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Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy
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The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation
reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio
of the symmetry energy coefficient to the temperature, asym/T , as a function of fragment mass A. The extracted
values increase from 5 to ∼16 as A increases from 9 to 37. These values have been compared to the results of
calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay
code GEMINI. The calculated ratios are in good agreement with those extracted from the experiment. In contrast,
the values extracted from the ratios of the primary isobars from the AMD model calculation are ∼4 to 5 and show
little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from
final fragment observables may be significantly different than the actual value at the time of fragment formation.
The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient
is also discussed.
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I. INTRODUCTION

In the early 1980s, a study of the isotopic-yield distributions
of intermediate mass fragments produced in high-energy
proton-induced multifragmentation reactions at Fermi Lab
showed that the distributions can be well described by a
modified Fisher model (MFM) [1,2] in which the isotope
production is governed by the available free energy. Therefore,
isotopic yields provide a good probe for studying the nature
of the disassembling nuclear system. Multifragmentation of
the system is also generally observed in violent collisions in
heavy-ion reactions in the Fermi-energy domain and there is
evidence that both subnormal and supernormal densities may
be explored in such collisions [3,4]. Works in this area have
concentrated on exploring the nuclear equation of state and
the liquid-gas phase transition in nuclear matter. In a previous
article we addressed the possibility of probing the quantum
nature of the liquid-gas phase transition using isotopic yield
distributions [5].

Over the past several years, many fragment emission
studies have been motivated by efforts to use fragment yield
distributions, either singly or by comparison to those of similar
reactions, to explore the symmetry energy in the emitting
source at different densities and temperatures [3,6–9]. In
each of these cases, measuring the isotopic yield distributions
over a wide range of mass number A and atomic number
Z should provide a more reliable basis for extraction of the
desired information. Even then there are important issues
that must be resolved to establish the relation between the
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experimental isotopic yield distributions and the symmetry
energy of the emitting system. One is the source temperature
T . In the MFM, as well as other approaches based upon
the free energy, all terms that can be determined from
experiments appear in the form of ai/T times some function
of A, Z, or the neutron number N , where i indicates the
coefficient of the different terms contributing to the free energy.
Since the beginning of the experimental study of heavy-
ion collisions in the multifragmentation regime, significant
efforts have been made to evaluate the source temperature,
but no absolute consensus among different methods has
yet been achieved [10]. A second issue is the role and
effect of secondary decay processes. In experiments the
majority of the detected fragments are in their ground states.
Most of the primary fragments produced in Fermi-energy
heavy-ion reactions are expected to be in an excited state when
they are formed. Indeed, in previous works, excitation energies
of the primary fragments have been evaluated by studying the
associated light charged-particle multiplicities [11,12]. Such
data demonstrate that secondary decay is important and raise
the question of the degree of confidence that can be accorded
to experimental derivations of the symmetry energy coefficient
that do not properly correct for this important effect. A clear
goal for experimentalists would be the reconstruction of the
primary isotopic yield distributions from the experimental
distributions. This might be approached by a reconstruction
of the primary isotope distributions employing the associated
neutron and charged-particle multiplicities. However, because
multiple fragments are produced in a reaction and light
particles can be produced even before the formation of the
fragments, the identification of the parent for a detected light
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particle observed in coincidence with detected fragments is
not straightforward. A reconstruction of the primary isotope
distribution was part of goal of the experiment described here,
but that analysis is still under way [13]. A third issue, not
addressed in this article but of critical importance in this
field, is the problem of obtaining reliable estimates of the
density at the time of fragment formation. In the absence of
such information most density estimates should be viewed
as unconfirmed. While this may be somewhat mitigated by
comparing experimental observables with results of dynamic
models employing particular assumed forms for the density
dependence of the symmetry energy, such approaches are
integral and may be influenced by other assumptions and
parameter choices inherent in the model applied [14].

In the works of the Purdue Group [1,2], the experimental
isotopic yield distributions have been well reproduced by
MFM. In these, nine parameters are involved, and one of them
(the volume coefficient, typically) is arbitrarily fixed to the
nominal ground-state value. However, there is no reason for
any parameters to be same as the nominal ground-state values.
Each parameter depends not only on the temperature, but also
on the density of the emitting source, and furthermore the
secondary sequential decay effects may significantly modify
the values. These issues make it very difficult to pursue the
physical meaning of the extracted parameters, even though
the isotopic yield distributions are well reproduced by a single
set of parameters. Instead of attempting to determine a unique
set of the parameters globally, parameters are related to the
isobaric yields in the framework of MFM. In the ratios between
the same mass of fragments many terms cancel out and one can
study the specific terms individually and discuss the meaning
of the extracted parameters more clearly. We used MFM to
relate the experimental isobaric yield ratios to the parameters.
One can also perform a similar analysis, using a ground
canonical approach [8,15], where one needs to calculate
the statistical weight factors for the excited fragments. This
calculation is not straightforward, because the fragments are
formed in the emitting source of temperature T and the
experimentally available level scheme is not well established
for the fragments away from the β-stability line. This is one
reason we chose MFM. Another reason for choosing MFM
is that, as discussed in Ref. [5], the isotopic yields show
a power law distribution for a given I = N − Z value and
MFM is a natural choice for reproducing such distributions.
To pursue the physical meanings of the extracted values, they
are compared with those that are extracted in the same way
from simulations, for both the primary excited fragments and
the final ground-state ones. The antisymmetrized molecular
dynamics (AMD) model of Ono et al. is used with a statistical
decay code GEMINI as an afterburner [9,16–18]. In this
article we explore the extent to which information on the
symmetry energy, in the form of asym/T , can be extracted
from high-quality data for isotopically resolved fragment-yield
distributions and compared to the model predictions [9,19].
The role of the secondary decay is explored by comparisons
with results of theoretical calculations. In a separate article
we discuss the extraction of such information using isoscaling
techniques [20].

II. EXPERIMENT

The experiment was performed at the K-500 superconduct-
ing cyclotron facility at Texas A&M University. 64,70Zn and
64Ni beams were used to irradiate 58,64Ni, 112,124Sn, 197Au,
and 232Th targets at 40 A MeV. Intermediate mass fragments
(IMFs) were detected by a detector telescope placed at 20◦.
The telescope consisted of four Si detectors. Each Si detector
was 5 × 5 cm. The nominal thicknesses were 129, 300, 1000,
and 1000 µm. All Si detectors were segmented into four
sections and each quadrant had a 5◦ opening angle in polar
and azimuthal angles. Therefore, the energies of the fragments
were measured at two polar angles of the quadrant detector,
namely, θ = 17.5◦ ± 2.5◦ and θ = 22.5◦ ± 2.5◦. Typically, six
to eight isotopes for atomic numbers Z to Z = 18 were clearly
identified with the energy threshold of 4–10 A MeV, using
the �E − E technique for any two consecutive detectors.
The �E − E spectrum was linearized empirically. Mass
identification of the isotopes were made using a range-energy
table [21]. In the analysis code, isotopes are identified by
a parameter Zreal. For the isotope with A = 2Z, Zreal = Z

is assigned and other isotopes are identified by interpolation
between them. Typical Zreal spectra are shown in Fig. 1. The
energy spectrum of each isotope was extracted by gating the
isotope in a two-dimensional (2D) plot of Zreal vs energy.
The yields of light charged particles (LCPs) in coincidence
with IMFs were also measured using 16 single-crystal CsI(Tl)
detectors of 3 cm thickness set around the target. The light
output from each detector was read by a photomultiplier tube.
The pulse shape discrimination method was used to identify
p, d, t , h, and α particles. The energy calibrations for these
particles were performed using Si detectors (50–300 µm) in
front of the CsI detectors in separate runs.

The yield of each isotope was evaluated, using a moving
source fit. For LCPs, three sources [projectilelike fragments
(PLFs), nucleon-nucleon (NN )-like, and targetlike fragments
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FIG. 1. (Color online) Typical linearized isotope spectra for
Z = 6 and 15 are shown for 64Ni + 124Sn. The number at the top
of each peak is the assigned mass number. The histograms depict
experimental data. A linear background is assumed from valley to
valley for a given Z. Each isotope is fit with two Gaussians. The
individual fit indicates the yield of the isotope above the background.
The sum of Gaussians and the background are also shown in each
spectrum.
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(TLFs)] were used. The NN -like sources have source veloc-
ities of about a half of the beam velocity. The parameters
are searched globally for all 16 angles. For IMFs, because
the energy spectra were measured only at the two angles of
the quadrant detector, the spectra were parametrized using
a single NN source. Using a source with a smeared source
velocity around half the beam velocity, the fitting parameters
were first determined from the spectrum summed over all
isotopes for a given Z, assuming A = 2Z. Then all extracted
parameters except for the normalizing yield parameter were
used for the individual isotopes. This procedure was based
on the assumption that, when the spectrum is plotted in
energy per nucleon, the shape of the energy spectrum is
same for all isotopes for a given Z. Because the yield of
the energy spectra are dominated in the lower-energy side,
slightly different temparatures from some of the isotopes with
high statistics results in the yield within the error bars given
in what follows. For the IMFs, a further correction was made
for the background. As seen in Fig. 1, the isotopes away from
the stability line, such as 10C and 36P, have a very small yields
and the background contribution is significant. To evaluate
the background contribution to the extracted yield from the
source fit, a two-Gaussian fit to each isotope combined with a
linear background was used. The fits are shown in Fig. 1. Each
peak consists of two Gaussians. The second Gaussian (about
10% of the height of the first one) is added to reproduce the
shape of the valley between two isotopes. This component is
attributed to the reactions of the isotope in the Si detector. The
centroid of the Gaussians was set to the value calculated from
the range-energy table within a small margin. The final yield of
an isotope with Z > 2 was determined by correcting the yield
evaluated from the moving source fit by the ratio between the
two Gaussian yields and the linear background. Rather large
systematic errors (∼±10%) are assigned for the multiplicity of
IMFs before the background correction. These errors originate
from the source fits which are evaluated from the different
assumptions for the parameters, including individual sets for
those isotopes with enough statistics. A total 13 data sets,
in which the multiplicities of the isotopes with Z � 18 are
available, for different combinations of the projectile and target
are used in this article.

III. MODIFIED FISHER MODEL

To study the symmetry energy contribution to the fragment
production, the MFM of Refs. [1,2] is used. In the MFM, the
fragment yield of A nucleons with I = N − Z, Y (A, I ) is
given by

Y (A, I ) = CA−τ exp{[(W (A, I ) + µnN + µpZ)/T ]

+N ln(N/A) + Z ln(Z/A)}, (1)

where C is a constant. The A−τ term originates from the
entropy of the fragment, and the last two terms are from
the entropy contributions for the mixing of two substances
in the Fisher droplet model [22]. µn is the neutron chemical
potential and µp is the proton chemical potential, and W (A, I )
is the free energy of the cluster at temperature T . As such,
it includes both energy and entropy terms. In the model,

W (A, I ) is given by the following generalized Weiszäcker-
Beth semiclassical mass formula [23,24] at a given temperature
T and density ρ:

W (A, I ) = − asym(ρ, T )I 2/A − ac(ρ, T )Z(Z − 1)/A1/3

+ av(ρ, T )A − as(ρ, T )A2/3 − δ(N,Z), (2)

where the indexes v, s, c, and sym represent volume, surface,
Coulomb, and symmetry energy, respectively. Following the
semiempirical mass formulation, the pairing energy, δ(N,Z),
is given by [25,26]

δ(N,Z) =

⎧⎪⎨
⎪⎩

ap(ρ, T )/A1/2 (odd-odd),

0 (even-odd),

−ap(ρ, T )/A1/2 (even-even).

(3)

We define the fragment yield ratio, R(I + 2, I, A), between
isobars differing by 2 units in I as

R(I + 2, I, A)

= Y (A, I + 2)/Y (A, I )

= exp{[W (I + 2, A) − W (I, A) + (µn − µp)]/T

+ Smix(I + 2, A) − Smix(I, A)}, (4)

where Smix(I, A) = N ln(N/A) + Z ln(Z/A). Hereafter, to
simplify the description, the density and temperature depen-
dence of the coefficients in Eq. (2) is omitted as ai = ai(ρ, T )
(i = v, s, c, sym, p). Inserting Eq. (2) into Eq. (4), one can get

R(I + 2, I, A) = exp{[µn − µp + 2ac(Z − 1)/A1/3

− 4asym(I + 1)/A − δ(N + 1, Z − 1)

− δ(N,Z)]/T + �(I + 2, I, A)}, (5)

where �(I + 2, I, A) = Smix(I + 2, A) − Smix(I, A). One
should note that �(1,−1, A) = 0 and for other I values
�(I + 2, I, A) � 0.5, which is rather small comparing other
parameters in Eq. (5).

Initially, we focus on the isobars with I = −1 and 1. For
these isobars the contributions from the symmetry term and
the mixing entropy term in Eq. (5) drop out and, because these
isobars are even-odd nuclei, the pairing term also drops out.
Taking the logarithm of the resultant equation, one can get

ln[R(1,−1, A)] = [(µn − µp) + 2ac(Z−1)/A1/3]/T . (6)

For different reaction systems, N/Z and thus (µn − µp)/T

can be different. To evaluate the system dependence of (µn −
µp)/T , we determined the average value of ln[R(1,−1, A)]
over all available fragments for each system. In Fig. 2 these
average values are plotted as a function of the entrance channel
Z/A for the reaction systems studied. As seen in the figure,
the average values show a linear dependence on the entrance
channel Z/A of the system. Because the Coulomb energy in
the right-hand side of Eq. (6) is that of the fragment itself and
therefore expected to be very similar for the different reaction
systems and the temperature T is also assumed to be similar
because the same incident energy is used [27], we attribute the
linear dependence seen in the figure to the difference of (µn −
µp)/T in the different systems. Expressing (µn − µp)/T as

[(µn − µp)/T ]i = [(µn − µp)/T ]0 + �µ(Z/A)/T ,
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FIG. 2. Experimental average values of ln[R(I + 2, I, A)] for the
case of I = −1 are plotted as a function of Z/A of the reaction
systems. Z/A = (Zp + Zt )/(Ap + At ), where p and t represent the
projectile and the target, respectively. The dotted line is a linear fit.

and

�µ(Z/A)/T = c1 · (Z/A) + c2,

here [(µn − µp)/T ]i denotes the value for a given reaction
system i, and [(µn − µp)/T ]0 is for the reference reaction
system. A linear fit gives c1 = −13.0 and c2 = 8.7 for
Fig. 2, in which the 64Zn + 112Sn reaction is taken as the
reference; that is, the extracted values in the figure have
been adjusted to the reference reaction using �µ(Z/A)/T ,
in which �µ(Z/A)/T = 0 for the 64Zn + 112Sn reaction. In
Fig. 3 the experimental values of ln[R(1,−1, A)], corrected by
�µ(Z/A)/T , are plotted for all reactions as a function of A.
Fitting these corrected average values using (µn − µp)/T and
ac/T as fitting parameters, Eq. (6) leads to (µn − µp)/T =
0.71 and ac/T = 0.35.

We next compare isobars with I = 1 and 3, noting that these
isobars are also even-odd nuclei for which the pairing term is 0.
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FIG. 3. (Color online) Experimental values of ln[R(1, −1, A)]
with the offset correction for different reactions is plotted as a function
of A for I = −1. Open circles show results from the individual
experiments and solid circles depict the average values for a given
A over all reactions. The dotted line shows the result of fitting the
average values with Eq. (6).
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FIG. 4. (Color online) Experimental values of asym/T as a
function of A. Open circles are obtained from Eq. (7) and solid
circles are the average values for a given A. Stars are the average
values obtained from Eq. (8).

For this combination, the symmetry energy coefficient term in
Eq. (5) is given as a function of A by

asym/T = −A/8{ln[R(3, 1, A)] − [(µn − µp)/T

+ 2ac(Z − 1)/A1/3]/T − �µ(Z/A)/T

−�(3, 1, A)}. (7)

In Fig. 4 values of asym/T calculated from Eq. (7) using
the values (µn − µp)/T = 0.71 and ac/T = 0.35 determined
previously, are plotted as a function of A. All available values
from the different reactions are plotted in the figure. The
extracted values are very similar in magnitude and trend for
the different reactions. In general, the values increase from 5
to ∼16 as A increases from 9 to 37 and may show a plateauing
above that.

The symmetry term can also be extracted without evaluating
the values of (µn − µp)/T and ac/T explicitly. In Fig. 5,
the experimental values of ln[R(3, 1, A)] and ln[R(1,−1, A)]
from the 64Zn + 112Sn reaction are plotted. The symmetry
term, asym/T , for a given A can be extracted approximately
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FIG. 5. Experimental values of ln[R(I + 2, I, A)] for I = −1
(open circles) and I = 1 (solid circles) for the 64Zn + 112Sn reaction.
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by the difference of these values as

asym/T ∼ −A/8{ln[R(3, 1, A)] − ln[R(1,−1, A)]

−�(3, 1, A)}. (8)

The approximation made in Eq. (8) is that the Coulomb
term in ln[R(3, 1, A)] is same as that in ln[R(1,−1, A)]. In
the actual calculation, the Coulomb term in ln[R(3, 1, A)] for
A = 13, for example, is calculated from the yield ratio of
13B/13C, whereas that in ln[R(1,−1, A)] is calculated from
11B/11C, assuming that the ratio of the Coulomb energy for
13B/13C is same as that of 11B/11C. A similar approximation
has been made for all extracted values. The resultant symmetry
values are plotted in Fig. 4 using star symbols. The main
difference between the values from Eq. (7) (circles) and those
from Eq. (8) (stars) originates from the deviation of the data
from the fitted line in Fig. 3.

The pairing terms in Eq. (5) can be determined using the
extracted values for (µn − µp)/T , ac/T , and asym/T for the
combination of isobars with I = 0 and 2 and I = 2 and 4. For
I = 0 and 2 isobars, the pairing term can be written as

ap/T = (sgn) 1
2A1/2{ln[R(2, 0, A)] − [(µn − µp)

+ 2ac(Z − 1)/A1/3 − 4asym/A]/T − �(2, 0, A)},
(9)

and for I = 2 and 4 it is given by

ap/T = (sgn) 1
2A1/2{ln[R(4, 2, A)] − [(µn − µp)

+ 2ac(Z − 1)/A1/3 − 12asym/A]/T − �(4, 2, A)}.
(10)

Here sgn = 1 for (N,Z) = (odd,odd) and −1 for (even,even)
nucleus, in which A = N + Z.

The ap/T values obtained from Eqs. (9) and (10), using
the extracted values of (µn − µp)/T , ac/T , and asym/T given
previously, are plotted in Fig. 6. In the top panel, for I = 0
and 2 isobars, the pairing contribution is clearly observed for
isobars with A < 30, though the even-odd oscillation pattern
is slightly distorted. In the bottom panel, using Eq. (10) with
I = 2 and 4 isobars, the only clear pairing effect is observed
for fragments only with A < 20.

The pairing term ap/T can also be extracted from experi-
mental yield ratios of isobars without the explicit evaluation of
(µn − µp)/T , ac/T , and asym/T , similar to Eq. (8). Inserting
Eqs. (6) and (8) into Eq. (9) with I = 0 and 2 isobars, one can
get

ap/T ∼ (sgn) 1
2A1/2{ln[R(2, 0, A)] − 1

2 {ln[R(1,−1, A)]

+ ln[R(3, 1, A)] − �(3, 1, A)} − �(2, 0, A)}.
(11)

From Eq. (10) with I = 2 and 4 isobars,

ap/T ∼ (sgn) 1
2A1/2{ln[R(4, 2, A)] + 1

2 {ln[R(1,−1, A)]

− 3 ln[R(3, 1, A)] + 3�(3, 1, A)} − �(4, 2, A)}.
(12)

The resultant values are plotted in Fig. 6 using star symbols.
These are the averaged values over all reactions. The results
are consistent with those from Eqs. (9) and (10).

A

5 10 15 20 25 30 35 40

/T
p

(s
g

n
)a

-10

-8

-6

-4

-2

0

2

4

6

8

10

A

5 10 15 20 25 30 35 40

/T
p

(s
g

n
)a

-10

-8

-6

-4

-2

0

2

4

6

8

10

FIG. 6. (Color online) Extracted values of (sgn)ap/T are plotted
as a function of A. Open circles are obtained in the top panel using
Eq. (9) for individual reactions in the bottom panel using Eq. (10) for
individual reactions. Solid circles are averaged values for a given A

over all reactions. Stars are obtained from Eqs. (11) and (12).

IV. COMPARISONS WITH MODEL CALCULATIONS

In the multifragmentation regime of heavy-ion reactions,
fragments may be formed in excited states [11,12]. Such
fragments will deexcite by statistical decay processes. The
experimentally detected fragments are normally in the ground
state. To study the effect of the secondary decay process on
the experimentally extracted symmetry energy coefficient, we
have used an AMD code [9,16,17] to model the reaction
dynamics and coupled it with the statistical decay code
GEMINI [18] to model the secondary decay processes. The
AMD code has been used to study the fragment production in
Fermi-energy heavy-ion reactions and the global features of
the experimental results have been well reproduced [28–33].
We believe that the dynamics can be crucial in accounting for
fragment production in early stages of the reaction and the use
of a dynamic model, such as AMD is essential.

Because the AMD calculation requires a lot of CPU time,
only two of the experimental reaction systems have been
studied in detail. The systems examined were 64Zn + 112Sn
and 64Zn + 124Sn, both at 40 A MeV. All results shown in this
article have been calculated using a newly installed computer
cluster in the Cyclotron Institute [34]. The calculations
have been performed, using the Gogny interaction with an
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asymptotic stiff symmetry energy term [9], although very
similar results are obtained for the standard Gogny interaction
[35]. To obtain yields of the final products, the yields of
primary fragments are first evaluated at a given time in the
offline analysis. The fragments are formed using a coalescence
radius, Rc, in phase space. Because the hot and dense
composite system formed at an early stage of the reaction
expands very quickly, the primary fragment distributions
are rather sensitive to the choice of coalescence radius and
the time of its application. When a smaller Rc is used,
one can form fragments at an earlier stage. In previous
calculations, Rc = 5 and t = 300 fm/c were used and the
experimental results were well reproduced [29,31,32]. Rc = 5
corresponds to a radius of 5 fm in configuration space. To
study the effect of the choice of these parameters, two different
coalescence radii, Rc = 1.5 and 5, are used here. In the case
of Rc = 5, the fragment formation is evaluated at t = 300
fm/c. For Rc = 1.5, the evaluation is at t = 150 fm/c. The
excitation energy of a fragment is calculated by subtracting
the binding energy from the total energy. For each isotope the
binding energy is calculated within the AMD code using a
stochastic cooling method [36]. In the top panel of Fig. 7, the
primary fragment distributions are shown as a function of the
fragment Z for the two different cases. As one can see, for Rc =
1.5, the multiplicity of light IMFs with Z < 10 is significantly
enhanced, compared to that for Rc = 5.0, whereas the heavier
fragment yields are suppressed as expected. The excitation
of these primary fragments was followed using the GEMINI

code [18]. The GEMINI code has been used extensively with
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FIG. 7. (Color online) (Top) Calculated multiplicity distributions
of the primary fragments evaluated using Rc = 1.5 and 5. See details
in the text. (Bottom) Multiplicity distributions of fragments for the
experiments and the calculations. The experimental values are shown
by open circles. The AMD + GEMINI calculated values filtered by
the experimental acceptance are shown for Rc = 1.5 (squares) and
Rc = 5 (triangles). All errors evaluated are smaller than the size of
the symbols.

the AMD simulations in the past and good agreement with
the experimental data has been seen [29,31,32]. To sample all
possible decay channels of the excited fragments, one AMD
event is used 100 times in GEMINI, with different random
number seeds. In the bottom part of Fig. 7, the multiplicity
distributions of the secondary fragments are compared with
the experimental values. Because the experimental values are
taken from the NN -source component of the energy spectra,
the calculated energy spectra are subjected to the same filter.
For simplicity, the calculated range of the impact parameter is
set to 0 < b < 8 fm to suppress the contribution from the PLFs
from the peripheral collisions. The impact parameter range was
determined from the correlation between the collision central-
ity and impact parameter studied in Ref. [32]. The angle range,
determined from the extracted moving source parameters,
was set to 5◦ < θ < 45◦ to suppress the heavy projectilelike
contribution and targetlike contributions. The experimentally
observed multiplicity distribution for most particles, including
Z = 1 and 2, is well reproduced by the Rc = 5 calculation.
When Rc = 1.5 is applied, the multiplicity is significantly
overestimated for Z = 1 and 2 and underestimated for Z > 4.
In the case of Rc = 5, the calculated multiplicities start to
deviate from those of the experiments at Z > 13, indicating
that the projectilelike contribution becomes significant for
these fragments.

Using the same prescription used for the experimental data,
ac/T , asym/T , and ap/T are evaluated from the filtered yields
of isobars. In Fig. 8, ln[R(I + 2, I, A)] for the isobars with
I = −1 and 1 is plotted as a function of A for both primary
and secondary fragments, together with the experimental
results. No notable difference is observed between these. The
calculated results are also well fitted by Eq. (6) and the values
for (µn − µp)/T and ac/T are extracted from the distributions
of the primary and secondary isobars. The extracted values are
(µn − µp)/T = 0.40 and ac/T = 0.18 for the primary isobars
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FIG. 8. (Color online) ln[R(I + 2, I, A)] for I = −1 and 1
primary (open circles) and secondary (solid squares) fragments of
AMD + GEMINI events for the 64Zn + 112Sn reaction. �µ(Z/A)/T =
0 for this reaction. Solid circles are the experimental values for this
reaction. Dashed-dotted, dashed, and dotted lines show the fits for
the experiments and the primary and the secondary fragments, using
Eq. (6), respectively.
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and (µn − µp)/T = 0.47 and ac/T = 0.17 for those of the
secondary (similar results are obtained from the unfiltered
yields). The values following secondary decay should be
compared to the experimental values of (µn − µp)/T = 0.71
and ac/T = 0.35. The calculated values of (µn − µp)/T both
from the primary and secondary fragments are somewhat lower
than that of the experiments.

AMD + GEMINI simulations reproduce only a half value
of the experimental Coulomb term. The Coulomb term is not
only related to the Coulomb coefficient, but also to the shape
and density of the fragments at the time of their formation as
well. In fact, the primary fragments produced by the AMD
simulations have a shape far away from the spherical one.
Because the fragments have odd shape, the density of the
fragments is also difficult to be evaluated even from the sim-
ulations. However, the asym/T values extracted from Eq. (8),
using two isobaric yield ratios from the simulations, are
consistent with the values extracted from Eq. (7). In Eq. (8),
both experimental ratios contain the same Coulomb term and
they are canceled out. Therefore, the extracted asym/T values
are independent of the Coulomb term and not affected by the
discrepancy of the Coulomb terms shown in Fig. 8.

In Fig. 9, asym/T values evaluated using Eq. (7) with the
values of (µn − µp)/T and ac/T extracted from the model
calculations are plotted as a function of A. The average values
of the experimental results from Fig. 4 (solid circles) should be
compared with those extracted following the deexcitation step
in the GEMINI code (open circles). Although the experimental
values show larger fluctuations, the calculated values and the
data are in good agreement in magnitude and trend. In the
figure the values extracted from the primary fragment yields
are also plotted for both Rc = 1.5 (squares) and 5 (triangles).
The values for Rc = 5 show a slowly increasing distribution
as a function of A with asym/T ∼ 4 to 5 up to A ∼ 30.
Those for Rc = 1.5 show a similar trend, but the values are
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FIG. 9. (Color online) Extracted values of symmetry energy
coefficient from the experiments (solid circles) and calculations from
the secondary fragments for Rc = 5 (circles). Squares and triangles
show those obtained for primary fragments for Rc = 1.5 and Rc = 5,
respectively. All errors evaluated are smaller than the size of the
symbols.

smaller. The rather flat distribution of asym/T values of the
primary fragments for A < 30 is consistent with a scenario
of fragment emission from a common source with a given
density and temperature. The heavier fragments with A > 30
may result from different mechanisms, for example, projectile
fragmentation in the more peripheral collisions.

The pairing effect is experimentally observed in Fig. 6,
especially from the ratios of I = 0 and 2 isobars in the upper
panel. In the study of the complex fragments production in
the 238U + Ti reaction at 1 A GeV, Ricciardi et al. suggested
that the observed even-odd oscillation in the fragment yields
originates from the last chance particle decay of the excited
fragments during their cooling-down evaporation process
[37,38]. To verify this hypothesis in our experiment, we also
did a similar study, using AMD + GEMINI calculations. Three
sets of simulated events were prepared. In the first set, all
fragments were in the final ground state. In the second set, the
last chance particle decay was blocked and all fragments were
in an excited state just before the last chance particle decay.
In the third set, the last two particles decays are blocked. In
the actual calculations, the second set was generated from the
first set by adding the charge and mass of the last chance
emitted particle to that of the partner IMF. Similarly, the third
set was generated by adding the charge and mass of the last
two emitted particles to that of the partner IMF. In Fig. 10,
the results from Eq. (9) are shown in the top panel and those
from Eq. (10) for the different fragment sets are shown in
the bottom panel. As one can see in the top panel, the values
calculated from the ratios of I = 0 and 2 isobars in the ground
state (triangles) show clearly the same even-odd oscillation
pattern as those in the top panel of Fig. 6 and the pattern
is significantly reduced for the fragments just before the last
particle decay (circles). The oscillation is totally washed out for
those from the third set of fragments (squares), indicating that
the even-odd pattern is generated at the end of the deexcitation
of the excited fragments. The size of the oscillation for the final
products are comparable to those observed in the top panel of
Fig. 6. Even the disappearance of oscillations above A = 30
is well reproduced. However, in the results from Eq. (10)
for isobars of I = 2 and 4 in the ground states (triangles)
the oscillation pattern is observed at 20 � A � 30, whereas
for the experimental results, as seen in the bottom panel
of Fig. 6, the pattern is observed for A � 20, though the
oscillation pattern is the same. Furthermore, the pattern is
sustained for those from the last chance particle decay with
opposite even-odd pattern (circles). This oscillation pattern
is significantly reduced for those before the last two particle
decays (squares). The average offset of the ap/T values are
also 3–4 units above zero in the calculation and 2–3 units
above in the experimental results in the bottom panel of
Fig. 6. Ricciardi et al. reported that the even-odd effect appears
strongest for I = 0 fragments for even-mass nuclei and it
becomes strongest for I = 5 for odd mass nuclei. These facts
may complicate the even-odd effect for isobars of I = 2 and
4 during the cascade. However, all the oscillation patterns
observed in our simulations, either from isobars of I = 0 and
2 or from those of I = 2 and 4, are generated at the end of
the deexcitation process of the excited fragments and they
are reduced significantly for the second or third sets of the
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FIG. 10. (Color online) Calculated ap/T values from different
sets of fragments for I = 0, 2 (top) and I = 2, 4 (bottom). Triangles
show results for fragments in the ground states; circles are for those
in excited states just before the last particle decay. Squares are for
those in excited states before the last two particle decays.

fragments, which is consistent to the hypothesis proposed by
Ricciardi et al. [37,38].

V. SUMMARY

For a large series of heavy-ion reactions, coefficients of
Coulomb energy, symmetry energy and pairing energy in the
form of ai/T as a function of A have been studied from
analyses of the yield ratios of isobars obtained in experiments
and from model calculations. The AMD and GEMINI codes
were used for the calculations. For the symmetry energy
term, the extracted values from the experiments are in good
agreement with those calculated for the final fragments in the
ground state. They increase from 5 to ∼16 as the masses
of the fragments increase from 9 to 37. These values are
generally much larger than those extracted from the primary
fragments observed in the AMD calculations. Over the same
mass interval the primary fragment values range from 4 to
5. This is consistent with a picture in which the primary
fragments originate from a common emitting source. A smaller
coalescence radius and earlier sampling time for the fragment

formation in the AMD calculation results in slightly smaller
values of 2 to 3 for the primary fragments, but does not have
a strong effect on the extracted values for the final fragments,
though the fragment yield distribution is not well reproduced
compared to the case of Rc = 5. Although the technique
employed is quite different, our model results are quite similar
to those observed by Ono where the ratio ζ (Z) = Csym/T

was extracted from the variance of the calculated isotope
distributions for the reactions 40Ca + 40Ca, 48Ca + 48Ca, and
60Ca + 60Ca at 35 A MeV [35]. In that article the ratios are
evaluated from the quadratic shapes of the isotope distributions
for a given Z after proper normalization of the isotopic
yields from the three different reactions. The comparisons
between the experimentally extracted results and those of
the calculations indicate that the experimental determination
of symmetry energy coefficients, asym/T , are significantly
affected by the secondary decay processes of the primary
fragments. This modification is a common feature of dynamic
transport model approaches [35,39]. In the aforementioned
study of Ono, the effect of the different effective interactions
for the symmetry energy has also been studied, using the
standard Gogny (g0) and that with asymptotic stiff symmetry
energy (g0AS), and it was found that the difference in the
symmetry term between the two different interactions is rather
small for both the primary and the secondary fragments,
compared to the significant change of the Z dependence
between the primary and the secondary fragments as observed
in Fig. 9. Thus extraction of the density dependence of the
symmetry energy from fragment observables must be done
with caution and with appropriate attention to the role of the
secondary decay. The importance of these effects will vary
according to the observables employed for extraction of the
desired information.

The pairing effect is clearly observed in the experiments.
Comparisons to the calculations strongly support the hy-
pothesis, which is proposed by Ricciardi et al. [37,38], that
the observed effect originates at the end of the statistical
cooling-down process of the excited fragments.

The Coulomb coefficient in the form of ac/T is also
evaluated in both the experiment and the calculations. The
experimentally extracted value is ac/T = 0.35, whereas the
calculated values are ac/T = 0.17 for the final fragments
and ac/T = 0.18 for the primary fragments. These dif-
ferences suggest that the calculated fragments are more
deformed and/or expanded than those observed in the
experiments.
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