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We propose some new, efficient, and practical extrapolation methods to obtain a few low-lying eigenenergies
of a large-dimensional Hamiltonian matrix in the nuclear shell model. We obtain those energies at the desired
accuracy by extrapolation after diagonalizing small-dimensional submatrices of the sorted Hamiltonian matrix.
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I. INTRODUCTION

Extrapolation provides us with an intriguing and useful
method for quantum many-body problems in many fields of
physics. The Hilbert spaces of quantum many-body systems
can be finite, but are essentially large or infinite. In handling
such large Hilbert spaces by numerical methods, we encounter
various difficulties. However, if we can manage a dominant
but small subspace, the contribution of the remaining huge
subspace can be estimated and incorporated by some kind of
extrapolation method. More concretely, we can estimate the
exact energy of either the ground state or an excited state
by extrapolation if we know a scaling property, such as how
its energy changes as a function of a certain physical quantity.

The shell model is part of the fundamental framework of
nuclear structure physics. For shell model calculations, we
need to handle very huge Hilbert spaces on various occasions.
One of the conventional approaches is diagonalization with
spherical single-particle basis states, which recently has
become applicable in the M scheme to quite large-scale
problems with dimension up to 1010 [1,2]. However, for
even larger spaces, diagonalization is impossible because
of computational difficulties. To overcome this limitation
of diagonalization, various methods have been developed
[3–6]. Among the basis-truncation approaches, schemes based
on many-body perturbation theory, such as the importance-
truncation method, have been proposed [7,8].

Recently, Shen et al. showed that eigenvalues have a strong
linear relation with diagonal matrix elements for individual
runs of the two-body random ensemble or Gaussian orthogonal
random matrices, if both eigenvalues and diagonal matrix
elements are sorted from smaller values to larger ones [9]. They
demonstrated these correlations for various cases from realistic
shell model interactions to various random matrices [10,11].
Using this linear relation, we can estimate eigenenergies
without diagonalization of the shell model Hamiltonian matrix.

In this paper, we propose some new, efficient, and practical
extrapolation methods to obtain a few low-lying eigenenergies
of a large-dimensional matrix appearing in the nuclear shell
model. We obtain those energies to the desired accuracy by ex-
trapolation after diagonalizing small-dimensional submatrices
of the sorted Hamiltonian matrix.
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This paper is organized as follows. In Sec. II, we exemplify
some properties of the shell model Hamiltonian without and
with the sorting of diagonal elements. In Sec. III, we define the
submatrix after sorting the diagonal elements of the original
matrix, and investigate the eigenenergies as a function of
the submatrix dimension. In Sec. IV, various extrapolation
methods for energies are proposed and examined. In Sec. V,
we apply the extrapolation methods to estimate low-lying
eigenenergies in 28Si. In Sec. VI, conclusions and a summary
are given.

All results in this paper are based on the shell model code
of Takada [12]. Throughout this paper, all states are classified
with definite spin I and positive parity, and the J scheme is
used for the universal sd-shell (USD) interaction [13].

II. SORTING DIAGONAL ELEMENTS

Let us consider a shell model Hamiltonian matrix H (real
and symmetric) with dimension d, whose matrix elements
are denoted as hij (i, j = 1, . . . , d). The method of estimating
eigenenergies Ei(i = 1, . . . , d) by the linear relation

Ei = ahii + b (1)

has been found to be extremely good for most of the energies
after the diagonal elements hii are sorted in increasing order
[9–11]. Here a and b are related to the matrix elements,

a =
√

H 2 − h̄2

h2 − h̄2
(2)

and

b = h̄(1 − a), (3)

where h̄ = Tr(H )/d, h2 = ∑d
i=1(hii)2/d, and H 2 =

Tr(H 2)/d. Here Tr(A) means the trace of a matrix A. The
relation (1) is a natural consequence provided that both
the diagonal elements and eigenenergies follow Gaussian
distributions. Using this linear relation, we can estimate
eigenenergies without diagonalization of the shell model
Hamiltonian matrix. Unfortunately, it is found that the
relation is not applicable for the low- or high-lying energies,
although the estimation of eigenenergies is very good in
the intermediate-energy regime. In this paper, we tackle
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FIG. 1. Distribution of nonzero matrix elements hij (1 � i, j �
n) without sorting of the diagonal elements in 24Mg. Those elements
for |hij | > 1.0 are shown as dots. Since the matrix is symmetric, only
the upper left components are shown.

the problem of overcoming this difficulty and obtain a few
low-lying energies.

In Fig. 1, we show the distribution of matrix elements hij

as the absolute value |hij | > 1.0 for Iπ = 0+ states in 24Mg
(d = 1161) using the USD interaction [13]. It is evident from
the figure that the distribution is not smooth and is rather
irregular. Next we sort the matrix elements hij such that the
diagonal elements are placed from smaller values to larger
ones hii(h11 � h22 � · · · � hdd ) by changing the order of
the basis states. Note that the eigenenergies Ei(i = 1, . . . , d)
of the original matrix are not changed by this operation. In
Fig. 2, we show the distribution of the sorted Hamiltonian
matrix elements for Iπ = 0+ states in 24Mg. It is seen that
the distribution has now become smooth. We expect that we
can incorporate the effect of off-diagonal elements on the
eigenenergies smoothly when we consider the submatrices of
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FIG. 2. As Fig. 1, but the elements for |hij | > 1.0 are shown as
dots after sorting of the diagonal elements.
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FIG. 3. (Color online) Lowest ten eigenenergies ε
(n)
i (i =

1, . . . , 10) of the submatrix with dimension n, without sorting of
diagonal elements, for Iπ = 2+ states in 28Si, as functions of n/d .

the original Hamiltonian after sorting its diagonal elements in
increasing order.

III. PROPERTIES OF SUBMATRIX EIGENENERGIES

Let us consider a submatrix H (n) with dimension n whose
matrix elements h

(n)
ij are defined by h

(n)
ij = hij (i, j = 1, . . . , n)

of a real symmetric matrix H with dimension d (n � d).
After diagonalization of the submatrix H (n), the corresponding
eigenenergies ε

(n)
1 , ε

(n)
2 , . . . , ε(n)

n with ε
(n)
1 � ε

(n)
2 � · · · � ε(n)

n

can be understood as approximately representing exact ener-
gies E1, E2, . . . , En with E1 � E2 · · · � En for the original
matrix H . In Fig. 3 we show the lowest ten eigenenergies
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FIG. 4. (Color online) As Fig. 3, for the lowest ten eigenenergies
of the submatrix with dimension n after sorting diagonal elements for
Iπ = 2+ states in 28Si.
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FIG. 5. (Color online) Lowest ten eigenenergies as functions of
ln(d/n) for Iπ = 2+ states in 28Si.

ε
(n)
1 , ε

(n)
2 , . . . , ε

(n)
10 for Iπ = 2+ states in 28Si as functions of n/d

(d = 13562). It is seen that the eigenenergies monotonically
decrease to exact eigenenergies as n/d approaches 1. However,
each energy curve unexpectedly drops at certain values of n as
n increases. This is because the diagonal elements hii do not
change monotonically as a function of n.

Next we sort the original Hamiltonian with dimension d

such that the diagonal elements are placed from smaller values
to larger ones by changing the order of the basis states. In
Fig. 4 we show the lowest ten eigenenergies ε

(n)
1 , ε

(n)
2 , . . . , ε

(n)
10

for Iπ = 2+ states in 28Si as functions of n/d. Now each
eigenenergy decreases smoothly as n/d approaches 1.

IV. EXTRAPOLATION METHODS

As suggested in the previous section, we should sort
the diagonal elements of the matrix when we consider its
submatrices and evaluate the energies for the original matrix
by using extrapolation methods. From now on we assume
that the matrix elements are sorted such that the diagonal
elements are placed from smaller values to larger ones by
changing the order of the basis states. In Fig. 5 we plot
the lowest ten eigenenergies of Iπ = 2+ states in 28Si as
functions of ln(d/n) where ln(d/n) approaches zero as n goes
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FIG. 6. (Color online) As Fig. 5, but showing ε
(n)
i − ε̄(n) as

functions of ln(d/n) for the lowest ten eigenenergies in 28Si.

to d. Here we observe the following facts: (i) Each curve
is found to be approximately linear but is slightly concave
up. (ii) Except for the region with large ln(d/n) (>3.0),
most eigenenergies decrease smoothly as ln(d/n) approaches
zero (n = d). However, we observe the staggering of energy
for the lowest-state when ln(d/n) is large enough (>3.0).
(iii) When any two curves cross, they connect smoothly to
each other after the crossing, the upper curve connecting to
the lower one and vice versa; the effect of avoided crossings
is small.

We can make use of this linear property of each curve
to predict the true eigenenergy. By choosing some range of
n with α < n/d < β, where α and β are some numbers, and
extrapolating the energies using a linear curve, we can estimate
the true eigenenergy Ei for each state i. That is, we can express
the curve by putting

ε
(n)
i = ai ln(d/n) + bi, (4)

where ai and bi are obtained numerically by linear approxi-
mation of the curve in the specified range (α < n/d < β). By
taking the limit n → d, we have the predicted eigenenergy
E

p

i ≡ ε
(d)
i = bi . In Table I the results in three ranges of

submatrix dimension n, 1
20 � n

d
� 1

10 (range I), 1
10 � n

d
� 1

5

(range II), and 1
5 � n

d
� 1

3 (range III), are shown in addition to

TABLE I. Exact eigenenergies and extrapolated energies (in MeV) for the lowest three Iπ = 2+ states (i = 1, 2, 3) in 28Si
obtained by extrapolation (EM-A) using ε

(n)
i in three ranges 1/20 � n/d � 1/10 (range I), 1/10 � n/d � 1/5 (range II), and

1/5 � n/d � 1/3 (range III). Here the Ei’s are exact energies and the �Ei’s indicate the difference between the exact and the
predicted energy E

p

i .

i Ei Range I Range II Range III

E
p

i �Ei E
p

i �Ei E
p

i �Ei

1 −133.950 −134.750 −0.800 −134.610 −0.660 −134.510 −0.560
2 −128.415 −128.620 −0.205 −129.120 −0.705 −128.890 −0.475
3 −128.032 −129.280 −1.248 −128.000 0.032 −127.880 −0.252
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TABLE II. As Table I, but values obtained by extrapolation EM-B using ε
(n)
i − ε̄(n).

i Ei Range I Range II Range III

E
p

i �Ei E
p

i �Ei E
p

i �Ei

1 −133.950 −128.761 5.189 −129.601 4.349 −131.000 2.950
2 −128.415 −122.632 5.783 −124.113 4.302 −125.377 3.038
3 −128.032 −123.289 4.742 −122.993 5.038 −124.372 3.659

the deviation between the predicted value and the exact one,
�Ei = E

p

i − Ei , for the three lowest Iπ = 2+ states in 28Si. It
is seen that in all cases but one the �Ei’s are negative, because
the curves are generally concave up. We call this extrapolation
method EM-A.

Each ε
(n)
i has a crossing as a function of ln(d/n) in a

relatively small range of n. To absorb the crossing, instead
of just considering ε

(n)
i , we subtract ε̄(n) from ε

(n)
i and

calculate ε
(n)
i − ε̄(n), where ε̄(n) = Tr[H (n)]/n. In Fig. 6 we

show ε
(n)
i − ε̄(n) as a function of ln(d/n) for the lowest ten

Iπ = 2+ states in 28Si. It is seen from the figure that now the
crossings almost disappear. As for ε

(n)
i , we linearly extrapolate

the energy in a certain range by putting

ε
(n)
i − ε̄(n) = ai ln(d/n) + bi. (5)

By taking the limit n → d, we have the predicted energy E
p

i =
ε

(d)
i = bi + Ē, where Ē = Tr(H )/d. The main advantage of

this method is that the extrapolation gives the upper-bound
energy of each level, since each curve is concave down. In
Table II the predicted energies for three ranges (ranges I–III)
are shown in addition to the deviation between the predicted
values and the exact ones, �Ei , for the three lowest levels. It is
seen that in all cases �Ei is positive, indicating that each curve
is concave down. We call this extrapolation method EM-B.

Next, we consider [ε(n)
i − ε̄(n)]2/σ (n), where σ (n) (>0) is the

width of the submatrix defined by

[σ (n)]2 = 1

n
Tr{[H (n) − ε̄(n)]2}. (6)

In Fig. 7 we show [ε(n)
i − ε̄(n)]2/σ (n) as a function of ln(d/n)

for the lowest ten Iπ = 2+ states in 28Si. It is also seen from the
figure that this curve is almost linear except around n/d ∼ 1.
The advantage of this method is that the extrapolation gives the
upper bounds for each state in most cases, since each curve is
concave down around n/d ∼ 1. Similarly, by drawing a linear

curve in a certain range of α < n/d < β, we can put[
ε

(n)
i − ε̄(n)

]2

σ (n)
= ai ln(d/n) + bi. (7)

By taking the limit n → d, we obtain the expression

E
p

i = ε
(d)
i = Ē −

√
σbi, (8)

where σ 2 = Tr(H 2 − Ē2)/d.
In Table III the predicted energies for three ranges

(ranges I–III) are shown, in addition to the deviation between
the predicted value E

p

i and the exact one, �Ei = E
p

i − Ei ,
for the three lowest levels. It is seen that in most cases �Ei is
positive. We call this extrapolation method EM-C.

V. ESTIMATION OF EIGENENERGIES

In this section we apply the extrapolation methods to obtain
approximately some low-lying energies in 28Si. In Fig. 8,
linearly extrapolated energies are given using the data points
in range I obtained by the methods EM-A, EM-B, and EM-C.
In EM-A and EM-C, energies are overbound, but in EM-B the
energies are upper bounds. The binding energy of the ground
state is best reproduced in EM-A. In all except two cases,
the ordering of energy levels is correct. The ordering of the
3+ and 4+ states and that of the excited 0+ and the first 4+
states are inverted in each extrapolation method. In Fig. 9,
linearly extrapolated energies in range III are shown using the
data points obtained by the three extrapolation methods. As
in range I, in EM-A and EM-C, energies are overbound, but
in EM-B the energies are upper bounds. The precision of the
predicted energies becomes more accurate than in range I. In
all cases, the ordering of energy levels is correctly reproduced,
except that the excited 0+ state lies below the first 4+ state.
Moreover, in all three cases the rotational feature seen in the
exact diagonalization is well reproduced.

Finally, we evaluate the second-order correlation of the
energy after obtaining the low-lying energies of the submatrix
at a certain dimension n. The predicted energy for the state i

TABLE III. As Table I, but values obtained by extrapolation EM-C using [ε(n)
i − ε̄(n)]2/σ (n).

i Ei Range I Range II Range III

E
p

i �Ei E
p

i �Ei E
p

i �Ei

1 −133.950 −134.700 −0.749 −134.870 −0.920 −135.221 −1.271
2 −128.415 −127.604 0.812 −128.645 −0.229 −129.053 −0.638
3 −128.032 −128.226 −0.194 −127.425 0.606 −127.961 0.070
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FIG. 7. (Color online) As Fig. 5, but showing [ε(n)
i − ε̄(n)]2/σ (n)

as a function of ln(d/n) in 28Si.

is now given by

E
(p)
i = ε

(n)
i + �ε2nd

i , (9)

where the second-order perturbed energy �ε2nd
i is calculated

after diagonalizing the submatrix H (n). That is, we have

�ε2nd
i = −

d∑
k>n

[ ∑n
j=1 v

(i)
j hjk

]2

hkk − ε
(n)
i

. (10)

Here the coefficient v
(i)
j is the j th component of the ith

normalized eigenvector of the submatrix H (n), satisfying
n∑

k=1

hjkv
(i)
k = ε

(n)
i v

(i)
j (11)

for 1 � j � n. Only the eigenvector for the ith state needs to
be obtained. The predicted energies always give upper bounds
of the true energies. In Figs. 8 and 9, the predicted energies E

(p)
i

evaluated at n = d/10 and n = d/3, respectively, are shown in
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FIG. 8. Low-lying energy spectra in range I obtained by the three
extrapolation methods EM-A, EM-B, and EM-C in 28Si. The exact
spectra and the spectra given by second-order perturbation theory
(2nd PT) are shown in the first and the last column, respectively.
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FIG. 9. As Fig. 8, but showing low-lying energy spectra in
range III.

the last column. It is seen that in both cases the second-order
perturbation gives better results than the other extrapolation
results. In particular, in the case of n = d/10, the ordering of
the 3+ and 4+ states is recovered.

VI. CONCLUSIONS

In this paper, we showed the eigenenergies of a submatrix
as functions of the submatrix dimension n for a sorted large-
dimensional Hamiltonian appearing in the realistic nuclear
shell model. It was found to be important that the original
matrix elements should be sorted so that the diagonal matrix
elements are placed in increasing order. Utilizing the linear
property of each energy curve, we proposed various efficient
and innovative extrapolation methods to obtain a few low-lying
eigenenergies. We obtained those energies to the desired
accuracy by extrapolation of the energies after diagonalizing
small-dimensional submatrices of the original sorted Hamilto-
nian matrix. Each extrapolation method gives either an upper
or a lower bound for the true eigenenergy of each state for a
certain large value of n. Thus, by combining these methods,
we can confine the true eigenenergy within a certain range.

Throughout this paper we have used the J scheme. It would
be interesting to check whether the extrapolation ranges (the
n/d ratios) used in the sd-shell calculations would change or
not for large-scale M-scheme calculations. We expect that our
method will work better for a larger value of n; namely, the
n/d ratio would be expected to be smaller for a larger value of
n. However, this must be proven in future work by performing
a larger-scale shell model calculation in a much larger shell
such as the fp shell.

Most many-body problems in many physical fields reduce
to eigenvalue problems for given Hamiltonian matrices. It is
expected that the present extrapolation methods will provide us
with a quite useful tool for studying such many-body problems.

ACKNOWLEDGMENTS

We would like to thank Y. M. Zhao, T. Mizusaki, and
K. Higashiyama for enlightening discussions. This work
was supported by a Grant-in-Aid for Scientific Research
(No. 20540250) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

044316-5



N. YOSHINAGA AND A. ARIMA PHYSICAL REVIEW C 81, 044316 (2010)

[1] V. Velazquez and A. P. Zuker, Phys. Rev. Lett. 88, 072502
(2002).

[2] J. P. Vary, P. Maris, E. Ng, C. Yang, and M. Sosonkina, J. Phys.
Conf. Ser. 180, 012083 (2009).

[3] F. J. Margetan, A. Klar, and J. P. Vary, Phys. Rev. C 27, 852
(1983).

[4] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 75,
1284 (1995).

[5] K. Higashiyama, N. Yoshinaga, and K. Tanabe, Phys. Rev. C 67,
044305 (2003).

[6] T. Mizusaki, Phys. Rev. C 70, 044316 (2004).
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