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Isospin dependence of the nuclear equation of state near the critical point
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We discuss experimental evidence for a nuclear phase transition driven by the different concentrations of
neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for
the phase transition. This is analogous to the phase transitions occurring in *He-*He liquid mixtures. We present
experimental results that reveal the N/A (or Z/A) dependence of the phase transition and discuss possible

implications of these observations in terms of the Landau free energy description of critical phenomena.
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Nuclei are quantum Fermi systems that exhibit many
interesting features that depend on temperature and density. At
zero temperature and ground-state density, nuclei are charged
quantum drops; that is, they have a Fermi motion [1] due to
their quantum nature, and the nucleons interact through a short-
range attractive force and the long-range Coulomb repulsions
among the constituent protons. In the absence of the Coulomb
force, the nuclear Hamiltonian is perfectly symmetric for the
exchange of protons and neutrons apart from a small but
not insignificant difference between the proton and neutron
masses. This symmetry is revealed by similar energy levels in
mirror nuclei, that is, nuclei with the same mass number, A, but
opposite numbers of neutrons, N, and protons, Z. Of course
this feature is observed for relatively small systems because the
Coulomb energy is small [1]. Analogous to the properties of
mirror nuclei, we could expect that if we study nuclei at finite
temperatures, 7, and low densities, p, then, if the Coulomb
force is not important, the invariance under the exchange of
protons to neutrons might lead to important and interesting
consequences. In fact, because the fundamental Hamiltonian of
nuclei is invariant under the exchange of N with Z (apart from
Coulomb effects), we could expect that such an invariance
should be manifested only at high T (disordered state), while
there is a spontaneous symmetry breaking at lower T (ordered
state). That means that, in symmetric nuclear matter at high 7',
the state with fragments having N = Z defines the minimum of
the free energy; that is, symmetric fragments such as deuterons
and «’s would be favored at low density [2,3]. However, there
could be a symmetry breaking favoring N # Z at lower T. In
this case fragments near a (first-order) phase transition might
prefer either a neutron-rich or a proton-rich configuration.
There might even be a more interesting situation, suggested
by the present data, the existence of a line of first-order
phase transitions [2] that terminates in a tri-critical point.
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For such a line the free energy has three equal minima: one
with N = Z and the other two with N # Z. Thus a phase
transition is driven by the difference in isospin concentration
of the fragments m = (N — Z)/A. In this article we discuss
data that clearly demonstrate that m is an order parameter
of the phase transition. Its conjugate field [2], which we
indicate with H, is due to the chemical potential difference
between protons and neutrons of the emitting source at the
density and temperature reached during a collision between
heavy ions [4,5]. We also note that the phase transition has
a strong resemblance to that observed in superfluid mixtures
of liquid “He-*He near the A point. In both systems, changing
the concentration of one of the components of the mixture
changes the characteristics of the equation of state (EOS)
[2,3].

In recent times a large body of experimental evidence has
been interpreted as demonstrating the occurrence of a phase
transition in finite nuclei at temperatures (7") of the order of 6
MeV and at densities, p, less than half of the normal ground-
state nuclear density [6]. Even though strong signals for a
first-order and a second-order phase transition have been found
[6,7], there remain a number of open questions regarding the
EOS of nuclear matter near the critical point. In particular the
roles of Coulomb, symmetry, pairing, and shell effects have
yet to be clearly delineated.

Theoretical modeling indicates that a nucleus excited in a
collision expands nearly adiabatically until it is close to the
instability region; thus the expansion is isentropic [8]. At the
last stage of the expansion the role of the Coulomb force
becomes very important. In fact, without the Coulomb force,
the system would require a much larger initial compression
and/or temperature to enter the instability region and fragment.
The Coulomb force acts as an external piston, giving the system
an “extra push” to finally fragment. These features are clearly
seen in classical molecular dynamics (CMD) simulations of
expanding drops with and without a Coulomb field [9,10]. The
expansion with the Coulomb force included is very slow in the
later stage and nearly isothermal.
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Even though at high 7 and small p the nucleus behaves as
a classical fluid, the analogy to classical systems should not be
overemphasized as, in the (7', p) region of interest, the nucleus
is still a strongly interacting quantum system. In particular, the
ratio of T to the Fermi energy at the (presumed) critical point
is still smaller than 1, which suggests that the EOS of a nuclear
system is quite different from the classical one. To date this
expected difference has not been well explored [6,11-16].

The article is organized as follows: in the next section we
discuss the experimental setup in detail. This is followed by
a description of the data analysis and a discussion in terms
of the Landau O(m®) free energy. We then derive some
critical exponents and the EOS corresponding to possible
scenarios suggested by our data in terms of the Fisher model of
fragmentation. Finally we draw some conclusions and suggest
possible future work.

I. EXPERIMENTAL DETAILS

The experiment was performed at the K-500 supercon-
ducting cyclotron facility at Texas A&M University. %79Zn
and *Ni beams were incident on %Nj, 1121245, 197 Ay,
and 2*’Th targets at 40 A MeV. Intermediate mass fragments
(IMF) were detected by a detector telescope placed at 20°. The
telescope consisted of four Si detectors. Each Si detector had a
5 cm x 5 cm area. The thicknesses were 129, 300, 1000, and
1000 pwm. All Si detectors were segmented into four sections
and each quadrant had a 5° acceptance in polar and azimuthal
angles. The fragments were detected at average angles of
17.5° £ 2.5° and 22.5° &+ 2.5°. Typically six to eight isotopes
were clearly identified for a given Z up to Z = 18 with an
energy threshold of 4-10 A MeV, using the AE-E technique
for any two consecutive detectors. The AE-E spectrum was
linearized by an empirical code based on a range-energy table.
In the code, isotopes are identified by a parameter Zgc,. For
the isotopes with A = 2Z, Zrea = Z is assigned and other
isotopes are identified by interpolating between them. The
energy spectrum of each isotope was extracted by gating on
lines corresponding to the individual identified isotopes. To
compensate for the imperfectness of the linearization, actual
gates for isotopes were made on the two-dimensional plot
of Zgea versus energy. The multiplicity of each isotope was
evaluated from the extracted energy spectra using a moving
source fit at the two given angles. Because the energy spectra of
some isotopes have very low statistics, the following procedure
was adopted for the fits. Using a single source with a smeared
source velocity around half of the beam velocity, the fit
parameters were first determined from the energy spectrum
summed over all isotopes for a given Z, assuming A = 2Z.
Then assuming that the shape of the velocity spectrum was
the same for all isotopes for a given Z, all parameters except
the normalizing multiplicity parameter were assumed to be the
same as those for the summed spectrum. The multiplicity for
a given isotope was then derived by normalizing the standard
spectrum to the observed spectrum for that isotope.

To evaluate the background contribution to the extracted
multiplicity a two-Gaussian fit to each isotope peak was used
with a linear background. The second Gaussian (about 10%
of the height of the first one) was added to reproduce the
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valleys between isotopes. This component was attributed to the
reactions of the isotope in the Si detector. The centroid of the
main Gaussian was set to the value calculated from the range-
energy table within a small margin. The final multiplicity
of an isotope with Z > 2 was obtained by correction of the
multiplicity evaluated from the moving source fit for the ratio
between the sum of the two Gaussian yields and the linear
background.

The yields of light charged particles (Z < 2) in coincidence
with IMFs were also measured using 16 single crystal CsI (T1)
detectors of 3-cm thickness set around the target. The light
output from each detector was read by a photomultiplier tube.
The pulse shape discrimination method was used to identify
p, d, t, h, and « particles. The energy calibration for these
particles were performed using Si detectors (50-300 pm)
in front of the Csl detectors in separate runs. The yield of
each isotope was evaluated using a moving source fit. Three
sources [projectile-like (PLF), nucleon-nucleon-like (NN),
and target-like (TLF)] were used. The N N-like sources have
source velocities of about a half of the beam velocity. The
parameters were searched globally for all 16 angles. Detailed
procedures of the data analysis are also given in Refs. [17,18].

Special care has been taken with the He identification.
All He isotopes are identified in the Si telescope, using the
AE-E technique, in a narrow energy range. When a proton
and an « hit the same quadrant and when both of them stop in
the E detector, their AE-E points overlap with those of 8He.
Because the multiplicities of protons and «’s are about three
orders of magnitude larger than that of ®He, the contribution
of accidental events becomes significant, especially for the
reaction systems with lower numbers of neutrons, in which
8He production is suppressed. Because Z = 1 AE-E spectra
are not available in this experiment, AE-FE spectra for Z < 3
were measured in a separate run. Using the light charged
particle multiplicity extracted from the 16 Csl detectors, the
accidental events were simulated for each reaction for the ob-
served « yield in the AE-E spectra in this experiment, the solid
angle of the quadrant, and the multiplicity of Z = 1 particles.
To minimize the accidental events, the runs with a low beam
intensity were selected in each reaction. Typical linearized
ZReal Spectra with these accidentals are shown in Fig. 1 for
0Zn +23Th (N/Z ~ 1.5) and *Ni + '"?Sn (N/Z ~ 1.25).
As one can see, the Zg.q values for the accidental events
of proton and « pileup are nearly identical to those of ®He,
while ®He is clearly identified. The contributions from d + «
and r + « are also reasonably consistent with the observed
background yields. A significant excess of ®He yield beyond
the accidentals is only observed for the reaction systems
with the '?4Sn, %7 Au, and ?*>Th targets. After the correction
of the accidental contributions, the multiplicities of *He and
8He were calculated using the source fit parameters obtained
for Li isotopes.

II. DATA ANALYSIS

The key factor in our analysis is the value I =N — Z
of the detected fragments. A plot of the yield versus mass
number when I = 0 displays a power-law behavior with yields
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FIG. 1. (Color online) Typical Zg.a spectra for He and Li
isotopes. Accidental events are generated only for p, d, and ¢ + «
and are shown separately by shaded histograms as indicated.

decreasing as A™" [4,19]. This is shown in Fig. 2 for the
%Ni + '24Sn case at 40 MeV /nucleon. In the figure we have
made separate fits for odd-odd (open symbols) or even-even
(solid symbols) nuclei. As seen, different exponents T appear,
which suggests that pairing is playing a role in the dynamics
[1], leading to higher yields for even-even nuclei.

The observation of the power-law behavior suggests that
the mass distributions may be discussed in terms of a modified
Fisher model [7,19],

Y = yoA e PAnA, (1)

where yy is a normalization constant, T = 2.3 is a critical
exponent [7], B is the inverse temperature, and Au = F(I/A)
is the free energy per particle, F', near the critical point. Recall
that in general, the free energy is a function of the mass A
(volume), A%/* (surface), and the chemical composition m
of the fragments and possibly pairing. The region we are
studying in this article seems to be near the critical point for a
liquid-gas phase transition (volume and surface equal to zero)
but modified by m = %. Because of this modification we can
observe different features of the transition such as a first-order
phase transition driven by m, the order parameter.

We begin our analysis by noting that the Fisher free energy
is usually written in terms of the volume and the surface of a
drop undergoing a (second-order) phase transition [20]. Our
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FIG. 2. Mass distribution for the %Ni+ !>*Sn system at 40
MeV /nucleon for I = 0. The lines are power-law fits with exponents
2.3 £ 0.02 (odd-odd nuclei, dashed line) and 3.4 £ 0.06 (even-even
nuclei, solid line), respectively.
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data indicate that those terms are not important in the present
case [7] as we show more in detail later in this article. If they are
negligible this suggests that we are near the critical point for
a liquid-gas phase transition. Because we have two different
interacting fluids, neutrons and protons, the transition becomes
more complex and more interesting than in a single-component
liquid. Experiments at different energies might display a free
energy that depends on all these factors. If we accept that
F is dominated by the symmetry energy we can make the
approximation that F(1/A) = Egm = 25(1/A)> MeV//A, that
is, the symmetry energy of a nucleus in its ground state [1].
We use this relationship to infer an approximate value of the
temperature of the system. However, we stress that, in actuality,
F(I/A) is a function of density, temperature, and all other
relevant quantities near the critical point. According to the
Fisher equation given previously, we can compare all systems
on the same basis by normalizing the yields and factoring
out the power-law term. For this purpose we have chosen
to normalize the yield data for each system to the '>C yield
(I = 0) in that system; that is, we define a ratio:

YA*

K= yeon @

The normalized ratios for the system ®*Ni+ %Ni at
40 MeV /nucleon are plotted as a function of the (ground-state)
symmetry energy in Fig. 3, bottom panel. The data display
an exponential decrease with increasing symmetry energy,
except for the isotopes for which / = 0. The yields of these
I = 0 isotopes are, of course, not sensitive to the symmetry
energy but rather to the Coulomb and pairing energies and
possibly to shell effects. A fit to the exponentially decreasing
portion of the data using the ground-state symmetry energy
gives an “apparent temperature” 7' of 6.0 MeV. This value of
T would be the real one if only the symmetry energy were
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FIG. 3. (Color online) Ratio versus fragments ground-state bind-
ing energy (top panel) and symmetry energy (bottom panel) for the
84Ni + %Ni case at 40 MeV /nucleon. agm = 25 MeV is used. The
I <0 and I >0 (I =0) isotopes are indicated by the open and
solid circles, respectively (solid squares). The dashed lines (bottom
panel) are fits using a ground-state symmetry energy, Eq. (1), and
a “temperature” of 6 MeV. Notice that the given experimental *He
yield is the upper limit.
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FIG. 4. (Color online) Ratio versus symmetry energy + Coulomb
energy for the *Ni + '**Sn case at 40 MeV /nucleon. The panels
from top to bottom are for different combinations of the symmetry
and Coulomb energies. The / < 0 and / > 0 (/ = 0) isotopes are
indicated by the open and solid circles, respectively (solid squares).

important, if entropy could be neglected, if agym = 25 MeV
(the ground-state symmetry energy coefficient value), and
if secondary decay effects were negligible. In general we
expect that the symmetry energy coefficient is density and
temperature dependent. Further, secondary decay processes
may modify the primary fragment distributions [17,18]. We
discuss these questions in the framework of the Landau free
energy approach below. We stress that the appearance of two
branches in Fig. 3 (bottom) indicates that the total free energy
must contain an odd power term in (/ /A) at variance with the
common expression for the ground-state symmetry energy.
For reference in the top part of Fig. 3 we have plotted the ratio
versus the total ground state binding energy of the fragments.
No clear correlations are observed that might suggest that the
symmetry energy dominates the process.

It is surprising that such a scaling appears as a function
of the symmetry energy only. In fact we might wonder about
the role of the Coulomb energy if we accept that surface and
volume terms give negligible contributions. In Fig. 4 we have
plotted the same normalized ratios as a function of the quantity
aEcou + BEgm, o and B are arbitrary parameters given in
the figure, and E.o = 0.7Z(Z — 1)A~'/? is the Coulomb
contribution to the ground-state energy of the nucleus. We
see from the figure that by decreasing the relative contribution
of the Coulomb energy compared to the symmetry energy
the scaling appears. This implies that the Coulomb energy
is much less important than the symmetry energy near the
critical point, which suggests that the density dependence of
those two terms is different or that, at the time of formation,
the fragments are strongly deformed, reducing the Coulomb
effect. Such deformations have been seen in CMD calculations
of fragmentation [7].
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FIG. 5. Free energy versus m for the case *Ni+ >**Th. The
solid line is a free fit based on Landau O(m®) free energy. The
dashed-dotted-dotted-dotted line is obtained by imposing in the fit
b = —./16/3ac and it is located on a line of first-order phase
transitions. The short-dashed line corresponds to b = —+/4ac, that
is, superheating. The O(m?) case, F/T = a(m — my)?, that is,
b =c=0,m; =0.1, is given by the long-dashed line.

To further explore the role of the relative nucleon con-
centrations we plot in Fig. 5 the quantity % = l“ff) versus
m = (I/A), the difference in neutron and proton concentration
of the fragment. As expected the normalized yield ratios
depend strongly on m.

Pursuing the question of phase transition we can perform
a fit to these data within the generalized Landau free energy
description [2]. In this approach the ratio of the free energy to
the temperature is written in terms of an expansion:

r_ lam2 + lbm4 + lcm6 — mE

T 2 4 6 T’
where m is an order parameter, H is its conjugate variable,
and a—c are fitting parameters [2]. We observe that the free
energy is even in the exchange of m — —m, reflecting the
invariance of the nuclear forces when exchanging N and Z.
This symmetry is violated by the conjugate field H, which
arises when the source is asymmetric in chemical composition.
We stress that m and H are related to each other through the
relation m = —%.

The use of the Landau approach is for guidance only.
While the approximation to O(m*) does not work [4], the
O(m®) case is in good agreement with the data. This is not
surprising because, if fluctuations are important, a higher order
approximation to the free energy is better, that is, gives critical
exponents closer to those seen in the data and satisfies the
Ginzburg criterion [2]. A free fit using Eq. (3) is displayed
in Fig. 5 (solid line). Notice the change of curvature near
m = 0.1, which incidentally is close to m,, of the compound
nucleus. For comparison in the same figure we have displayed
the O(m?) case, thatis, F/T = a(m — m,)* (b = ¢ = 0)." As
seen in the plot last assumption also produces a reasonable fit,
although it does not reproduce shoulders near m ~ £0.3. As
we discuss in more detail later in this article, the appearance of
two minima for m # 0 (when H/T = 0) might be a signature

3)

YFIT = a(m —m,)? = (a/2)ym* — H/Tm + (a/2)ym?, H/T =
am. The last term is dropped out when the yields are normalized
by 12C.
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FIG. 6. (Color online) H/T versus (I/A) of the compound
nucleus obtained from the data fit to the Landau free energy,
Eq. (3). The solid circles are for ®Ni, the solid triangles are for °Zn,
and the squares for **Zn projectiles impinging on various targets (see
text).

for the existence of a first-order phase transition occurring in
these reactions.

In general the coefficients entering the Landau free energy,
Eq. (3), depend on temperature, pressure, or density of
the source. Usually one assumes ¢ > 0, a = ao(p)(T — Tp),
and b = b(T, p), where Ty is some ‘“critical” temperature
discussed later. The precise determination of these parameters
determines the nuclear equation of state (NEOS) near the
critical point. The data we have do not allow such a complete
constraining of the NEOS but do suggest some interesting
possible scenarios that we discuss later.

We begin by noting that the conjugate variable H, which
appears in Eq. (3), is determined by the chemical composition
of the source. Because, in general, the source has N # Z, the
extreme of F/T is displaced from the values obtained when
H = 0. In fact, if we take the first derivative of the free energy,
we get

£y - tbm® 4 em’ — 2 4
T =am m cm T 4)

When H/T = 0 the first derivative is zero for the following
values of m [2]:

—b + /b? — dac

2c '
If we now assume H # 0 but small, we can expand the
previous solutions as m = mgy +n with n being small.
Equating the first derivative to zero, Eq. (4), and neglecting
the terms O(n?), we get

my = 0; mi =

®)

. H/T
N a+3bm%i+56mgi.

n (6)
The shift of the minimum from my = 0 should be given by
Eq. (6) and should be proportional to m of the emitting source.
We can easily check this feature in our data. In Fig. 6 we plot
the values of H/T obtained from the fits to our data for all
systems using Eq. (3) versus m¢, = (I/A)cp.

The linear fit in Fig. 6 is given by H/T =047 +
1.6(1/A)cn, which agrees with the linear dependence of
Eq. (6). However, for this fit H/ T # 0 for I, = 0, which could
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FIG. 7. (Color online) The parameters a, b, and ¢ versus (/ /A) of
the compound nucleus obtained from the data fit to the Landau free
energy, Eq. (3). The symbols are like in Fig. 6.

indicate the favoring of N > Z fragments by the Coulomb
field. Another possibility is that (I /A)source X (I/A)cn, Which
then gives H = 0 when Ioyce = 0. Finally we should consider
that together with H the temperature may also be changing
some because the collisions are between different target-
projectile combinations at the same beam energy. If the
temperature is the same, then the coefficients of the free energy,
Eq. (3), should be independent of the source size, and only
H /T should change. In Fig. 7 we plot the parameters a, b, and
c as a function of the compound nucleus m,. As we see there is
some dependence that may reflect differences in temperature.
However, we note that the error bars and fluctuations are large,
which may also indicate important secondary decay effects.
Thus, it is not so easy to draw definite conclusions.

Given the information on the parameters of the Landau
free energy contained in Figs. 6 and 7 we can discuss some
features regarding the NEOS. In particular for each reaction
system we can estimate /T when H/T = 0.InFig. 8 we plot
this quantity versus m of the fragments for various reactions.
The curves do not differ much, suggesting that temperatures
are quite similar. The fits exhibit curvature near m = £0.4,
which may suggest the presence of additional minima at larger
absolute values of m. This could indicate either a first-order
phase transition or superheating (see below). The lack of data
at very large m makes it difficult to constrain the fit. However,
we can study other situations of particular physical interest
that arise when the relationships among the parameters a, b,
and c are constrained [2—4].

We have considered four such cases as follows:

(i) Superheating. This case corresponds to b = —+/4ac,
gives two minima at m # 0, and is plotted in Fig. 5
for the %*Ni + 232Th system with a short-dashed line.
These are not absolute minima, which occur only at
m = 0, and they correspond to metastable states. They
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FIG. 8. (Color online) F/T (H/T = 0) versus m of the frag-
ments obtained from the a, b, and ¢ parameter fits to the Landau free
energy, Eq. (3). Results for all experimentally investigated reactions
are displayed.

might be observed in high-quality data for collisions
of more neutron-rich or proton-rich systems making a
hot source with mggyee & 0.4. In fact if the system
could be gently brought to the right temperature 7,
with the correct isotopic composition, it might stay in
the minimum; that is, more fragments of that m should
appear.

(i) Line of first-order phase transition. This corresponds
to the condition b = —./16ac/3 at a temperature 73,
which, if imposed on the fit of the free energy, results in
the dashed-dotted-dotted-dotted line of Fig. 5. This fit is
of similar quality to the previous cases. Now the minima
are at m =~ 0.6, that is, for more neutron-rich fragments
due to the fact that H/T # 0. This suggests that in this
situation we might produce a large number of neutron-
rich fragments. However, most of those fragments are
probably unstable; thus coincidence measurements may
be required to determine their yields. Of course this
feature should become important in neutron-rich stars.

(iii) First-order phase transition. This corresponds to the
case a = 0 and determines the critical temperature 7
where the minimum at m = 0 disappears and only the
ones at m # 0 survive. This case is excluded by our
present data. However, the fit in Fig. 5 suggests an
intermediate situation between this and case 2.

(iv) Line of second-order phase transition, tri-critical point.
This corresponds toa =0 and b > 0 (T = T.). When
b =0 as well we have a tri-critical point (T = T3.),
that is, the point where the line of the first-order
phase transition terminates into a second-order phase
transition. This case is also excluded by our data.

We can extrapolate the aforementioned cases to H/T =0
as was done for Fig. 8. In Fig. 9 we plot F/T (H/T = 0)
(extrapolated from the data) versus m. Purists will not call
this the EOS but reserve that for the pressure versus m case
(that we discuss later in this article). Because H/T is zero,
the curves are symmetric with respect to m. We see the
following in the figure: vapor (solid line) T > T, superheating
(T = T;) (short-dashed line), a point in the line of a first-order
phase transition (7 = T3) (dashed-dotted-dotted-dotted line)
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F/IT

FIG. 9. (Color online) F/T (H/T = 0) versus m of the frag-
ments obtained from the a, b, and ¢ parameter fits to the Landau
free energy, Eq. (3), for ®Ni + 2*?Th (error bars are of the same
size as the data points). The five curves correspond to vapor (solid
line), superheating (short-dashed line), line of first-order transition
(dashed-dotted-dotted-dotted line), the experimental data fit line
(dashed-dotted line), and first-order phase transition (long-dashed
line) (see text).

that displays three equal minima at mo and my [see Eq. (5)],
and the experimental data fit line (dashed-dotted line) T < T5.
We have also added the case a = 0 (long dashed line), which
should be obtained at T = T, where the minimum at m = 0
becomes a maximum. There is a series of cases not displayed
in the figure, corresponding to the temperatures between Ty
and T3, where m = 0 is still a minimum but not an absolute
minimum. This corresponds to supercooling and might be
observed in gentle collisions of N = Z nuclei similarly to
the superheating case.

The features in Fig. 9 are reminiscent of the superfluid A
transition observed as some >He is added to “He [2]. Pure “He
has a critical temperature of 2.18 K. The critical temperature
for the second-order transitions decreases with increasing *He
concentration until at temperature 7 = 0.867 K a first-order
transition appears. This point is known as the tri-critical point
for this system. In a similar fashion, a nucleus, which can
undergo a liquid-gas phase transition, should be influenced
by the different neutron to proton concentrations. Thus the
discontinuity observed in Fig. 5 (m = 0) could be a signature
for a tri-critical point as in the “He-*He case. We believe that
our data, analyzed in terms of the Landau O(m®) free energy,
suggest such a feature but are not sufficient to clearly
demonstrate this. Some other work [21,22] also suggests that a
line of critical points might be found away from its “canonical”
position, that is, at the end of a first-order phase transition and,
for small systems, even extending into the coexistence region.

III. CRITICAL EXPONENTS

In the fits discussed previously the parameters a, b, and ¢
were left free because we do not have any particular values to
fix the scale. Nevertheless, we saw in Fig. 8 that the free energy
(H/T = 0) looks very similar for the different systems. Thus
the values of the fitting parameters are similar apart from a
scaling factor. We can avoid unnecessary factors by defining
suitable dimensionless quantities. This can be accomplished
by looking at the solutions of the minima of the free energy,
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cf. Eq. (5). In particular, from the value at the minimum, m .,
we can define the following quantities (b # 0):
4ac

Recalling that a is related to the distance from the critical
temperature while b and ¢ should only depend on density [2],
we deduce that x is a measure of the distance 7 — 73 from
the critical temperature in a suitable dimensionless fashion.
Similarly we can define a reduced order parameter from
Eq. (5):

2cm?
y= .
D]
Thus Eq. (5) can be rewritten as

y=14++T—x. )

Near the critical point we know that the order parameter has a
singular part that behaves in a power-law fashion; thus we can
define the singular part as

®)

M=+/y—1==+(1-x)" (10)
defining the temperature “distance” from the critical point,
|t| = |1 — x|, immediately gives the value of a critical ex-

ponent: 8 = i. This exponent is very close to the accepted
experimental value that is well known in the O@m®) Landau
theory [2]. In Fig. 10, the experimental values of M and x
obtained within the Landau theory are plotted together with
the equilibrium condition given by Eq. (10). Supercooling and
superheating regions, as discussed in the previous section, can
be identified as well [2].

As is the case for macroscopic systems we can now “turn”
the external field H on and off. In our case this is done with
a suitable choice of the colliding systems. In this way we can
study the EOS at the critical point by turning on H:

M=H", (11)

1.2

-_Equilibrium

0.8 -
4 _Superheat
0.6 N

\
\

0.4 Equilibrium | |

0.2

Supercool | Equilibrium

FIG. 10. (Color online) Order parameter versus reduced temper-
ature for all studied systems. The dashed line is given by Eq. (10);
the vertical line indicates the critical temperature 75. To the right
of this line the system is in a superheated state. Supercooling occurs
on the left of the vertical line and M = 0 [2].
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FIG. 11. (Color online) Scaling form for magnetization M vs
external field for nickel [2], open symbols. The corresponding
quantities for nuclei normalized to the metal case are given by the
solid symbols.

which defines the critical exponent §. In the Landau theory
this exponent can be determined at the critical point where
a = b =0. From Eq. (4) we easily get § =5, which is the
accepted value for such a critical exponent [2]. To exactly
determine this exponent we need to bring the system to the
critical point. This does not appear to be the case for our data
as we saw in Fig. 10. Nevertheless a plot of the order parameter
versus H should display a power-law behavior as it is well
known in macroscopic systems [2]. A precise determination of
the critical exponent requires the knowledge of the temperature
T both above and below the critical point. This is feasible but
requires precise experimental data. From Eq. (6), assuming the
only minimum is at m = 0, we get

H/T
n= /T (12)
a

The temperature (a) dependence of the order parameter shows
that we are away from the critical point. Nevertheless we
can study the behavior close to the critical point b/y suitably
defining scaling forms [2]: % = ol versus Tflﬂf. These
quantities are plotted in Fig. 11 and compared to magnetization
data for nickel metal. The scaled magnetization is plotted
versus the scaled external magnetic field [2]. The nuclear data
have been shifted in the region near the crossing of data above
and below the critical temperature where we expect our data
to be (see Fig. 10). Of course it is not possible at this stage
to directly compare to the macroscopic data because we have
no information for the absolute values of the temperatures.
Furthermore the role of the density (or pressure) is not clear
because we expect that the parameter a (or equivalently x)
depends on the “distance” from the critical temperature and
critical pressure. These quantities could, however, be obtained
in 4 experiments where charges, masses, and their velocities
are carefully determined.

Once we have derived the “reduced” parameters of the
Landau O(m®) theory, we can write a reduced free energy as

(b #0)

!
T

2 h
= E)cm2 — |zlm* + gzzm6 — Tm, (13)
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FIG. 12. (Color online) The parameters x, z, and /T versus
(I/A) of the compound nucleus obtained from the data fit to the
Landau free energy, Eq. (3). The symbols are like in Fig. 6.

L _ 4cF — c h _ 4c
where =0 and T

=T =57 These quantities
together with the temperature, Eq. (7), and the reduced order
parameter y, of Eq. (8), constitute the Landau O(m®) theory
in dimensionless form. It is instructive to study how these
quantities change with the reaction system as we did in
Figs. (7) and (8). In Fig. 12 we plot these normalized quantities
versus the difference in neutron and proton concentrations of
the compound nucleus. Compare to Fig. 7. A feature worth
noticing is the following: while the parameter a is decreasing
with increasing (//A) of the compound nucleus, the opposite
holds for the parameter x, which gives the distance from
the critical temperature (see Fig. 12). This is very important
because only normalized quantities should be used when
inferring the properties of the EOS (i.e., temperature, density,
etc.) near the critical point.

__ 4c H

IV. SYMMETRY AND PAIRING COMPARED TO THE
COULOMB ENERGY

In the previous sections we have seen that the Coulomb
energy might become important especially for large values
of the charges. We can now try to derive some qualitative
understanding of when and why Coulomb corrections might
become important and might even hinder a possible phase
transition. From the mass formula we can write the Coulomb
energy for large Z as [1]

2
Ee _omZoa =

A A?
which explicitly introduces the order parameter m in the
Coulomb energy. We can define an effective symmetry energy

0.77
T(1 — m)?A*3, (14)
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(per particle) as

E 0.77 0.77 0.77
eff _ <asym + _A2/3> m? — TAz/3m + TA2/3’

A 4
(15)

where the symmetry energy coefficient agm =25 MeV.
Ignoring for a moment density corrections we see that the
O(m?) term should be affected by Coulomb corrections for
large fragment mass numbers. Furthermore, a linear term in m
is introduced that will then modify the external field even in
collisions where the source m; = 0 as we discussed in Fig. 6.
Finally there is a term not dependent on m that will destroy
the scaling for large mass (charge) numbers. We should also
notice that, assuming a spherical expansion, at low densities
the Coulomb energy will decrease as p'/3 while contributions
to the symmetry energy should depend both on p?/ reflecting
the Fermi energy of the nuclei and on p, the latter coming from
different n-p interactions. At low densities we would expect
the Coulomb energy to be stronger than it appears to be in the
data. This may be indicative that the fragments must be highly
deformed, reducing the Coulomb energy. Coulomb corrections
should become more important when m = 0 for the detected
fragment. We have plotted the yields of m = 0 nuclei in Fig. 2
and pointed out that pairing appears to be playing a role. From
Eq. (15), we should expect that, if Coulomb is dominant for
such fragments, the free energy should depend on A%3. In
Fig. 13 (top panel) we plot F/ T versus A form = 0 fragments.
The expected dependence with mass number in the free energy
suggested from effective symmetry energy, Eq. (15), is not
seen in the figure. Rather, a staggering between odd-odd and
even-even nuclei is clearly visible.

0.8]
0.6
0.4
0.2

TTT

F/IT

0
-0.2

F/Td

0 5 10 15 20 25 30 35 40
A

FIG. 13. (Color online) Free energy versus mass for m =0
isotopes for the °Zn + '2*Sn system (top panel), the dashed line
is a fit using Coulomb and pairing contributions. Free energy times 8
(see text) (bottom panel) versus mass for m = 0 isotopes. The lines
are separate fits suggested by the Coulomb (dashed line) and pairing
(solid line) energy mass number dependence.
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To better clarify these arguments we can write the pairing
energy from the mass formula as [1]
E, 8
2 =R
where 12 MeV is the ground-state pairing energy coefficient
and

(16)

DY (=17
- e

The suggested mass dependence from pairing, Eq. (16), is
completely different from the Coulomb one when m = 0 [see
Eq. (14)].

Notice that it is the § factor from pairing that changes
the sign of the contribution for odd-odd to even-even nuclei.
A combined fit to the data using Coulomb plus pairing
contributions results in the dashed line in Fig. 13 (top panel).
The agreement with data is very good. If we multiply the
pairing energy by the factor § we should get no discontinuities
when plotting this quantity versus mass number. Similarly if
the properties of the free energy depend on the pairing term,
as for the ground-state case, then it should be a monotonic
function of A after multiplying it by §. In Fig. 13 (bottom
panel), we plot the quantity %8 versus mass number for
the same system of Fig. 13 (top panel). The fit using the
pairing mass dependence is also good. The Coulomb mass
dependence fails especially for small mass number. From the
values of the fit, using the ground-state coefficients we can
derive a temperature for the Coulomb case of T = 9.2(%)1/ 3
MeV, where we have explicitly indicated a possible density
correction. For the pairing case we get T = 6.45 MeV. Notice
that in this case we have not suggested any density correction
because the fate of the pairing energy at low density and finite
temperature is “terra incognita.” When making a combined fit
using pairing and Coulomb energy we get a good reproduction
of the data (dashed line in Fig. 13, top panel). While the fitting
value for pairing results in a “temperature” 7 = 5.13 MeV, we
get an increase of the Coulomb contributionto 7 = 12.1 MeV.
Assuming that pairing is independent of density, we could
derive a density from the Coulomb result. A simple calculation
gives pﬁo = (6.45/9)° = 0.34, which could be a reasonable
indication of the density of the system when it breaks into
fragments.

In summary in this section we have shown that the role
of the Coulomb energy appears to be rather reduced in the
reactions analyzed in this article. We expect it to become more
important for large nuclei. However, large nuclei have smaller
symmetry and pairing energies per nucleon, thus a precise
determination of the EOS can be obtained from measurements
of isotopes having relatively small masses.

8 a7

V. DYNAMICS OF THE PHASE TRANSITION

As we have seen we have been able to discuss some observ-
ables in the fragmentation of nuclei using a language common
to macroscopic systems undergoing a phase transition. In the
nuclear case we have a finite system composed at most of
hundreds of particles that evolves in time under the influence
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of a long-range Coulomb force. This poses many questions
on why techniques of statistical mechanics should apply in
such evolving nuclear systems. This also offers the possibility
of dealing with statistical mechanics of open systems and the
problem of extending the description of a phase transition to
such a system.

We start by observing that even though we are dealing with
a dynamical system, the order parameter defined in this work,
m, is confined between —1 and +1. In this sense we have
a somewhat “closed” system. Also the density at which the
transition occurs should be smaller then normal density and
thus Coulomb effects are reduced. However, if we deal with
larger sources, such as in U 4 U collisions the phase transition
might be washed out by the strong Coulomb field. We expect
our current considerations to be valid for small sources only.

From statistical mechanics we know that in a first-order
phase transition [2] a small seed increases in size depending
upon the surface tension at a given T and density p. If
the pressure of the surrounding matter is smaller than the
internal pressure of the drop, the drop will grow by capturing
surrounding matter. However, if the opposite is true then the
drop will decrease in size to balance the external pressure. The
entire process is driven by surface tension. Drops of a given
size will survive only when their internal pressure balances
the external pressure. If the system is at a very low density
the interaction between different parts might take a relatively
long time. Under these conditions a big nuclear drop whose
internal pressure is larger than that of the surroundings could
be considered to be a nucleus that is evaporating particles to
balance the external (zero in the case of an isolated nucleus)
pressure. If we accept this picture, then the evaporation step
is part of the dynamics of the phase transition. Thus a very
low density system might be thought of as many isolated
drops evaporating particles and reaching their equilibrium
conditions before they collide with other parts of the system or
as small fragments being evaporated by other drops. In a finite
system this does not happen, but we might think of a process
where at some point the finite system becomes unconfined and
an infinite system is approximated by an infinite number of
repetitions or “events.” Of course in a statistically equilibrated
system we know that time averages and event averages are
the same. Here we are extending this concept to finite systems
where only event averages can be used. A major question here
is whether the properties of the phase transition are decided
very early, that is, when the system “enters” the instability
region. As we said previously, if we have an infinite system
at a very low density undergoing a first-order phase transition,
then the drops can explode, evaporate, and fuse with other
particles over a very long time. Our finite system might behave
similarly but without the fusion at later times. If this were the
case then the detected fragments carry all the information of
the phase transition, if not then we need to reconstruct the
primary fragment distributions coming out of the instability
region.

We can try to clarify some of these questions by means
of microscopic models such as antisymmetrized molecular
dynamics (AMD) or similar approaches where the time
evolution of the system is followed [23]. However, we must
stress that in such microscopic models some assumptions are
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made to recognize the fragments at particular times during
the time evolution. In simpler approaches, fragments are
recognized if particles are close in coordinate space (of the
order of the range of the attractive nuclear forces) [7]. In such
a case the recognized fragments are “excited” and they evolve
in time until a final state is reached after a long time of the order
of thousands of fm/c. A more refined approach for fragment
recognitions is given by defining clusters when its components
are within a given distance in phase space. The naive expecta-
tion would be that in this case we should recognize fragments
earlier than the previous case and this is the method that we
adopt here for simplicity following Ref. [23]. In an ambitious
approach [10] the claim is that fragments are recognized very
early during the time evolution, of the order of tens of fm/c,
if one searches for particles connected in phase space to
form fragments and minimize the energy. This case probably
corresponds to minimizing the entropy of the fragmenting
system. If this last picture will hold true, then a picture of an
infinite system at low density will be equivalent to an “infinite”
repetition of events. Finally in all the considerations above we
have to add the necessary and interesting complication that we
have a mixture and not a single fluid; thus we can have more
situations to explore than discussed in the previous sections
and we can ‘turn on and off” an external field as well.

We have performed AMD calculations for the same systems
investigated experimentally. After some time ¢, fragments are
separated enough in phase space so that they can be recognized
within a simple phase space coalescence approach as discussed
in Ref. [23]. In this way we can define a yield at a given
time and from this derive the free energy exactly as we did
with the experimental data. Characteristic results for the free
energy versus time are given in Fig. 14 together with a Landau
O(m®) fit. Some time evolution is observed. Using a more
sophisticated fragment recognition approach [10] might even
decrease the time over which this evolution occurs. We can
study the time evolution in more detail by plotting the variables
a, b, c, and M defined in the previous sections versus time.
The results of the fits to the free energy at different times
is given in Fig. 15. While the quantities a, b, and H/T
change somewhat during the time evolution, smaller changes
are observed in the time evolution of normalized quantities,

zki‘ ° :':‘-. L] ° ‘
oL - L g P 'u:

< ) k. :Vi
g 2:* ° 0 ,-t’..'\ ° ° s
R
2: ° 0 ' : ° ® 8
o gt | gt
-2 . . . . .
-1-05 0 05 1-1-05 0 05 1

(N-Z)/A (N-Z)/A

FIG. 14. (Color online) Free energy vs time in AMD calculations
(see text) for *Zn + ''?Sn system at 40 MeV /A and central collisions,
that is, impact parameter less than 3 fm. Different panels correspond
to T = 200, 300, 500, 1000, 1500, and 2000 fm/c, respectively.
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FIG. 15. (Color online) Fit parameters a, b, and ¢ vs time (see
text) for the same system of Fig. 14. Solid circles refer to AMD
calculations while the open symbol in the M vs x plot is the
experimental value for this system.

x, z, and h/T. Nevertheless the time evolution of the fitting
parameters influences the time evolution of the order parameter
M versus reduced temperature x as seen in the bottom right of
Fig. 15. Itis very interesting to see that in these units the system
isinitially very hot (superheated) and cools down when coming
to equilibrium below the critical temperature. The final result
is very close to the observed values given by the open points.

Thus in this model most qualitative features of the phase
transition are decided very early during the time evolution.
This might correspond to an entropy saturation early during
the evolution. However, different models and fragment recog-
nition approaches might change the picture somewhat.

VI. EQUATION OF STATE

Once we know the free energy (at least in some cases) we
can calculate the NEOS by means of the Fisher model [20].
Because we do not have at present experimental information
on the density p, temperature 7, and pressure P of the system
we can only estimate the reduced pressure [24],

My

M, (18)

P (m)
~ (m) =
poT

where M; are moments of the mass distribution given by
M = ZA"Y(A, m)=7Y, ZA"A”[F/TV")A;
A A
k=0,...n. (19)

Notice that the aforementioned quantities are now dependent
on the order parameter m. From the knowledge of F/T
(H/T = 0) from the previous section we can easily calculate
the reduced pressure near the critical point. In particular, given
the simple expression for the moments we can also derive some
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FIG. 16. (Color online) Reduced pressure versus m of the
fragments obtained from the a, b, and ¢ parameter fits to the Landau
free energy, Eq. (3), for the ®*Ni + 2*2Th. The curves correspond to
vapor (open circles), superheating (open squares), first order (three
critical line-solid stars) (see text). The solid circle is for N = Z nuclei
at the critical point.

analytical formulas following [24]

P _ 3.072|F/T[*3 41417 —3.631|F/T| + - -

pT " = Z4086/F/T|'> +3.631 + 0.966|F/T| + - - -
(20)

which gives at the critical point a critical compressibility factor
(F/T = 0): p%lc = ;i =0.39.

This value is essentially that derived from the Van-der-
Waals gas equation but is well above the values observed for
real gases. Using the aforementioned relations we can calculate
the NEOS for the situations illustrated in Fig. 9. The results
are displayed in Fig. 16 where the reduced pressure is plotted
versus m for vaporization, superheating, and first-order phase
transitions on the tri-critical line. Notice that there is not a
large difference between the first two cases, while the last case
displays two critical points (a third one is on the negative m
axis).

We have seen in Fig. 2 that N = Z nuclei display a power
law. We can also estimate the critical reduced pressure for this
case noticing that the sums in Eq. (19) must be restricted to
f}) = 2Z nuclei. This leads to a critical compressibility factor

o, = 0.20, which is a value closer to that estimated from
c

other multifragmentation studies before [11].
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FIG. 17. (Color online) Comparison to the analytical result,
Eq. (20) (solid circles), for a first-order phase transition.
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FIG. 18. (Color online) Reduced compressibility versus m of the
fragments as in Fig. 16.

We can compare our analytical result given in Eq. (20)
with the numerical values obtained previously in this paper.
This is displayed in Fig. 17 and we see that the numerical
approximation is especially good near the critical point(s)
as expected. If, from detailed comparison to experimental
data, we are able to extract the temperature and pressure
dependence of the parameters entering the Landau free energy,
then Eq. (18) would be the nuclear equation of state near a
critical point. From the actual data at our disposal we can only
estimate the behavior of the reduced pressure as a function
of the order parameter m. On similar ground we can define a
reduced compressibility as

Tm) = 22 1)
m)= —-.
XP M,

Its behavior is displayed in Fig. 18 for the cases out-
lined previously. Divergences near the critical point(s) are
obtained.

VII. CONCLUSIONS

In conclusion, in this article we have presented and
discussed experimental evidence for the observation of a quan-
tum phase transition in nuclei, driven by the neutron/proton
asymmetry. Using the Landau approach, we have derived
the free energies for our systems and found that they are
consistent with the existence of a line of first-order phase
transitions terminating at a point where the system undergoes
a second-order transition. The properties of the critical point
depend on the symmetry. This is analogous to the well-known
superfluid A transition in 3He-*He mixtures. We suggest
that a tri-critical point, observed in *He-*He systems, may
also be observable in fragmenting nuclei. These features
call for further vigorous experimental investigation using
high-performance detector systems with excellent isotopic
identification capabilities. Extension of these investigations
to much larger asymmetries should be feasible as more exotic
radioactive beams become available in the appropriate energy
range.

It is important to stress that the observables discussed here
represent only necessary conditions for a critical behavior. A
definite proof of a phase transition and a tricritical point could
be given by a precise determination of yields of fragments
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whose m =~ £0.5, that is, very unstable nuclei which, most
probably, decay before reaching the detectors. Thus fragment-
particle correlation measurements for exotic primary frag-
ments such as “Li, Be (proton rich), or extremely neutron-rich
19He are needed. More generally, such correlation experiments
can also shed light on the effects of secondary decay on the
fragment observables. This remains a key question in many
equation of state studies and model calculations differ in
their assessment of these effects [6,7]. Higher quality data
over a wider range of beam energies and colliding systems
should also help in clarifying the role of other energy terms,
such as surface and Coulomb, which are important at lower
excitation energies. In particular the role of pairing and the
possibility of Bose-Einstein condensation, should be more
deeply investigated. Our data for I = 0 fragments already
show that pairing is important. This might be due to its
importance during the phase transition or to its role during
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secondary decay of the excited primary fragments. Exploration
of quantum phase transitions in nuclei is important to our
understanding of the nuclear equation of state and can have a
significant impact in nuclear astrophysics, helping to clarify
the evolution of massive stars, supernovae explosions, and
neutron star formation.
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