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Isospin-dependent pairing interaction from nuclear matter calculations
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The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper,
and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated
within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not
linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover,
the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in
homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the
nuclear data table.
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I. INTRODUCTION

Recently density- and isospin-dependent pairing interac-
tions have been proposed to explain the increasing number
of nuclei far from the stability line [1–3]. The isospin
dependence has been included, requiring the form factors
to be separately dependent on neutron and proton densities.
The main constraint imposed on these interactions was to
be consistent with the gaps calculated for superfluid nuclear
matter. This is made difficult by the need to introduce a
cutoff in the energy (or momentum space), as such interactions
have a zero range, whereas nuclear matter gaps are calculated
with finite-range bare interactions. The key point is how to
reduce the momentum-dependent interaction into a zero-range
pairing interaction and how to consistently renormalize the
single-particle (s.p.) spectrum. The weak coupling approx-
imation (WCA) may be useful if it is applied with some
care.

From investigation of the pairing in nuclear and neutron
matter [4], it is expected that the isospin dependence of
the effective interaction comes mainly from the medium
polarization effects. Indeed, moving from pure neutron matter
to symmetric nuclear matter, the screening of, say, the neutron
pairing owing to neutron particle-hole excitations is converted
into antiscreening by the coupling with proton particle-hole
excitations. In nuclei these correlations could appear as surface
vibrations and thus they could influence the pairing, which is
supposed to be sizable just on the nuclear surface [5]. This
idea is supported by microscopic calculations of pairing in the
120Sn nucleus by the Milano group [6]. On the contrary, recent
calculations reproducing the experimental gaps in nuclei with
bare force [7] indicate that a compensation mechanism could
occur in a full treatment of the medium polarization [4].

Before we consider medium polarization—simply on the
basis of the pure Bardeen, Cooper, and Schrieffer (BCS)
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approach—the isospin effects that make neutron and proton
gaps different from each other arise just from the isovector
component of the nuclear mean field in asymmetric nuclear
matter. As the full s.p. spectrum can be described in terms
of effective mass in the gap equation, the neutron and proton
gaps can probe the isovector component of the effective mass.
This is still a controversial issue despite nucleon-nucleus
collisions indicate that m∗

n − m∗
p > 0 [8]. Therefore, the

isospin dependence of the effective mass is crucial for the
study of pairing in asymmetric nuclear matter and the effective
pairing interaction in nuclei.

In the present work we first discuss the neutron and proton
1S0 pairing gaps in asymmetric nuclear matter calculated
within the BCS theory in Sec. II. The reduction of the bare
interaction into a zero-range pairing interaction, based on the
WCA, is scrutinized starting from the exact renormalization of
the higher-momentum components of the bare interaction in
Sec. III. In Sec. IV the results are discussed in comparison
with the neutron and proton gaps fixing the parameters
of the effective pairing interactions used in recent fits of
the nuclear mass data [1,3]. Concluding remarks are given
in Sec. V.

II. PAIRING IN ASYMMETRIC NUCLEAR MATTER

In recent versions of the isospin-dependent effective pair-
ing force, the isovector component is obtained from the
interpolation between symmetric matter and pure neutron
matter gaps. In the mean field approximation the potential
turns out to be a linear function of the symmetry parameter
β = (ρn − ρp)/(ρn + ρp), but we do not expect this behavior
for the pairing potential, because the gap equation is a
highly nonlinear equation. This question demands the explicit
calculation of the gap in the full range 0 � β � 1. In this
work we perform such a calculation only in the pure BCS
approximation, leaving treatment of the medium polarization
for a future investigation. In the pure BCS context the gap
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FIG. 1. (Color online) Neutron
(a) and proton (b) effective masses
in asymmetric nuclear matter for a
set of densities. The density ranges
from 0.02 to 0.1 fm−3, with a step
of 0.02 fm−3, from top to bottom.

equation is written as [9,10]

�τ (k) = −
∑
k′

V (k, k′)�τ (k′)
2Eτ (k′)

, (1)

Nτ =
∑

k

(
1 − ετ (k) − µτ

Eτ (k)

)
, (2)

where E2
τ (k) = (ετ (k) − µτ )2 + �2

τ (k) and ετ (k) = k2/2m +
Uτ (k) is the s.p. energy. The two coupled equations give
the energy gap and the chemical potential of the superfluid
state. Neglecting other medium effects, the isospin dependence
arises only from the nuclear potential Uτ .

The mean field can be split into two components that,
in the Brueckner-Hartree-Fock (BHF) approximation [11],
are given by the antisymmetrized matrix elements of the G

matrix, as follows:

Uτ (k) = Uτ,τ + Uτ,τ ′ =
∑
k′

[〈�kστ, �k′σ ′τ |G|�kστ, �k′σ ′τ 〉A

+〈�kστ, �k′σ ′τ ′|G|�kστ, �k′σ ′τ ′〉A],

(3)

summed on k′ ≡ (�k′, σ ′), that is, the momentum and spin of
each nucleon inside the Fermi sphere. Moving from symmetric
nuclear matter to pure neutron matter, Upp bends to zero so
that Up → Upn, whereas Un → Unn. Because the neutron and
proton gaps are mainly sensitive to their effective masses, the
isospin dependence of the nucleon pairing gaps turns out to be
dependent just on the isospin splitting of neutron and proton
effective masses in asymmetric nuclear matter. In this respect
this investigation focused not only on the β dependence of the
effective pairing interaction [1,3], but also on the consequences
of whether, in asymmetric nuclear matter, the neutron effective

mass is larger than the proton one, or vice versa. In the present
calculations the so-called LNS potential was employed, as
derived from a fit of the BHF calculations [12]. In the fit the
full momentum dependence of the BHF potential is approx-
imated by introducing the effective mass. But this is a good
approximation because the dispersive effect of the momentum-
dependent mean field in the gap equation is relevant only
around the Fermi surface, where the effective mass is calcu-
lated as the slope of the mean field, whereas the momentum tail
of the pairing interaction controls the integration cutoff (see,
e.g., Fig. 9 in Ref. [13]). In Fig. 1 the LNS proton and neutron
effective masses in asymmetric nuclear matter are plotted in
comparison with the SLy4 predictions [14]. The two calcula-
tions exhibit opposite isospin slope, as is well known [8].

Solving the two gap equations, Eqs. (1) and (2), for the
1S0 pairing in asymmetric nuclear matter, the pairing gaps
were calculated as a function of the symmetry parameter. The
numerical values are displayed in Fig. 2 for a set of nuclear
matter densities.

The interaction chosen for this calculation is the Argonne
AV18 [15], which is also used to calculate the BHF potential
[11], and the mean field was approximated with the LNS
effective mass. In symmetric nuclear matter �n = �p because
the nuclear interaction is charge independent (we neglect the
Coulomb force). In the case of neutron gaps [Fig. 2(a)], the
β-slope is positive for ρ � 0.02 fm−3 and negative for ρ >

0.02 fm−3, as one may expect from the fact that ρ = 0.02 fm−3

is the density corresponding to peak value of the gap. In the
case of proton gaps [Fig. 2(b)], the β-slope is negative for
ρ � 0.02 fm−3 and it should be positive for ρ > 0.02 fm−3.
But in the latter range the expected trend is in competion with
the mean field effect, which becomes more and more attractive
for increasing β.

FIG. 2. (Color online) Neutron
(a) and proton (b) gaps in asym-
metric nuclear matter. Numbers on
the curves are the corresponding
densities (fm−3).
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FIG. 3. Renormalized neutron-neutron pairing interaction in neu-
tron matter for different values of the cutoff a = |kF − k|.

III. RENORMALIZATION OF THE BARE INTERACTION

A convenient way to solve the gap equation is to use a
renormalized pairing interaction that embodies the lower- and
higher-momentum components so that the integration of the
gap equation is restricted to the region around kF [16]. This
procedure leads to splitting the BCS gap equation into two
coupled equations:

�(k) = −
∑

|k′−kF |<�k

Ṽ (k, k′)�(k′)
2E(k′)

, (4)

Ṽ (k, k′) = V (k, k′) −
∑

|k′′−kF |>�k

V (k, k′′)Ṽ (k′′, k′)
2E(k′′)

· (5)

In principle, the cutoff in the momentum integration is
absolutely arbitrary. The effective interaction must change
with the cutoff for the gap to be a unique solution of the gap
equation. This procedure is valid regardless of the complexity
of the pairing interaction V (k, k′) and the s.p. energy ε(k) [16].
The comparison between the effective interaction Ṽ and the
bare interaction as a function of the cutoff is illustrated in
Fig. 3. Ṽ is calculated with the exact value of the gap. The
effect of renormalization is to reduce the higher-momentum
repulsive components of the interaction and to enhance the
lower-momentum attractive ones until Ṽ becomes singular.
This behavior can be understood with a toy model, based on
a rank 1 separable interaction V (k, k′) = V0g(k)g(k′). In this
case �(k) = �0g(k) and the gap equation takes the form

V −1
0 = −

∑
k

g(k)2

2E(k)
, (6)

from which the gap strength �0 in the energy denominator is
calculated. For any choice of the cutoff the effective interaction
is given by

Ṽ −1
0 = V −1

0

⎛
⎝1 + V0

∑
|k−kF |>�k

g(k)2

2E(k)

⎞
⎠ · (7)

For �k → 0 the right-hand side of Eq. (7) tends to zero
according to Eq. (6) and thus the effective interaction becomes
singular.

It is desirable to reduce the cutoff as much as possible
to apply the WCA, but for �k → 0 the effective interaction
increases rapidly, owing to the resonant behavior of the
correlation function. On the contrary, for large �k the WCA
cannot be applied. To avoid strong variations of the effective
interaction with respect to the cutoff, a good guide is that the
size of the window is of the same order as the aforementioned
resonance, namely, �k ∼ √

�.
One of the main advantages of the renormalized interaction

is that, for small enough values of �k, WCA can be adopted
to solve the gap equation; that is,

1

ṼF

= −
∑

|k′−kF |<�k

1

2
√

[ε(k′) − µ]2 + �2
, (8)

where ṼF ≡ Ṽ (kF , kF ) and � ≡ �(kF ). A further advan-
tage is that one can replace the momentum dependence
of the mean field with the effective mass, so that E(k) =√

[(k2 − k2
F )/2m∗]2 + �2.

As already mentioned, the isospin dependence of the energy
gap is caused by the isospin splitting of the effective mass. Even
for low asymmetry the neutron and proton gaps are expected
to vary considerably, being exponentially dependent on the
respective effective mass. This can easily be seen in the WCA
limit. In the framework of the WCA one can introduce the
energy cutoff εc [17], and for εc 
 � one easily gets

2εc

�τ

= em∗
τ /mN0ṼF − 1, (9)

where N0 and ṼF are the level density of the free proton
fraction and the effective interaction at the Fermi energy,
respectively.

Because zero-range effective interactions are often used to
calculate the pairing gap in nuclei, the introduction of a cutoff
kcut, that is, an upper limit in momentum space, is needed to
solve the BCS equations. Nuclear matter calculations can give

FIG. 4. Sensitivity of the pair-
ing effective interaction (a) and the
energy gap (b) to the cutoff chosen.
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FIG. 5. (Color online) Neutron
(a) and proton (b) gaps in the
1S0 channel from the BCS equa-
tions with Argonne AV18. Predic-
tions using the LNS mean field
(solid lines) are depicted in com-
parison with those using the SLy4
mean field (dashed lines). For neu-
tron gaps the asymmetry parameter
ranges from 0 to 1, with a step
of 0.2.

an indication of how to choose such a cutoff. As a function of
kcut the gap is plotted in Fig. 4(b). For a large enough cutoff the
gap saturates to the exact value; how large it is depends on the
interaction used. With Argonne AV18 its value is kcut ≈ 5 fm−1.
The corresponding effective interaction, as given by Eq. (5)
with 0 < k < k cut, is reported in Fig. 4(a). This value of
kcut can be interpreted as the range of nonlocality of the
chosen potential for pairing correlations. Its large value casts
doubt on zero-range pairing interactions unless the previ-
ously discussed procedure to get the effective interaction is
permitted.

IV. EFFECTIVE PAIRING INTERACTION

The increasing interest in nuclei far from the stability line
demands special attention to isospin effects in pair correlations,
and in fact, density-dependent zero-range pairing interactions
have recently been generalized to exhibit an isospin depen-
dence, disentangling the dependence of the proton density
from that of neutrons [1,3]. The most straightforward way
to do that consists in a linear interpolation of the interaction
between the symmetric nuclear system and the pure neutron
matter, as proposed in Ref. [1]; namely,

v(ρ, β) = 1 − ηs(ρ/ρ0)αs (1 − β) − ηn(ρ/ρ0)αnβ, (10)

where the parameters are adjusted to reproduce the exact
values of the gaps in nuclear matter. In Ref. [1] the fit
was performed solving the gap equation, Eq. (4), with the
above interaction and introducing a cutoff to remove the
high-momentum divergence. The cutoff was tuned so as to best
fit the nuclear matter gaps in the two limits β = 0 and β = 1
taken from the calculation reported in Ref. [4]. The resulting
gaps were compared with the predictions in Ref. [4]. They

do not reproduce the exact values of the unscreened pairing
at higher densities and ill reproduce the values including
screening (see Fig. 2 in Ref. [1]). Unfortunately, they used
a SLy4 s.p. energy whose isospin dependence is in strong
disagreement with the LNS one, as mentioned. Calculation
of the gaps in asymmetric nuclear matter with the two
s.p. energies, depicted in Fig. 5, was performed to emphasize
how the different isospin properties of the two s.p. spectra can
affect the gaps at various densities. However the results, as
also shown in Fig. 2, do not support any linear interpolation
for the proton gap.

A different approach was proposed by Goriely, Chamel,
and Pearson (GCP) [3], which does not assume any explicit
form for the density dependence of the effective interaction,
but the latter is built up directly from the neutron and
proton gaps of nuclear matter. The idea is to employ the gap
equation, in the form of Eq. (4), to determine the effective
interaction, adopting the exact gaps of nuclear matter as
inputs. In this way the density and isospin dependence of the
effective interaction are automatically ensured. The delicate
point of this approach is that the cutoff must be chosen
small enough, so as to neglect the momentum dependence of
the interaction. In Ref. [3] this interaction was successfully
applied to reproduce a huge number of nuclear data. The
neutron and proton gaps adopted in calculating the pairing
interaction were taken from a symmetric nuclear matter and
pure neutron matter calculation, including medium polariza-
tion effects [4]. The gaps in asymmetric nuclear matter were
obtained from the interpolation between symmetric nuclear
matter and pure neutron matter gaps. The interpolation ansatz
is

�q(ρn, ρp) = �SM(ρ)(1 − |β|) ± �NM(ρq)β
ρq

ρ
. (11)

FIG. 6. 1S0 neutron (a) and
proton (b) gaps. Comparison be-
tween the calculations reported in
Fig. 2 and the calculations based on
the GCP interpolation method (see
text).
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For small positive asymmetry values this equation is just a
linear interpolation between the gap �SM in symmetric nuclear
matter and the gap �NM in pure neutron matter. This behavior
does not take into account the isospin deepening of the mean
field. The comparison, reported in Fig. 6, between the exact
BCS gaps in Fig. 2 and the gaps calculated from Eq. (11)
clearly shows that the GCP interpolation formula is not valid.
Nevertheless, the GCP model is reasonable because it does not
require any interpolation formula once the gaps in asymmetric
nuclear matter are made available.

V. CONCLUSIONS

In this paper the isospin dependence of neutron and proton
pairing gaps has been discussed within the pure BCS pairing
theory. A realistic interaction, that is, Argonne AV18, was
adopted as the pairing interaction in the gap equation, and
the Skyrme-LNS potential was used for the mean field in the
gap equation. The isospin dependence, even in the asymmetry
range typical of nuclei (0 � β � 0.2), turns out to be quite
strong, for the combined effects of density and effective
mass dependence. In particular, the latter should allow us
to distinguish the isospin splitting of the neutron and proton
effective masses, because the gaps are exponential functions
of the effective mass. The exact pairing gaps are compared
to the recent predictions in Refs. [1] and [3]; it is shown that
the isospin dependence is far from being a linear function of
isospin.

The rigorous construction of the renormalized pairing
interaction in nuclear matter has been discussed, along with
the role played by the cutoff. This investigation could be
useful to fix a cutoff suitable for reliable application of the
WCA. Imposing a cutoff without suitable renormalization of
the interaction could result in arbitrary values of the gap.

As pointed out in Sec. I, a large isospin effect is expected
to come from the induced interaction. In fact, in a comparison
of neutron pairing in nuclear matter versus neutron matter, it
was shown that this effect is caused by the interplay between
neutron and proton particle-hole collective excitations [4].
The calculations will be extended to the superfluidity of
asymmetric nuclear matter. The main question is how much
the antiscreening effect owing to proton ph excitations will
be compensated by the gap quenching owing to self-energy
corrections [4]. This compensation can also be explained by
comparing the many-body treatment of the pairing with recent
Monte Carlo calculations [18].
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