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Deuteron microscopic optical model potential
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A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-
matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic
optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular
distributions for some target nuclei in the mass range 6 � A � 208 with incident deuteron energies up to
200 MeV. The calculated results are compared with the experimental data.
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I. INTRODUCTION

The optical model is one of the most important theoretical
models in nuclear reaction theory, which makes a strong
impact on many branches of nuclear reaction physics. The
phenomenological optical model potential is obtained by
adjusting its parameters to minimize the deviation between
the calculated results and the existing experimental values
of reaction cross sections and elastic scattering angular
distributions, which can often reproduce the experimental
data quite well, but cannot predict the scattering without
experimental data with certainty. The microscopic optical
model potential (MOP) is generated theoretically based on the
nucleon-nucleon interaction, which has significant application
for the scattering without experimental data, especially for the
scattering from unstable nuclei in nuclear astrophysics.

The reaction induced by deuteron is of great interest in
many fields, such as radiation damage estimation, radioactive
waste transmutation, and so on. Therefore, the research on
deuteron optical model potential is of great value. At present,
there are many deuteron phenomenological optical model
potentials [1–4], some of which are global phenomenological
optical model potentials [2–4]. The global phenomenological
optical model potential from Daehnick et al. [2] is based on
two sets of reaction cross sections and some elastic scattering
angular distributions, the global potential from Bojowald
et al. [3] is based on only some elastic scattering angular
distributions, and the global potential from Han et al. [4] is
based on more extensive reaction cross sections and elastic
scattering angular distributions. There also exist some deuteron
optical potentials constructed from folding model [5–8]. The
deuteron optical potentials from Watanabe [5] and Perey and
Satchler [6] are obtained by folding the phenomenological
optical potentials for neutrons and protons, and the deuteron
optical potential from Avrigeanu et al. [7,8] consists of a
real folding potential and a phenomenological imaginary
potential. Schuck [9] derived a deuteron optical potential,
but the concrete expression for a deuteron optical potential
was not given. The purpose of this paper is to present a
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different approach to obtaining the microscopic optical model
potential for deuteron and give the concrete optical model
potential.

An isospin-dependent nucleon microscopic optical poten-
tial [10,11] is obtained using the Green function method. In
this method, as the nucleon optical model potential can be
identified with the mass operator of the one-particle Green
function from the view of the many-body theory [12], the mass
operator is utilized to get the microscopic optical potential
based on the Skyrme interaction through nuclear-matter ap-
proximation and local-density approximation. The theoretical
results calculated by the nucleon microscopic optical potential
are in good agreement with the experimental data. This method
is also used to derive the microscopic optical potential for
helium-3 [13], and the theoretical results are in reasonable
agreement with the experimental data. Encouraged by these,
the Green function method is utilized in the present paper to
obtain the microscopic optical potential for deuteron. Using
this method, the microscopic optical potential for deuteron is
obtained from the two-particle Green function based on the
Skyrme interaction, and the nuclear-matter approximation and
local-density approximation are also used. The first-order mass
operator of the two-particle Green function denotes the real
part of the deuteron optical model potential, and the imagin-
ary part of second-order mass operator denotes the imaginary
part of the potential. The microscopic optical model potential
obtained is used to calculate the reaction cross sections and
the elastic scattering angular distributions in the mass range
6 � A � 208 with incident deuteron energies up to 200 MeV,
and the results are compared with experimental data.

In Sec. II, the formulation of the MOP for deuteron is
presented. The calculated results and analysis are given in
Sec. III. Finally, in Sec. IV a summary is given.

II. THEORETICAL MODEL

The Hamiltonian of the system composed of an incident
particle and a target nucleus, which refers only to the two-body
interaction, can be expressed as

H = H0 + H1, (1)
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where

H0 =
∑

i

(ti + Ui), (2)

H1 = 1

2

∑
i �=j

Vij−
∑

i

Ui . (3)

H0 is the single-particle Hamiltonian, H1 is the residual
interaction, and Ui is the single-particle mean field.

The two-particle Green function is expressed as

iG(α1α2, β1β2; t1 − t2)

= 〈φ0|T
[
Uη(∞,−∞)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)

]|φ0〉
〈φ0|Uη(−∞,+∞)|φ0〉

= 〈φ0|T
[
Uη(−∞,+∞)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)

]|φ0〉L,

(4)

where |φ0〉 is the eigenstate of H0, T is the time-ordering
symbol, ξα1 and ξα2 are the particle annihilation operators in
interaction representation, ξ+

β1
and ξ+

β2
are the particle creation

operators in interaction representation, and L denotes that only
the linked diagrams are reserved. Uη(∞,−∞) is the time-
evolution operator expressed as

Uη(∞,−∞) =
∞∑

n=0

(−i

h̄

)n 1

n!

∫
dτ1

∫
dτ2 · · · · · ·

×
∫

dτn exp[−η(|τ1| + |τ2| + · · · · · · + |τn|)]
× T {H1(τ1)H1(τ2) · · · · · ·H1(τn)}, (5)

FIG. 1. First-order Feynman diagrams of the two-particle Green
function.

where η is the infinitesimal introduced from adiabatic approx-
imation.

The two-particle Green function satisfies the Dyson
equation,

iG(α1α2, β1β2; ω)

= iG(0)(α1α2, β1β2; ω) + i

h̄

∑
ρλµν

iG(0)(α1α2, ρλ; ω)

× [Uρλ,µν − M(ρλ,µν; ω)]iG(µν, β1β2; ω), (6)

where Uρλ,µν is the mean field and M(ρλ,µν; ω) is the mass
operator, which can be expanded into

M(ρλ,µν; ω) = M (1)(ρλ,µν; ω) + M (2)(ρλ,µν; ω) + · · · .
(7)

For the scattering process, the mass operator
M(α1α2, α1α2; ω) of the two-particle Green function is
identified with the microscopic optical model potential for
deuteron.

The two-particle Green function can be expanded into a
perturbation series:

iG(α1α2, β1β2; t1 − t2)

= iG(0)(α1α2, β1β2; t1 − t2) + iG(1)(α1α2, β1β2; t1 − t2)

+ iG(2)(α1α2, β1β2; t1 − t2) + · · · . (8)

FIG. 2. The residual second-order diagrams of the two-particle
Green function.
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It is considered only approximately up to the second order in
this article, and the corresponding Feynman diagrams include
1 zeroth-order diagram, 5 first-order diagrams given in Fig. 1,
and 33 second-order diagrams.

As studying the deuteron optical potential, deuteron must
be considered as a cluster and the nucleon-nucleon direct
interaction in deuteron is not considered. Because the Feynman
diagram in Fig. 1(b) describes the direct interaction of the
two nucleons in deuteron, only the Feynman diagrams in
Fig. 1(a) contribute to the first-order term of the two-particle
Green function. By performing the Fourier transformation,
the first-order term of the two-particle Green function can be
expressed as

iG(1)(α1α2, β1β2; ω)

= i

h̄
iG(0)

α1α2
(ω)

[
Uα1β1 −

∑
ρ

Vα1ρ,β1ρnρ

]
iG

(0)
α2β1

(ω)δα2β2

+ i

h̄
δα1β1 iG

(0)
α1α2

(ω)

[
Uα2β2 −

∑
ρ

Vα2ρ,β2ρnρ

]
iG

(0)
α1β2

(ω),

(9)

where

nρ =
{

1, below the Fermi surface,

0, above the Fermi surface,
(10)

Vαρ,βρ = 〈αρ|V |βρ〉A, (11)

where A denotes antisymmetrization and V is the two-body
nucleon-nucleon interaction.

From the Dyson equation, the first-order term of the two-
particle Green function can also be expressed as

iG(1)(α1α2, β1β2; ω)

= i

h̄
iG(0)

α1α2
(ω)[Uα1α2,β1β2 − M (1)(α1α2, β1β2; ω)]iG(0)

β1β2
(ω).

(12)

Under the mean-field approximation,

Uα1α2 = M (1)
α1α2

, (13)

so M (1)
α1α2

gives the real part of the MOP for deuteron. By
comparing Eq. (9) and Eq. (12), the real part of the MOP for
deuteron can be obtained:

M (1)
α1α2

=
∑

ρ

Vα1ρ,α1ρnρ +
∑

ρ

Vα2ρ,α2ρnρ. (14)

In the right-hand side of Eq. (14), each term is just the
contribution of the real part of the microscopic optical potential
for each nucleon [10,11] in deuteron.

Under the mean-field approximation, 28 of the second-
order Feynman diagrams are offset. The residual second-order
Feynman diagrams are given in Fig. 2. The Feynman diagram
in Fig. 2(b) describes the direct interaction between the two
nucleons in deuteron, which can be ignored. The Feynman
diagrams in Fig. 2(c) describe the indirect interactions between
the two nucleons in deuteron, which can make deuteron break
up. In this work, the Feynman diagrams in Fig. 2(c) are also ig-
nored. Then only the Feynman diagrams in Fig. 2(a) contribute
to the second-order term of the two-particle Green function.

By performing Fourier transformation, the second-order
term of the two-particle Green function can be expressed as

iG(2)(α1α2, β1β2; ω)

= −δα1β1 iG
(0)
α1α2

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα2λ,δρVδρ,β2λ

ω − εα1 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1β2

(ω)

− iG(0)
α1α2

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα1λ,δρVδρ,β1λ

ω − εα2 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α2β1

(ω)δα2β2 , (15)

where

ω = εα1 + εα2 . (16)

Here the energy of each nucleon in deuteron is half the
incident deuteron energy, namely,

εα1 = εα2 = ω

2
. (17)

From the Dyson equation, the second-order term of the
two-particle Green function can also be expressed as

iG(2)(α1α2, β1β2; ω)

= − i

h̄
iG(0)

α1α2
(ω)M (2)(α1α2, β1β2; ω)iG(0)

β1β2
(ω). (18)

The second-order mass operator of the two-particle Green
function can be obtained by comparing Eq. (15) with
Eq. (18),

M (2)
α1α2

(E)

= 1

2

∑
ρδλ

Vα1λ,δρVδρ,α1λ

εα1 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

+ 1

2

∑
ρδλ

Vα2λ,δρVδρ,α2λ

εα2 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

= M (2)
α1

(
E

2

)
+ M (2)

α2

(
E

2

)
. (19)
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The imaginary part of the second-order mass operator
M (2)

α1α2
(E) is considered as the imaginary part of the micro-

scopic optical potential for deuteron. According to the formula
of the principal value integral,

1

x + iη
= P

(
1

x

)
− iπδ(x), (20)

the imaginary part of the MOP for deuteron can be obtained
as follows:

W = ImM (2)
α1α2

(E) = −π

2

∑
ρδλ

Vα1λ,δρVδρ,α1λnλ(1 − nδ)

× (1 − nρ)δ(εα1 − ερ − εδ + ελ) − π

2

∑
ρδλ

Vα2λ,δρ

×Vδρ,α2λnλ(1 − nδ)(1 − nρ)δ(εα2 − ερ − εδ + ελ)

= ImM (2)
α1

(
E

2

)
+ ImM (2)

α2

(
E

2

)
, (21)

where ImM (2)
α1

(E
2 ) and ImM (2)

α2
(E

2 ) are the contributions of the
imaginary parts of the MOP for the two nucleons [10,11] in
deuteron, respectively.

An important conclusion is obtained from Eqs. (14) and
(21) that, as the indirect interactions of the two nucleons in
deuteron are ignored, the microscopic optical potential for
deuteron is the sum of the microscopic optical potentials for
its constituent nucleons.

FIG. 3. Radial dependence of MOP for deuteron scattering from
40Ca. (a) Real parts; (b) imaginary parts.

The interaction V in Eq. (11) is given by the extended
Skyrme force GS2 as in Refs. [10,11,13], which can be
expressed as

V12( �R, �r)

= t0(1 + x0Pσ )δ(�r) + 1
6 t3(1 + x3Pσ )ρα( �R)δ(�r)

+ 1
2 t1(1 + x1Pσ )[�k′2δ(�r) + δ(�r)�k2]

+ 1
2 t4(1 + x4Pσ )[�k′2ρ( �R)δ(�r) + δ(�r)ρ( �R)�k2]

+ t2(1 + x2Pσ )�k′ · δ(�r)�k + t5(1 + x5Pσ )�k′ · ρ( �R)δ(�r)�k
+ iW0(�σ1 + �σ2) · �k′ × δ(�r)�k. (22)

The parameters of GS2 are listed in Table I.
In nuclear matter, the wave function of nucleon α in

Eq. (11) is given by the plane wave

ψα(⇀r ) = 1√
�

ei
⇀
kα · ⇀rχσα

χτα
, (23)

where χσα
and χτα

are the spin and isospin wave functions,
respectively, and � is the volume.

When the distribution of the proton and neutron in deuteron
is considered, the MOP for deuteron can be obtained by folding
the microscopic optical potentials of its constituent nucleons
in the ground state of deuteron. In the relative coordinate
representation, the microscopic optical potential for deuteron
can be expressed as

Vd (R) = 〈φd |Vn

(
�R +

−→r
2

)
+ Vp

(
�R −

−→r
2

)
|φd〉, (24)

FIG. 4. Radial dependence of MOP for deuteron scattering from
208Pb. (a) Real parts; (b) imaginary parts.
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TABLE I. Extended Skyrme force GS2 parameters.

t0 (MeV fm3) t1 (MeV fm5) t2 (MeV fm5) t3 t4 (MeV fm8) t5 (MeV fm8) α

GS2 −1177 670 −49.7 11 054 −775 0 1

W0 (MeV fm5) x0 x1 x2 x3 x4 x5

GS2 105 0.124 0 0 1 1 0

with �R indicating the position of the center of mass of the
deuteron and −→r indicating the position of the neutron in
deuteron relative to the proton. Vn and Vp are the microscopic
optical potentials for the neutron and the proton in deuteron,
respectively, with half the incident deuteron energy. The
expressions of Vn and Vp are taken as those in Refs. [10,11].
φd (r) is the ground-state wave function of deuteron, which can
be expressed as a Hulthen function [12]:

φd (r) = Nd

r
[exp(−αr) − exp(−βr)], (25)

FIG. 5. The volume integral per nucleon of MOP for deuteron
scattering from different nuclei against the incident energy Ed . (a)
Real parts; (b) imaginary parts.

where Nd = [ αβ(α+β)
2π(β−α)2 ]1/2, with α = 0.23 fm and β = 1.61 fm.

Then the deuteron microscopic optical model potential can
be expressed as

Vd (R) = 2πN2
d

∫∫
[exp(−αr)

− exp(−αr)]2(V n + Vp)drdµ, (26)

where −1 � µ � 1.
The local-density approximation [14,15] is used to obtain

the MOP for finite nuclei as in Refs. [10,11,13].

FIG. 6. The root-mean-square radii of MOP for deuteron scat-
tering from different nuclei against incident energy. (a) Real parts;
(b) imaginary parts.
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FIG. 7. Comparison between the calculated reaction cross sec-
tions (solid lines) for d + 9Be, 12C, 16O, 24Mg, 28Si, 40,48Ca,
58,60Ni, 112,116,120,124Sn, and 208Pb reactions and experimental data
(symbols)[19–22]. Different data sets are added by 0, 0.5, 1, 1.5, 2,
2.5, and 3, in turn.

The spin-orbit coupling potential for deuteron is considered
as the sum of the spin-orbit potentials for its constituent
nucleons. The energy-independent nucleon spin-orbit potential
is obtained in Refs. [11,16]; however, in fact, the nucleon spin-
orbit potential is energy dependent [17,18], which decreases
with increasing energy. Therefore, an energy-dependent factor
is introduced here:

VSO(r) = 40

E + 40

(
V n

SO + V
p

SO

)
. (27)

FIG. 8. Comparison between the calculated reaction cross section
for d + 28Si reaction and experimental data (symbols) [19]. The solid
curve is calculated by the present MOP and the dashed curve is
calculated by the global phenomenological optical potential (GOP)
from Han et al. [4].

III. CALCULATED RESULTS AND ANALYSIS

The radial dependence, the volume integral per nucleon and
the root mean square (rms) radii of the MOP for deuteron are
calculated. The reaction cross sections and elastic scattering
angular distributions are also predicted by the MOP for
nuclides in the mass range 6 � A � 208 with incident energies
up to 200 MeV.

The radial dependence of the real and imaginary parts of
the MOP for 40Ca and 208Pb at incident deuteron energies of

FIG. 9. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at incident deuteron energy of 4.07 MeV
compared with experimental data (symbols) [23]. The results are
offset by a factor of 10.
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FIG. 10. Calculated elastic scattering angular distributions (solid
lines) at an incident deuteron energy of 12.0 MeV compared with
experimental data (symbols) [24]. The results are offset by factor
of 10.

10, 30, 50, 70, 90, and 110 MeV is shown in Figs. 3 and
4. In Fig. 3(a) and Fig. 4(a), the absolute value of the real
part decreases with increasing radius and incident energy. In
Fig. 3(b) and Fig. 4(b), the absolute value of the imaginary
part increases with increasing energy of incident deuteron,

FIG. 11. Calculated elastic scattering angular distributions (solid
lines) at an incident deuteron energy of 56.0 MeV compared with
experimental data (symbols) [25]. The results are offset by a factor
of 10.

and the primary contribution of the imaginary part changes
from the surface absorption into the volume absorption as
the incident energy increases. For the same incident energy,
the contribution of the volume absorption of the imaginary
part increases with increasing mass number of the target
nucleus.
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The volume integral per nucleon of the MOP for deuteron
is expressed as

JV = − 1

AdAT

∫
V (r)d−→r ,

(28)
JW = − 1

AdAT

∫
W (r)d−→r ,

and the rms radii is expressed as

〈
R2

V

〉1/2 =
[∫

V (r)r2d−→r∫
V (r)d−→r

]1/2

,

(29)〈
R2

W

〉1/2 =
[∫

W (r)r2d−→r∫
W (r)d−→r

]1/2

.

The energy dependence of them for 12C, 24Mg, 40Ca, 120Sn,
and 208Pb is shown in Figs. 5 and 6.

The volume integral per nucleon of the real and imaginary
parts of the MOP decreases with increasing mass number
as shown in Fig. 5. The volume integral per nucleon of the
real part JV is linearly dependent on the incident energy and
decreases as the energy of the incident deuteron increases,
while the volume integral per nucleon of the imaginary part
JW increases with increasing energy.

Figure 6 shows that the rms radii of the real and imaginary
parts of the MOP increase with increasing mass number and
keep basically as a constant.

The deuteron reaction cross sections for 9Be, 12C, 16O,
24Mg, 28Si, 40,48Ca, 58,60Ni, 112,116,120,124Sn, and 208Pb are
calculated with the MOP. The comparisons between calcu-
lated results and the experimental data [19–22] are given
in Fig. 7. The figure shows that the calculated results for
16O, 24Mg, 28Si, 40Ca, and 58Ni are in reasonable agreement

FIG. 12. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid lines) at an incident deuteron energy of
80.0 MeV compared with experimental data (symbols) [26–28]. The
results are offset by a factor of 10.

FIG. 13. Calculated elastic scattering angular distributions (solid
lines) at an incident deuteron energy of 171.0 MeV compared with
experimental data (symbols) [29]. The results are offset by a factor
of 10.

with the experimental data. The shapes of the calculated
results curves of reaction cross sections for 9Be, 12C, 48Ca,
60Ni, 112,116,120,124Sn, and 208Pb are similar to those of the
experimental data, but the magnitudes of the calculated results

FIG. 14. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid lines) at different incident deuteron energies
compared with experimental data (symbols) [30–35] for the d + 12C
reaction.
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FIG. 15. Calculated elastic scattering angular distributions at
different incident deuteron energies compared with experimental data
(symbols) [36–38] for the d + 24Mg reaction. The solid curves are
calculated by the present MOP and the dashed curves are calculated
by the global phenomenological optical potential from Han et al. [4].
The results are offset by a factor of 10.

and the experimental data show some discrepancy. As deriving
the MOP for deuteron in Sec. II, the indirect interactions
of the two nucleons in deuteron is ignored; if this term is
considered, the calculated reaction cross sections may be
improved. Figure 7 also shows there is a general trend that the

FIG. 16. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid lines) at different incident deuteron energies
compared with experimental data (symbols) [32,36,39–46] for the
d + 90Zr reaction. The results are offset by a factor of 10.

reaction cross sections increase with increasing mass number
of the target nucleus.

The reaction cross sections for 12C, 16O, 28Si, 40Ca, and
58Ni are calculated by the global deuteron optical potential
from Han et al. [4] as well, and the results reproduce the
experimental data very well. The present results calculated
by MOP are comparable to those calculated by the global
phenomenological potential in fitting the experimental data.
Figure 8 gives an example with 28Si.

The differential cross sections relative to Rutherford cross
sections for elastic scattering of deuteron from 24Mg, 27Al,
48Ti, 51V, 52Cr, 59Co, 58Ni, and 63Cu at incident deuteron energy
of 4.07 MeV are calculated, and the results are compared with
the experimental data [23] in Fig. 9. The theoretical results
for 24Mg and 27Al show some discrepancy with experimental
data, while for other target nuclei the theoretical results are in
good agreement with experimental data.
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The comparisons of the calculated elastic scattering angular
distributions for different target nuclei from 144Sm to 208Pb
with experimental data [24] at incident deuteron energy of
12.0 MeV are given in Fig. 10. The theoretical results are in
good agreement with experimental data.

The calculated results of the elastic scattering angular distri-
butions for 16O, 24Mg, 28Si, 32S, 40Ar, 40Ca, 44Ca, 54Fe, 56Fe,
58Ni, 60Ni, 64Ni, 90Zr, 118Sn, and 208Pb at incident deuteron
energy of 56.0 MeV are compared with the experimental
data [25] in Fig. 11. The theoretical values are in reasonable
agreement with the experimental data.

The differential cross sections relative to Rutherford cross
sections for elastic scattering of deuteron from 12C, 27Al, 58Ni,
68Zn, 89Y, 120Sn, and 208Pb at incident energy of 80.0 MeV are
calculated, and the results are compared with the experimental
data [26–28] in Fig. 12. Reasonable agreement is obtained for
all target nuclei.

The comparisons of the calculated elastic scattering angular
distributions for 6Li, 16O, 32S, 50V, 70Ge, and 72Ge with exper-
imental data [29] at incident deuteron energy of 171.0 MeV
are given in Fig. 13. The theoretical results are in reasonable
agreement with the experimental data.

The calculated results of differential cross sections relative
to Rutherford cross sections for elastic scattering of deuteron
from 12C at incident energies from 11.8 to 120.0 MeV are
compared with the experimental data [30–35] in Fig. 14. At
incident energy of 11.8 MeV, the calculated results and the
experimental data have some discrepancy, while at the incident

FIG. 17. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid lines) at different incident deuteron energies
compared with experimental data (symbols) [3,34,40,44,47,48] for
the d + 120Sn reaction.

energies from 29.5 to 120.0 MeV, the calculated results are in
agreement with the experimental data.

The comparison between the calculated results of elastic
scattering angular distributions and experimental data [36–38]
for 24Mg at incident deuteron energies from 56.0 to 170.0 MeV
is given in Fig. 15. At the incident energies of 56.0, 60.0 and
60.6 MeV, a good agreement is obtained for angles below 70◦,
while for larger angles, the magnitudes of calculated results
are larger than those of the experimental data. At the incident
energies from 62.0 to 170.0 MeV, the calculated results are in
good agreement with experimental data.

FIG. 18. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid lines) at different incident deuteron energies
compared with experimental data (symbols) [3,33–35,44,45,49] for
the d + 208Pb reaction.
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The calculated results of differential cross sections relative
to Rutherford cross sections for elastic scattering of deuteron
from 90Zr at incident energies from 5.5 to 183.0 MeV
are compared with the experimental data [32,36,39–46] in
Fig. 16. The calculated results are in general agreement with
experimental data.

The calculated results of differential cross sections relative
to Rutherford cross sections for 120Sn at incident deuteron
energies from 11.0 to 85.0 MeV are compared with the
experimental data [3,34,40,44,47,48] in Fig. 17. The calculated
results are in reasonable agreement with experimental data.

The comparison between the calculated results of differen-
tial cross sections relative to Rutherford cross sections and
experimental data [3,33–35,44,45,49] for 208Pb at incident
deuteron energies from 16.0 to 110.0 MeV is given in
Fig. 18. The calculated results are in reasonable agreement
with experimental data.

The differential cross sections relative to Rutherford cross
sections for 12C, 16O, 27Al, and 28Si at incident deuteron energy
of 52.0 MeV are calculated using the global phenomenological
optical potential in Ref. [3], and the calculated results from the
present microscopic optical model potential are better than that
calculated by the global phenomenological optical potential in
fitting the experimental data. The elastic scattering angular
distributions for different nuclei at incident deuteron energies
of 4.07, 12.0, and 171 MeV and for 24Mg and 208Pb at different
incident deuteron energies are also calculated using the global
phenomenological optical potential in Ref. [4]. Figure 15
gives the comparison between the elastic scattering angular
distribution for 24Mg calculated by the global potential and
that calculated by the MOP, and it is shown that the calculated
result from the present microscopic optical model potential is
comparable to that calculated by the global phenomenological
optical potential in fitting the experimental data. The calculated
results for the other cases are similar to those for the case of
24Mg.

The shape of the calculated results curve of elastic scattering
angular distributions from our microscopic optical model
potential is in good agreement with that of experimental
data, but the magnitude has some discrepancy with that of
experimental data for light target nuclei at lower incident
deuteron energy. The reason for the discrepancy is that the light

nuclei show a strong nuclear-structure effect at low incident
energy and the mean-field approximation cannot describe the
light nuclei well.

IV. SUMMARY

The deuteron microscopic optical model potential is ob-
tained using a Green function method. The real part of the
deuteron optical model potential is denoted by the first-order
mass operator of the two-particle Green function, and the
imaginary part potential is denoted by the imaginary part
of second-order mass operator. The radial dependence, the
volume integral per nucleon, and the rms radii of the MOP
for deuteron are calculated, and the trend of the results is
reasonable. Some reaction cross sections and elastic scattering
angular distributions for target nuclides in the mass range
6 � A � 208 with incident energies up to 200 MeV are also
calculated by the deuteron microscopic optical model potential
and compared with the experimental data. Except for the
reaction cross sections for some target nuclei, the calculated
results are generally in good agreement with the experimental
data. Furthermore, some theoretical results calculated by the
deuteron microscopic optical potential are comparable to ones
calculated by deuteron global optical potential in fitting the
experimental data.

Although our model calculation reproduces most exper-
imental data well, but fails to reproduce the reaction cross
sections for some target nuclei. This may suggest that the
indirect interactions of the two nucleons in deuteron have an
important effect on the MOP for deuteron. Therefore, the effect
of the indirect interactions of the two nucleons in deuteron will
be studied in the future.
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