as a function of temperature,
for which �-isobar density is equal to nucleon density (ρ� =
ρN = ρB/2), for the three different parameter sets is reported.

GM3

NLρδ

TM1

20 40 60 80 100 120
T MeV

1.5

2.0

2.5

3.0

ρ B
ρ 0

FIG. 8. (Color online) Variation of baryon density, as a function of
temperature, for which �-isobar density is equal to nucleon density,
for different parameter sets. The scalar coupling ratios for each EOS
are the values rs = r II

s reported in Table IV.
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Also in this case, in the comparison, comparable values of
rs for different EOSs are used. As in Fig. 7, for the NLρδ

parameter set we fix rs = 1.32, corresponding to the value
r II
s of Table IV. Analogously, we use rs = 1.41 for GM3 and

rs = 1.27 for TM1. As already observed in Fig. 6, for the TM1
parameter set, which has a lower value of M∗

N , the formation
of � isobars occurs at lower baryon densities with respect to
NLρδ and GM3 (with larger values of M∗

N ). Small variations
between NLρδ and GM3 correspond mainly to the almost
equal saturated nucleon effective mass (slightly greater for the
GM3 parameter set).

Finally, in agreement with previous investigations [43,44],
note that, in Fig. 7, the ρ�/ρB and ρN/ρB ratios become
constant at sufficiently high baryon density, regardless of
the temperature. By increasing the rs ratio (and fixing rv)
such constant asymptotic values are reached at lower baryon
density. Moreover, we have verified that this behavior is
still realized in asymmetric hadronic matter and even in the
presence of hyperons and meson degrees of freedom. This
feature could be an interesting matter of investigation in future
high-energy compressed nuclear matter experiments.

B. Equation of state with strange particles

Let us now investigate the EOS with the inclusion of
hyperons and nonstrange and strange meson particles at fixed
values of Z/A and zero net strangeness, as described in Sec. II.

In Fig. 9, the isotherms of the strange chemical potential
µS (upper panel) and the electric charge chemical potential
µC (lower panel) for different values of temperature and
Z/A = 0.4 are shown. To point out the role of the � degrees of

6080120

a

no
rs 1
rs 1.3

160

200 400 600 800 1000
µB MeV

0

50

100

150

200

250

300

µ S
M

eV

80120

b

no
rs 1
rs 1.3

160

200 400 600 800 1000
µB MeV

35

30

25

20

15

10

5

0

µ C
M

eV

FIG. 9. Variations of the strangeness chemical potential µS (upper
panel) and electric charge chemical potential µC (lower panel) with
respect to the baryon chemical µB at different values of temperature
(in MeV) and different � coupling constants. The parameter set is
GM3 and rv = 1.
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FIG. 10. Baryon density (in units of the nuclear saturation density
ρ0) as a function of the baryon chemical potential µB at different
values of temperature (in MeV). The parameter set is GM3 and rv = 1.

freedom, three different cases are considered: (i) the solid lines
do not contain � contribution, (ii) in the long-dashed lines the
� couplings are rs = rv = 1, and (iii) rs = 1.3 and rv = 1
for the short-dashed lines. As expected, for a multicomposed
strange hadronic matter, µS is positive and increases with
T and µB . At low T we observe very small variations in
the strangeness chemical potential with different � coupling
constants. Very significant effects instead are present in the
behavior of µC , where, in the presence of the � degrees of
freedom, there is a sensible reduction of its absolute value
and it remains almost constant at high µB . This matter of
fact suppresses the possibility of pion condensation also at
very high baryon density (see later in this section for a further
discussion on Bose condensation).

Analogously, in Figs. 10 and 11, we report, for different
temperatures and Z/A = 0.4, the baryon density and the
pressure as a function of the baryon chemical potential. One
can see how the presence of the � degrees of freedom
becomes, already for T ≈ 80 MeV, very remarkable for baryon
densities greater than about ρ0/2. The parameter set used in the
aforementioned calculations is GM3; however, very similar
behaviors can be obtained with the other sets. As already
remarked, the most relevant difference is that the presence of
� particles occurs at lower baryon chemical potentials (baryon
densities) for the TM1 EOS.

To better understand the relevance of the � isobars, together
with the effects of the electric charge fraction and of the
effective meson chemical potentials, in Fig. 12 the relative
difference of the pressure �P/P (without and with �s

T 160 MeV
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µB MeV
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FIG. 11. Pressure as a function of the baryon chemical potential
µB at different values of temperature (in MeV). The parameter set is
GM3 and rv = 1.
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FIG. 12. Relative difference of the pressure as a function of the baryon chemical potential µB at different values of temperature with the

exclusion (no �) and the inclusion (rs = 1.3 and rv = 1) of the �-isobar degrees of freedom. (a) �P (Z/A, µ∗) ≡ P (Z/A = 0.5) − P (Z/A =
0.4) and the symbol µ∗ means that an effective chemical potential for all hadrons has been considered (see text for details); (b) the same as
panel (a) but mesons have a bare chemical potential (free boson gas); (c) �P (Z/A = 0.4, µ, µ∗) ≡ P (µ) − P (µ∗) at fixed Z/A = 0.4, where
the pressure P (µ) is calculated by considering a bare chemical potential for mesons and the pressure P (µ∗) is calculated by using an effective
chemical potential for all hadrons; (d) same as panel (c) but at fixed Z/A = 0.5. The circles, the squares, and the triangles represent the values
of the baryon chemical potential corresponding to ρB = ρ0, 2 ρ0, and 3 ρ0, respectively.

contribution) as a function of the baryon chemical potential
is reported. The used parameter set is NLρδ but we have
common behaviors for all three sets. In Figs. 12(a) and 12(b)
the sensibility of the EOS with respect to a variation of Z/A

is shown. In fact in Fig. 12(a) �P (Z/A,µ∗) ≡ P (Z/A =
0.5) − P (Z/A = 0.4) and the symbol µ∗ means that the
effective meson chemical potentials have been taken into
account, as described in Sec. II. In Fig. 12(b) the same
relative difference is reported but with bare meson chemical
potentials µ (in other words, all mesons are considered as
a free gas of non-interacting particles). In the figure, the
circles, the squares, and the triangles represent the values
of the baryon chemical potential corresponding to ρB = ρ0,
2 ρ0, and 3 ρ0, respectively. As expected, the EOS is more
sensible to a variation of Z/A at low temperature and this
effect decreases by increasing the temperature. However, this
behavior is strongly related to the �-isobar degrees of freedom.
The presence of � isobars greatly reduces the dependence on
Z/A in the range of baryon density and temperature relevant
in this investigation. This matter of fact is also realized by
considering bare meson chemical potentials [Fig. 12(b)], even
if this effect is less marked. As a consequence, we expect that
�-isobar degrees of freedom affect significantly the value of
the symmetric energy at finite density and temperature.

In Figs. 12(c) and 12(d), we wish to emphasize the impor-
tance of effective meson chemical potentials by considering
the relative difference between the pressure P (µ), calculated

with bare meson chemical potentials, and the pressure P (µ∗),
including effective meson chemical potentials at fixed ratio
Z/A = 0.4 [Fig. 12(c)] and Z/A = 0.5 [Fig. 12(d)]. The
presence of effective meson chemical potentials reflects the
behavior of the self-consistent values of the meson fields and,
in particular, we see that its relevance (i) depends on the
baryon density (or µB), (ii) increases with the temperature,
(iii) depends on the isospin asymmetry (more relevant for
asymmetric hadronic matter), and (iv) decreases with the
presence of � and that the relative difference has a maximum in
the region of ρB ≈ 0.5–3 ρ0. We will see in the next subsection
that these features are very important in the behavior of the
considered particle-antiparticle ratios and in the strangeness
production.

Always concerning the role of the effective meson chemical
potential, let us further observe that its absolute value is
significantly lower than its bare value and, therefore, the
window of µB and T values, in which Bose condensation
can occur, appears to be greatly reduced. Considering, for
example, the K+ meson, its bare chemical potential [see
Eq. (18)] is µK+ = µS + µC ≡ µp − µ�, which is dominated
by the behavior of µS (that increases with µB and T , see
Fig. 9). However, taking into account Eq. (28), µ∗

K+ is
significantly reduced compared to µK+ by the presence of
the ω- and ρ-meson fields. At fixed ratio Z/A = 0.4 and zero
net strangeness, by increasing µB and T , the term containing
the ρ-meson field is always negative but is much smaller than

044909-9



A. LAVAGNO PHYSICAL REVIEW C 81, 044909 (2010)

a b c a b c

a

b
c

a

b,c

T 120 MeV

T 80 MeV

rs 1
rs 1.3

200 400 600 800 1000
µB MeV

0.0

0.1

0.2

0.3

0.4

0.5

0.6
p

FIG. 13. (Color online) Ratios of net densities �++/p as a
function of the baryon chemical potential for different temperatures,
rs , and parameter sets (a, TM1; b, NLρδ; c, GM3).

the (positive) ω-meson field one and, thus, kaon condensation
can occur only at very high baryon densities.2

C. Particle ratios

This subsection starts by considering, in Fig. 13, the ratio of
the net densities �++/p as a function of the baryon chemical
potential for different values of temperature and different
parameters sets. As before, we fix Z/A = 0.4. Note that the
ratio increases with the temperature but is almost constant
with µB for rs = 1. In contrast, it increases rapidly with
µB if the � coupling rs is increased. In agreement with the
previous results of Figs. 6 and 8, the formation of � particles
appears to be strongly favored for the TM1 parameter set with
respect to the other two, especially for rs = 1.3. Remember
that, in this last case, � particles are in different regimes
depending on the considered parameter sets (see Table IV).
The aforementioned behavior should be especially evident
at low-transverse-momentum pion spectra in heavy-ion colli-
sions at intermediate/high baryon densities and temperatures.
Furthermore, remembering that we are not considering decays
and rescattering effects, we observe that the order of magnitude
of the ratio at high temperature and low density seems to
be compatible with the SPS/RHIC experimental results (with
measured ratios approximately equal to 0.2–0.5) [41,42].

Figure 14 shows the variation of K+/π+ and K−/π−
ratios with respect to temperature at various baryon chemical
potentials, considering different parameter sets at fixed rs =
rv = 1 coupling ratios. Appreciable variations between the
EOSs are observed only at higher baryon chemical potentials
(µB = 600 MeV). By increasing µB the difference between
K+/π+ and K−/π− ratios increases with the temperature
but such a difference becomes much smaller at low µB . This
behavior is in agreement with recent relativistic heavy-ion
collision data [71].

2It is proper to remember that in this approach we are not considering
effective meson masses, neglecting, for example, the repulsive
potential for kaons and the attractive potential for antikaons [69,70].
Therefore, differences could occur between the present treatment and
more sophisticated formulations. Please note that, in this context,
there may be substantial differences between β-equilibrated nuclear
matter and hot and dense nuclear matter with zero net strangeness
constraint.
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FIG. 14. (Color online) Variation of the K+/π+ and K−/π−

ratios with respect to temperature at different values of baryon
chemical potential and different parameter sets (a, TM1; b, NLρδ;
c, GM3). The � coupling ratios are fixed to rs = rv = 1.

Figure 15 shows the ratio K+/K− as a function of
temperature at different µB and � coupling ratios (solid lines,
absence of �’s; long dashed lines, rs = rv = 1; short dashed
lines, rs = 1.3, rv = 1); Z/A = 0.4. As expected, we have a
value of the ratio nearly equal to one at low baryon chemical
potentials (µB � 300 MeV), while, for higher µB , the ratio
has a peak corresponding to baryon density ρB ≈ 0.1–0.2ρ0

for µB ≈ 500–600 MeV curves. This nonmonotonic behavior
is much more evident taking into account the �-isobar degrees
of freedom.

To investigate how the previous results depend on the
choice of the EOS, in Fig. 16, we report the variation of the
K+/K− ratio with respect to baryon chemical potential, at
fixed temperature T = 100 MeV and for the parameter sets
GM3 and TM1 (the results relative to the NLρδ set are not
reported because they are very close to the GM3 ones). As in
Fig. 6, the higher value of rs is fixed to the average value rm

between r II
s and rmax

s listed in Table IV (rm = 1.46 for the GM3
parameter set and rm = 1.30 for TM1 parameter set). The two
EOSs have similar shapes even if the ratio is suppressed at
higher µB in the TM1 model, also in absence of � degrees
of freedom. Moreover, a very peculiar behavior appears at
rs = rm where the ratio has a peak around µB ≈ 640–650 MeV
(corresponding to ρB ≈ 0.7 ρ0 and ρB ≈ ρ0 for TM1 and GM3
sets, respectively). This feature is mainly due to the fact that, at
fixed Z/A and zero net strangeness, the density of K+ mesons
is reduced by the presence of � particles.
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FIG. 15. Variation of the K+/K− ratio with respect to tempera-
ture at different values of baryon chemical potential and for different
� coupling ratios (TM1 parameter set).
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FIG. 16. (Color online) Variation of the K+/K− ratio with
respect to baryon chemical potential at fixed temperature T =
100 MeV. The value rm corresponds to the average value between
r II
s and rmax

s listed in Table IV for the two different parameter sets.

Related to the aforementioned results, it should be inter-
esting to investigate from the experimental point of view
the behavior of the ratio K+/K− in a kinematical region
corresponding to intermediate/high temperatures and high
values of µB .

To gain a deeper insight about the role of the � isobars and
the net electric charge fraction, we report in Figs. 17 and 18 the
variation of K+/π+ and K+/K− ratios with respect to baryon
density at T = 80 and 120 MeV. For each temperature, we
have set Z/A = 0.4 for solid curves and Z/A = 0.5 for long-
dashed curves, both in the absence of � particles; Z/A = 0.4
and � couplings rs = 1.2 for short-dashed curves; Z/A = 0.5
and rs = 1.2 for dotted curves (rv = 1). The parameter set
is TM1 but similar behaviors are observed for the other two
parameter sets.

Concerning the dependence on Z/A, we have to compare
solid with long-dashed curves (in absence of � particles) and
short-dashed curves with dotted ones (with the inclusion of
�’s). We can see that the differences between K+/π+ ratios
are comparable for the two temperatures, while we have a
decreasing difference between K+/K− ratios by increasing
the temperature (it occurs as an enhancement of K+/K−
ratios at Z/A = 0.5 with respect to the value Z/A = 0.4; the
other way round takes place for K+/π+ ratios). As already
observed in Fig. 12, the presence of the � isobars strongly
suppresses the dependence on Z/A for the considered particle
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FIG. 17. Variation of K+/π+ ratios with respect to baryon
density at T = 80 MeV (lower curves) and T = 120 MeV (upper
curves). For the dash-dotted curves the symbol µ indicates that all
mesons have bare chemical potentials (see text for details).
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FIG. 18. The same as Fig. 17 but for K+/K− ratios.

ratios. However, concerning the strangeness production in the
presence of the �-isobar degrees of freedom, we can compare
solid with short-dashed curves (at fixed Z/A = 0.4) and
long-dashed curves with the dotted ones (at fixed Z/A = 0.5).
In agreement with the results of Figs. 14, 15, and 16, we
observe that, at fixed T and ρB , the presence of the � isobars
sensibly decreases both K+/π+ and K+/K− ratios. Moreover,
to outline the importance of the effective meson chemical
potential µ∗, in Figs. 17 and 18, we have inserted the dash-
dotted curves corresponding to ratios with Z/A = 0.4 and �

coupling rs = 1.2, but with bare meson chemical potentials µ.
As already outlined in Fig. 12, comparing these last curves with
the short dashed ones, it is possible to observe the relevance
of the effective meson chemical potentials at finite density
and temperature and how they thus avoid unphysical too high
ratios [71].

Finally, it is interesting to extend the study of the EOS
also at high temperatures and low baryon chemical potential
regime. At this scope, in Fig. 19, we report the results of various
particle-antiparticle ratios and K+/π+ ratio as a function of the
p/p ratio for different values of temperature. The � coupling
ratios are fixed to rs = rv = 1 and Z/A = 0.4. The ratios are
reported for the GM3 parameter set, however, we have verified
that very close results are obtained for the other two parameter
sets. Also in this case we can observe good agreement with
the results obtained in the framework of statistical-thermal
models [18] and with experimental SPS and RHIC data [71].

K K

K π

T 160 MeV
T 120 MeV
T 80 MeV

0.4 0.5 0.6 0.7 0.8 0.9 1.0
p p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 19. Particle-antiparticle and K+/π+ ratios as a function of
the p/p ratio for different temperatures. The � coupling ratios are
fixed to rs = rv = 1. The ratios of 	+/	− at T = 80 and 120 MeV
are not reported because they are very strictly to the �/� ones.
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IV. CONCLUSIONS

The main goal of this article is to show systematically
how the presence of the �-isobar degrees of freedom affect
the hadronic EOS by requiring, in the range of finite density
and temperature, the global conservation of baryon number,
electric charge fraction, and zero net strangeness. In this study
we have considered three different parameter sets (GM3,
NLρδ, and TM1) that are compatible with recent analy-
sis at intermediate-energy heavy-ion collisions and exten-
sively adopted in several applications related to high-density
β-equilibrium compact stars. We have studied a RMF model
with the inclusion of the full octet of baryons and �-isobars,
self-interacting by means of σ -, ρ-, ω-, and δ-meson fields.
To take into account the lightest pseudoscalar and vector
meson contributions, especially in a regime of low (but finite)
baryon density and high temperature, we have incorporated the
mesons as an ideal Bose gas but with effective chemical poten-
tials. We have shown that in the EOS and, as a consequence, in
the analyzed particle ratios, this assumption appears to be very
relevant in the range of density and temperature considered in
this article. The role of the effective meson chemical potential
has a phenomenological counterpart in the excluded volume
approximation for the hadron resonance gas where all effective
particle chemical potentials are shifted, with respect to the real
ones, proportionally to the particle excluded volume (usually
assumed as a parameter). Here, from a more microscopic point
of view, the effective meson chemical potentials are shifted
proportionally to the meson fields, related to the self-consistent
interaction between baryons.

The relevance of the � isobars in the EOS has been
investigated for different parameter sets and coupling ratios at
zero and finite temperature, in the absence and in the presence
of hyperons and mesons, for symmetric and asymmetric
nuclear matter. In all considered cases we have shown that the
�-isobar degrees of freedom play a crucial role. Especially
in the range of finite density and temperature considered in

the last two subsections, one can see that (i) the relevance of
� isobars strongly increases with a density and temperature
increase; (ii) at fixed Z/A, the presence of � isobars in
the EOS affects significantly the strangeness production; and
(iii) �-isobar degrees of freedom remarkably decrease the
dependence on the isospin of the EOS and, as a consequence,
of the considered particle ratios. This last property appears to
be very relevant also in connection to the supposed dependence
on Z/A of the critical transition density from hadronic matter
to a mixed phase of quarks and hadrons at high baryon and
isospin density.

All quoted features are realized even if the � coupling ratios
rs and rv do not necessarily correspond to the formation of
a �-isobar metastable state; however, much stronger effects
are present if we consider rs � r II

s indicated in Table IV.
Furthermore, apart from an appropriate variation of coupling
constants, the obtained results are comparable for all three
considered parameter sets. The most relevant difference is that
the formation of � particles is favored at lower baryon density
for the TM1 EOS with respect to the other two parameter sets.
This matter of fact is strongly correlated to the significantly
lower value of the saturated effective nuclear mass M∗

N in the
TM1 parameter set.

Finally, we have investigated several particle-antiparticle
ratios and strangeness production as a function of the temper-
ature, baryon density, and antiproton to proton ratio. Although
the studied EOS is principally devoted to a regime of finite
and intermediate values of baryon density and temperature, a
satisfactory agreement has been found with recent relativistic
heavy-ion collision data and with statistical-thermal model
results.
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