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Elastic and inelastic scattering of 240-MeV 6Li ions from 40Ca and 48Ca
and tests of a systematic optical potential
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Elastic and inelastic scattering of 240-MeV 6Li particles from 40Ca and 48Ca were measured with the multipole-
dipole-multipole spectrometer from 4◦ � θc.m. � 40◦. Optical potential parameters were obtained by fitting the
elastic-scattering data with the double-folding model using the density-dependent M3Y NN effective interaction
and B(E2) and B(E3) values obtained for low-lying 2+ and 3− states agreed with the adopted values. The results
are compared with those obtained using potentials derived from the systematics of potentials previously obtained
for 24Mg, 28Si, 58Ni, and 90Zr. Cross sections for excitation of giant resonances were also calculated with the
potentials obtained.
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I. INTRODUCTION

The properties of the isoscalar giant resonances in nuclei
are important because of what they tell us of the bulk nuclear
properties. The isoscalar giant monopole resonance (ISGMR)
is of particular importance because its energy is related to
the nuclear compressibility and from this the compressibility
of nuclear matter (Knm) can be obtained. A comparison of the
results of systematic studies of the ISGMR in stable nuclei with
calculations using the Gogny interaction resulted in the value
Knm = 231 ± 5 MeV [1]. Calculations with other interactions
and relativistic models have shown that the location of the
ISGMR is also sensitive to the symmetry energy and studies
of stable Sn isotopes have led to some constraints on Ksym [2,3].
In order to determine the contribution from symmetry energy
more accurately, a systematic study of the ISGMR over a wide
range of (N-Z)/A is necessary. This range can be expanded
by extending ISGMR measurements to unstable nuclei using
inverse reactions.

The inelastic scattering of α particles has been a valuable
technique for studying ISGMR in many stable nuclei for sev-
eral years [1,4,5]. Unfortunately He targets have serious limita-
tions for such studies using inverse reactions. At Riken a liquid
He target 120 mg/cm2 in thickness was employed to study
the ISGMR in 14O [6] using 60 MeV/nucleon 14O beams.
However, the energy straggling in such a target is large, and
for heavier-mass projectiles, it would be unacceptably large.
The excitation of the GMR in the 56Ni nucleus [7] has also
been reported using deuterium in the active target MAYA at
the Grand Accelerateur National D’Ions Lourds (GANIL) [8].

Chen et al. [9] have explored the possibilities of using
6Li in giant resonances studies and have shown that the
inelastic scattering of 6Li excites the ISGMR strongly. For
6Li scattering, the low-lying particle emission threshold
gives a large breakup probability into the dominant channel
6Li → α + d. Therefore the contribution of multistep pro-
cesses should be low especially at higher excitation energy.
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With the intention of extending the study of ISGMR to un-
stable nuclei with inelastic scattering using a 6Li target, optical
parameters are needed for distorted-wave Born approximation
(DWBA) calculations of multipole excitations. Therefore we
are using a 6Li beam on stable targets to investigate optical
potentials and explore how reliable B(E2) and B(E3) values for
well-known low-lying states are reproduced. Thus our primary
focus is to obtain appropriate folding model parameters that
can be used to obtain a systematic parameter set that can be
used in giant resonance studies of unstable nuclei.

The mass and energy dependencies of the volume integral
of the nuclear potential have been explored by several groups
[10–12]. They found that the volume integral of the nuclear
potential will slowly decrease as the incident energy and target
mass increase. In our case, we would study giant resonances
with 40 MeV/nucleon beams, so we are concerned only with
the target mass dependence.

In an effort to extract a systematic optical potential for
loosely bound nuclei, Trache et al. [13] have studied the
elastic scattering of loosely bound p-shell nuclei and optical
model parameters were obtained from the fits to the elastic-
scattering angular distributions using the density-dependent
JLM NN interaction in double-folding model calculations.
Renormalization factors for both the real and imaginary part
of the potentials were found to be very stable for all projectile-
target systems. They suggested [13] that one can indeed obtain
the optical model potentials for pairs of projectile-target nuclei
for which data are not available or scarce by using a folding
model procedure with renormalization factors extracted from
the systematics. This procedure has been widely used in the
description of elastic and transfer reactions involving stable,
loosely bound p-shell nuclei at E ∼ 10–20 MeV/nucleon
[14–16]. In a similar approach T. Furumoto and Y. Sakuragi
[17], used the folding model with the JLM NN interaction for a
systematic analysis of α–nucleus elastic scattering in the range
of Elab = 40–240 MeV.

The density-dependent M3Y effective NN interaction
[18,19] has also been successfully used in a number of
cases [18–21] to fit elastic-scattering data. In some studies of
heavy-ion elastic scattering, it was found sufficient to treat the
effective NN interaction as having a complex strength so that
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the real and imaginary optical potentials have the same radial
shape [22]. However, in the analysis of refractive α-nucleus
scattering [23] and of light heavy-ion scattering [24,25] an
imaginary potential with a shape different from the real
potential was required to reproduce elastic scattering beyond
the rainbow angle. A hybrid model, where the folding model
is used to calculate the real potential and a Woods-Saxon
(WS) form is used for the imaginary potential has been
successfully used to describe α- and heavy-ion scattering data
by several authors [12,21,22,26–30]. A detailed study of the
double-folding approach for α-nucleus scattering on targets in
different mass regions was made by D. T. Khoa in 2001 [26].

Here we report the results of a study of elastic and inelastic
scattering to low-lying states of 40Ca and 48Ca using 240-MeV
6Li ions. Optical parameters were obtained in two ways. The
elastic-scattering data were fit with cross sections calculated
using the double-folding model with the density-dependent
M3Y interaction and the systematics of 6Li potentials from
studies of 24Mg, 28Si, 58Ni, and 90Zr [21,28] were used to
predict parameters for 40Ca and 48Ca. The differential cross
sections for the low-lying 2+ and 3− states were also obtained,
and DWBA calculations were carried out using both the
“fitted” potentials and those obtained from the systematics
to obtain B(EL) values. Differential cross sections for the
excitation of giant resonances in these nuclei were also
calculated using both sets of parameters.

Nadasen et al. [11] have studied 6Li elastic scattering
from 40Ca at 210-MeV beam energy and fit the data with
phenomenological WS potentials. Farid and Hassanain [31,32]
have analyzed 210-MeV 6Li scattering on 40Ca using a
density-independent double-folding model with both the M3Y
and JLM NN interactions. Previous studies of 6Li optical
potentials for scattering from a number of other nuclei were
thoroughly discussed in Ref. [28]. We have previously reported
optical parameters for 240-MeV 6Li scattering from 24Mg and
28Si [21], 58Ni and 90Zr [28], and 116Sn [12] and, except for
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FIG. 1. The experimental angular distribution of the cross section
(relative to Rutherford cross section) for 6Li + 40Ca elastic scattering
is shown by the circles. The error bars include statistical and
systematic errors. The line shows the cross section calculated with
the DDF potential parameters obtained by fitting the data.
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FIG. 2. Same as Fig. 1 but for 48Ca.

116Sn, these parameters form the basis of a systematic potential
that we test in this work.

II. EXPERIMETAL TECHNIQUE

The experimental technique for the 6Li-scattering measure-
ments was similar to that for α scattering described in Ref. [30]
and is summarized briefly below.

Beams of 240-MeV 6Li ions from the Texas A&M K500
superconducting cyclotron bombarded self-supporting target
foils (enriched to more than 95%, 5.02 mg/cm2 40Ca and
4.4 mg/cm2 48Ca) in the target chamber of the multipole-
dipole-multipole (MDM) spectrometer [33]. The beam was
delivered to the MDM spectrometer through a beam analysis
system [34] to remove halo and improve momentum resolution
and was stopped on a Faraday cup inside the scattering
chamber. The horizontal acceptance of the spectrometer was
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FIG. 3. The angular distribution of the differential cross sec-
tion for inelastic scattering of 240 MeV 6Li ions exciting the
3.737-MeV 3− state of 40Ca is shown by the circles. The error bars
include statistical and systematic errors. The line shows the angular
distribution obtained from the DWBA calculations with the DDF
parameters, normalized to the data to obtain the lowest χ2.
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TABLE I. Parameters for the Fermi model of the ground-state
density distributions used in the folding calculations.

Nucleus ρ0 (fm−3) c (fm) a (fm) 〈r2〉 (fm) Reference

40Ca 0.169 3.60 0.523 3.399 [31]
48Ca 0.187 3.723 0.515 3.479 [37]

4◦ and ray tracing was used to reconstruct the scattering angle.
The focal-plane detector consisted of four 60-cm-long resistive
wire proportional counters to measure position, an ionization
chamber to measure �E, and a scintillator to measure E and to
provide a fast timing signal for each event. The out-of-plane
scattering angle (φ) was not measured. The principles of
operation of the detector are similar to the detector described
in Ref. [35]. The details of angle and position calibrations were
described in Ref. [36]. A position resolution of approximately
0.9 mm and scattering angle resolution of about 0.09◦ were
obtained.

Data for elastic scattering and inelastic scattering exciting
the low-lying states were taken at spectrometer angles ranging
from 4◦ to 40◦ with a spectrometer acceptance of �θ = 4.0◦.
The vertical acceptance was ±1◦ for spectrometer angles from
4◦ to 9◦ and ±2◦ for spectrometer angles from 11◦ to 40◦. In
the data analysis, data taken at one spectrometer angle were
divided into 10 angle bins, each angle bin corresponding to
�θ ≈ 0.4◦. The average angle for each bin was determined by
averaging over the height of the solid angle defining slit and
the width of the angle bin. For each angle bin, the elastic- and
inelastic-scattering peak positions, widths, and cross sections
were extracted by integration or by a Gaussian fitting routine.
The target thicknesses were obtained by measuring the energy
loss of 240-MeV α and 6Li beams passing through 48Ca
and 40Ca targets, respectively. The absolute differential cross
sections for each angle bin were obtained from the combination
of yield, charge integration, target thickness, solid angle, and
dead-time correction. The cumulative uncertainties in target
thickness, solid angle, etc., result in a ±10% uncertainty
in the cross section. Data from a monitor detector, fixed at
θlab = 25◦, were used as a check on the charge integration
to verify the normalization between the different data sets
across the angular range. Experimental angular distributions
of the cross section (relative to Rutherford cross section)
for elastic-scattering data are shown in Figs. 1 and 2. The
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FIG. 4. The angular distribution of the differential cross sections
for inelastic scattering of 240 MeV 6Li ions exciting the 3.832-MeV
2+ state (upper panel) and 4.507-MeV 3− state (lower panel) of
48Ca are shown by the circles. The error bars include statistical and
systematic errors. The lines show the angular distribution obtained
from the DWBA calculations with the DDF parameters, normalized
to the data to obtain the lowest χ 2.

experimental angular distribution of the cross sections for
excitation of the 3.737-MeV 3− state in 40Ca is shown in Fig. 3
and those obtained for the 3.832-MeV 2+ and 4.507-MeV 3−
states of 48Ca are shown in Fig. 4.

III. RESULTS AND ANALYSIS

A. Double-folding model description of the elastic and inelastic
scattering to low-lying states

In this work, we have followed the same approach as in
our earlier work [28], where the real part of the potentials was
calculated using the density-dependent M3Y NN interaction
in the double- folding model and the imaginary part was
calculated using a WS form. A Fermi distribution (see
Table I) was used for the target ground-state density and the
cluster-orbital shell-model approximation [38] form was used
for the 6Li ground-state density (see Eq. (8) of Ref. [12]).

TABLE II. Optical model parameters obtained from fits of elastic scattering with the density-dependent double-folding
calculations using the M3Y interaction (DDF fit). Nr is the renormalization factor for the real potential. Sr is the scaling factor
for the radius of the real potential. Wi , ri0, and ai are WS parameters for the imaginary potentials. Jw is the volume integral per
nucleon pair for the imaginary potentials. σr is the total cross section of the reaction. DIF means density-independent folded
potential. The asterisk means that Rw = ri0A

1/3
T .

Target ELi NN Potential Nr Sr Wi ri0 ai Jw χ 2 σr

(MeV) int. type (MeV) (fm) (fm) (MeV fm3) (mb)

40Ca 240 [Present] M3Y DDF 0.895 1.086 42.95 0.923 1.106 128 1.7 2090
210 [31] M3Y DIF 0.740 32.20 1.633∗ 0.891 122 2.6 1940
210 [32] JLM DIF 0.524 18.22 1.938∗ 0.659 9.6 1865

48Ca 240 [Present] M3Y DDF 0.904 1.075 31.62 1.054 0.903 109 1.2 2021
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TABLE III. (EL) values for 3− state of 40Ca and 2+ and 3− states of 48Ca obtained with the double-folding model.
Adopted values of B(E2) and B(E3) are also shown in the table. The errors represent total errors including statistical and
systematic errors.

Work Parameter 40Ca 48Ca 48Ca
set Jπ = 3−, Jπ = 2+, Jπ = 3−,

Ex = 3.737 MeV Ex = 3.832 MeV Ex = 4.507 MeV
B(E3) (e2 b3) B(E2) (e2 b2) B(E3) (e2 b3)

DDF 0.0179 ± 0.0018 0.0116 ± 0.0012 0.0075 ± 0.0008
Q1 0.0164 ± 0.0017 0.0140 ± 0.0014 0.0083 ± 0.0008
Q2 0.0171 ± 0.0017 0.0126 ± 0.0013 0.0075 ± 0.0008

Present Q3 0.0164 ± 0.0017 0.0155 ± 0.0016 0.0105 ± 0.0011
L1 0.0171 ± 0.0017 0.0155 ± 0.0016 0.0094 ± 0.0009
L2 0.0164 ± 0.0017 0.0140 ± 0.0014 0.0085 ± 0.0009
L3 0.0197 ± 0.0020 0.0155 ± 0.0016 0.0105 ± 0.0011

Adopted values 0.0184 ± 0.0020 [42] 0.0095 ± 0.0032 [43] 0.0083 ± 0.0020 [42]

Density-dependent double-folding calculations were carried
out with the folding code DFPD4 [39] and DWBA calculations
were done using the program ECIS [40].

The quality of fit of elastic as well as inelastic scattering is
estimated by χ2, defined by

χ2 = 1

N

N∑
i=1

[
σ (θi)cal − σ (θi)exp

�σ (θi)

]2

, (1)

where N is the number of data points, σ (θi)cal is the ith
calculated cross section, σ (θi)exp is the experimental cross
section, and �σ (θi) is the corresponding absolute uncertainty.

The optical potential parameters obtained from the density-
dependent double-folding calculations (DDF) for 40Ca and
48Ca are shown in Table II. The results for 40Ca are compared
with those obtained by Farid and Hassanain [31,32]. The
calculated angular distributions of the cross sections are plotted
along with elastic-scattering data in Figs. 1 and 2.

The renormalization factors (Nr ) obtained are about 0.90
for both 40Ca and 48Ca target nuclei. Similar values were
required for other nuclei, 0.823 and 0.887 [21] for 24Mg and
28Si, respectively, and 0.875 and 0.878 [28] for 58Ni and 90Zr,
respectively, using the same interaction. A somewhat lower
value Nr = 0.65 was required to fit 240-MeV 6Li scattering
from 116Sn [12]. Farid et al. [31,32] have analyzed 210-MeV
6Li scattering from 40Ca using double-folding calculations
with the density-independent M3Y and JLM NN interactions.

TABLE IV. The values of renormalization factor for the real
potential (Nr ), scaling factor for the radius of the real potential (Sr ),
volume integral per nucleon pair for the imaginary potential (Jw),
and depth of the imaginary part of the potential (Wi) are taken from
Refs. [21,28].

Target Nr Sr Jw (MeV fm3) Wi (MeV) Reference

24Mg 0.823 1.0620 154 58.67 [21]
28Si 0.887 1.0624 136 41.33 [21]
58Ni 0.875 1.0594 112 35.33 [28]
90Zr 0.878 1.0661 102 33.34 [28]

In both cases the renormalization factors (Nr ) are lower (see
Table II) than our results with the density-dependent M3Y NN
interaction.

A scaling factor on the radius of the real optical potential,
Sr , is necessary to fit the elastic-scattering data for both
40Ca (1.086) and 48Ca (1.075). A similar scaling factor was
required to fit data for 6Li scattering from 24Mg (1.062), 28Si
(1.0624) [21], 58Ni (1.059), and 90Zr (1.066) [28] target nuclei,
which has been attributed to a repulsive surface correction for
dynamical polarization potential [21,41].

As a further test of the optical model parameters, DWBA
calculations were performed with these parameters for the
low-lying 2+ and 3− states using these parameters, and
are shown superimposed on the data in Figs. 3 and 4,
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FIG. 5. The target mass number dependence of renormalization
(Nr) and radius scaling (Sr ) factors of the real part of the potential are
shown by solid squares. The 24Mg and 28Si results are from Ref. [21],
and the 58Ni and 90Zr results are from Ref. [28]. Solid and broken lines
are quadratic and linear fits of the data, respectively. The stars show
the results from the DDF fit to the 40Ca and 48Ca elastic scattering
data.
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normalized to the data to produce the lowest χ2. The real
parts of the transition potentials were calculated by folding
the NN effective interaction over the densities of the target
and projectile, while the imaginary parts were constructed
with the deformed potential model. The transition potentials
were calculated with DFPD4 [39] and the cross sections were
calculated with ECIS [40]. Details of this process can be
found in Refs. [12,28]. The B(E2) and B(E3) values obtained
agree with the adopted values within errors and are given in
Table III.

B. Systematic 6Li-nucleus folding potential parameters

In order to test the effectiveness of systematic optical
potentials for our studies, we have used optical potentials
previously obtained for 24Mg, 28Si, 58Ni, and 90Zr to obtain
optical potentials for 40Ca and 48Ca. We then compare elastic
scattering fits, fits to low-lying states and B(EL) values
obtained for the low-lying states, and giant resonance cross
sections obtained with the two approaches.

The 6Li optical parameters obtained for 116Sn [12] do not
follow the trend of these four lighter nuclei, and they have not
been used in this study. Due to availability of suitable beams,
our first studies of radioactive nuclei will be limited to lighter
nuclei (A < 40), so that limiting this study to A � 90 suits the
present purpose.

The real potential in these studies was obtained by
double-folding using the M3Y interaction, so the target mass
dependence is “built in” from the Fermi parameters for the
mass distribution. However, two additional parameters were
required to fit the elastic data: Nr (renormalization factor) and
Sr (radial scaling factor). The values of these factors for 24Mg,
28Si, 58Ni, and 90Zr are summarized in Table IV and plotted
in Fig. 5 which includes the 40Ca and 48Ca values from Table
II. Linear and quadratic fits to the 24Mg, 28Si, 58Ni, and 90Zr
points are also shown in Fig. 5. From these fits, values were
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FIG. 6. The target mass number dependence of the volume
integral of the imaginary part of the potential (Jw) is shown by dark
squares in the bottom panel and the depth of the imaginary part of the
potential (Wi) is shown by dark squares in the top panel. The 24Mg
and 28Si results are from Ref. [21], and the 58Ni and 90Zr results are
from Ref. [28]. Solid and broken lines are quadratic and linear fits of
the data, respectively. The stars show the results from the DDF fit to
the 40Ca and 48Ca elastic-scattering data.

obtained for 40Ca (Nr = 0.872, Sr = 1.062 from quadratic fit,
Nr = 0.862, Sr = 1.062 from linear fit) and for 48Ca (Nr =
0.880, Sr = 1.063 from quadratic fit, Nr = 0.865, Sr = 1.062
from linear fit) to be used in the “systematic” optical potentials

TABLE V. Optical model parameters for 40Ca and 48Ca obtained from the systematic approach
(Q1-Q3 and L1-L3) (see text). Parameters obtained by fitting the elastic scattering (DDF) are shown
for comparison.

Target label Nr Sr Wi ri0 ai Jw χ 2 σr

(MeV) (fm) (fm) (MeV fm3) (mb)

DDF 0.895 1.086 42.95 0.923 1.106 128 1.7 2090
Q1 41.04 0.942 1.085 2.8 2074
Q2 0.872 1.062 47.25 0.869 1.152 127 9.2 2100

40Ca Q3 36.25 1.001 1.048 2.9 2091
L1 45.07 0.898 1.183 2.9 2214
L2 0.862 1.062 50.06 0.839 1.246 133 4.9 2255
L3 40.06 0.943 1.195 3.6 2287

DDF 0.904 1.075 31.62 1.054 0.903 109 1.2 2021
Q1 37.05 0.997 1.062 2.9 2239
Q2 0.880 1.063 42.05 0.948 1.052 119 2.6 2155

48Ca Q3 32.05 1.064 1.025 7.6 2274
L1 42.78 0.949 1.134 5.3 2335
L2 0.865 1.062 47.78 0.909 1.116 127 3.0 2252
L3 37.78 1.008 1.098 9.4 2354
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for these nuclei. These differ somewhat from those obtained
by the DDF fits to the elastic scattering (Table II).

The mass dependence of the volume integrals of the
imaginary part of optical potentials (Jw’s) [21,28], defined
as:

Jw = 1

AT AP

∫
w(r)dτ, (2)

where w(r) is the imaginary part of the optical potential and AT

and AP are the mass numbers of the target and the projectile,
is shown in the bottom panel of Fig. 6. Their behavior is
consistent with other works [10–12] where it was found that
the volume integral of the nuclear potential slowly decreases as
the target mass increases. Quadratic and linear fits to the 24Mg,
28Si, 58Ni, and 90Zr points are also shown. Values of Jw for
40Ca (127 and 133 MeV fm3) and 48Ca (119 and 127 MeV fm3)
were extracted from the quadratic and linear fits, respectively.
The values for 40Ca are close to that obtained from the DDF
fits (128 MeV fm3) but for 48Ca are substantially higher than
that from the DDF fit (109 MeV fm3).

Unfortunately, the WS parameters used in DWBA calcula-
tions are not uniquely determined by Jw, which is the volume
integral of the potential, as defined in Eq. (2). In order to obtain
realistic values of Wi , ri0, and ai0, a systematic approach for
these parameters is required. The mass dependence of the
depth of the imaginary part of the potential (Wi) obtained for
240-MeV 6Li scattering data [21,28], is plotted in the upper
panel of Fig. 6. Quadratic and linear fits to the values for
24Mg, 28Si, 58Ni, and 90Zr are also shown. Values of Wi for
40Ca (41.04 and 45.07 MeV) and 48Ca (37.05 and 42.78 MeV)
were extracted from the quadratic and linear fits, respectively.
Using these values of Wi corresponding values of ri0 and
ai0 were extracted, keeping the values of Jw constant. These
sets are labeled as L1 and Q1 for linear and quadratic fits in
Table V.
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FIG. 7. The angular distribution of the cross sections (relative to
Rutherford cross section) calculated with Q1-Q3 and L1-L3 sets of
parameters (see text for detail) are plotted along with the data for
6Li+40Ca elastic scattering.
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FIG. 8. Same as Fig. 7 but for 48Ca.

1. Elastic and inelastic scattering to low-lying states

The cross sections for elastic scattering obtained with these
sets of parameters (Q1 and L1) are compared with the data in
Figs. 7 and 8 and the χ2 values obtained are shown in Table
V. Although the quality of fit is still good for 40Ca, the χ2

values are about 50% larger using the parameters from both
the linear and quadratic fits than from the DDF calculations.
For 48Ca, at larger angles the cross sections calculated with
the parameters from the quadratic fit are obviously below the
data and the χ2 value is more than twice that obtained with
the DDF calculations. The cross sections calculated for 48Ca
with the parameters from the linear fit are even further below
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FIG. 9. The angular distributions of the differential cross sections
calculated with the parameters Q1-Q3 and L1-L3 (see text for detail)
for inelastic scattering to the 3.737-MeV 3− state of 40Ca are plotted
along with the data.
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FIG. 10. The angular distributions of the differential cross sec-
tions calculated with the parameters Q1-Q3 and L1-L3 (see text for
detail) for inelastic scattering to the 3.832-MeV 2+ state of 48Ca are
plotted along with the data.

the data at large angles and the χ2 value obtained are about a
factor of 4.5 larger than with the DDF calculations.

As a further test of the optical model parameters obtained
from the systematics, DWBA calculations using the double-
folding model with Q1 and L1 sets of parameters were made
for the 3.737-MeV 3− state of 40Ca and the 3.832-MeV 2+
and the 4.507-MeV 3− states of 48Ca and are shown super-
imposed on the data in Figs. 9–11, normalized to produce the
lowest χ2.

B(EL) values obtained from the fits, Q1 and L1, are listed
in Table III. The associated error represents the total error
including both statistical and systematic errors (including the
error in the absolute cross section). The results are compared
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FIG. 11. Same as Fig. 10 but for the 4.507-MeV 3− state of 48Ca.
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FIG. 12. B(E3) values for the 3− state in 40Ca, obtained with the
different sets of parameters are compared with the adopted values.

with those obtained with DDF fit and the adopted B(E2) [43]
and B(E3) [42] values in Table III and in Figs. 12 and 13. The
B(E3) values for the 3− states in 40Ca and 48Ca obtained with
Q1 and L1 sets of parameters agree with the adopted values as
well as with those obtained with DDF fit. The B(E2) value for
the 2+ state in 48Ca obtained with Q1 agrees within error with
the adopted value. The corresponding value obtained with L1
is higher that the adopted value.

It has been suggested [24,44] that optical parameters that
have the same volume integral will result in similar predictions
for cross sections. In order to test this, we varied the value of
Wi (obtained originally from the systematics illustrated in the
top panel of Fig. 6), keeping Jw constant. Values of Wi’s were
varied approximately by ±5 MeV and then corresponding
values of ri0 and ai0 were extracted by requiring that Jw remain
constant. These set of parameters are labeled as Q2 and Q3 and
L2 and L3 for the quadratic and linear fits, respectively. The
renormalization and radial scaling factors were kept the same
as for the L1 and Q1 sets. Differential cross sections for elastic
scattering were calculated using these sets of parameters and
are plotted in Figs. 7 and 8. From these figures and Table V,
we see that for 40Ca, sets Q3 and L3 (in which Wi’s have been
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parameters, for the 2+ and 3− states of 48Ca are plotted and compared
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FIG. 14. Angular distributions of the differential cross section for
240-MeV 6Li inelastic scattering from 40Ca for l = 0–3 for 100% of
the EWSR at Ex = 18 MeV.

decreased by ∼5 MeV) agree with the data fairly well and have
χ2 values within a factor of 2 of the DDF fits, whereas sets
Q2 and L2 give very large χ2 (∼6–8 times greater than that
obtained with DDF fit) and do not fit data at larger angles. For
48Ca, the situation is reversed. Here, sets Q2 and L2 (in which
Wi’s have been increased by ∼5 MeV) result in χ2 values
substantially lower than those from Q1 and L1 (see Fig. 8 and
Table. V). The set of parameters Q3 and L3 predict angular
cross sections far below the data, specially at larger angles. By
varying the value of Wi (obtained from systematics), we found
no systematic patterns in the prediction of the cross sections
for 40Ca and 48Ca.

DWBA calculations with Q2-Q3 and L2-L3 sets of param-
eters were also made for the low-lying states of 40Ca and 48Ca
and are shown in Figs. 9–11, normalized to produce the lowest
χ2. B(EL) values obtained with these fits are also shown in
Table III and plotted in Figs. 12 and 13. B(EL) values, obtained
with the parameters (Q2-Q3 and L2-L3) agree with adopted
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FIG. 15. Angular distributions of the differential cross section for
240-MeV 6Li inelastic scattering from 48Ca for l = 0–3 for 100% of
the EWSR at Ex = 18 MeV.
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inset has the vertical scale expanded to show the region close to 0◦.

values within error. The B(E2) values for the 2+ state in 48Ca
obtained with the parameter sets L3 and Q3 are higher than
the adopted value (see Fig. 13).

2. Calculations for giant resonances

Figures 14 and 15 show calculated differential cross
sections for the excitation of various giant resonances (l =
0 to 3) in 40Ca and 48Ca, respectively, assuming that these
resonances exhaust 100% of the respective energy weighted
sum rule’s (EWSR) [9]. The calculations were done for
resonances at Ex = 18 MeV using ECIS [40] with the DDF
set of parameters obtained by fitting the elastic scattering.
The peak cross sections for the monopole resonances at 0◦ in
these nuclei are found to be comparable with 24Mg, 28Si, and
116Sn nuclei [9,21] and are adequate for studies with unstable
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FIG. 17. (Color online) Angular distributions of the differential
cross section for 240-MeV 6Li inelastic scattering from 48Ca for l = 0
(monopole resonance) for 100% of the EWSR at Ex = 18 MeV. The
inset has the vertical scale expanded to show the region close to 0◦.
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beams. The ISGMR cross section decreases rapidly beyond
1◦, whereas the other multipoles are basically flat or slowly
varying, so that ISGMR strength should be separable from the
other multipoles.

The differential cross sections for the monopole resonances
in 40Ca and 48Ca were calculated with the parameters obtained
from the systematics and are compared with those obtained
with DDF parameters in Figs. 16 and 17. The peak cross
sections for the monopole resonance at 0◦ in 40Ca calculated
using sets L1 and Q1 are 253 and 284 mb/sr, respectively,
and are close to the value = 257 mb/sr obtained with DDF
parameters (with ∼12% more for Q1 case). In the case of
48Ca, the peak cross sections for monopole resonance at 0◦ are
263 and 242 mb/sr with parameters sets Q1 and L1, which
are around ∼15 and 22% less than that obtained with DDF
parameters (311 mb/sr). The calculations using parameters of
sets L2, L3, Q2, and Q3 varied from those obtained with the
DDF parameters by as much as 30%.

IV. CONCLUSION

Elastic and inelastic scattering of 240-MeV 6Li particles
from 40Ca and 48Ca were measured with the MDM spec-
trometer. Optical parameters were obtained from the fit of
elastic-scattering data using double folding with the density-
dependent M3Y NN interaction. B(EL) values obtained from
the double-folding model agree well with adopted values for
low-lying 2+ and 3− states. Optical parameters for 40Ca and

48Ca were also obtained from both linear and quadratic fits to
those for 24Mg, 28Si, 58Ni, and 90Zr and the effects of varying
the imaginary potential depth while retaining the volume
integral constant were explored. The χ2 values obtained for
the fits to elastic scattering using the “systematic” potentials
were 50–100% higher but visually would still be described as
good fits. The B(EL) values obtained for the low-lying 2+ and
3− states using the parameters obtained from the quadratic fit
all agreed with the adopted values within errors. Differential
cross sections for the excitation of giant resonances in these
nuclei were also calculated with the parameters obtained from
the systematic approach as well as from the fits of elastic
data. The cross sections obtained for the giant monopole
resonance at 0◦ with the parameters from the quadratic fit
to the parameters from the other nuclei agreed within 10%
for 40Ca and 15% for 48Ca with those calculated using optical
parameters obtained from fitting the elastic-scattering data.
These results suggest that for nuclei between A = 24 and A =
90, optical potentials for 40 MeV/nucleon 6Li scattering can
be obtained for unstable nuclei using the systematic behavior
of those for 24Mg, 28Si, 40Ca, 48Ca, 58Ni, and 90Zr without
inducing unacceptable error in B(EL) values or giant monopole
resonance strengths.
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