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Separable approximation to two-body matrix elements
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Two-body matrix elements of arbitrary local interactions are written as the sum of separable terms in a way
that is well suited for the exchange and pairing channels present in mean-field calculations. The expansion relies
on the transformation to center of mass and relative coordinate (in the spirit of Talmi’s method) and therefore it
is only useful (finite number of expansion terms) for harmonic oscillator single particle states. The converge of
the expansion with the number of terms retained is studied for a Gaussian two body interaction. The limit of a
contact (delta) force is also considered. Ways to handle the general case are also discussed.
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I. INTRODUCTION

The evaluation of the pairing field in mean field theories like
Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF + BCS) or
Hartree-Fock-Bogolubov (HFB) is a computationally inten-
sive task due to the non-local character of the pairing tensor
and the effort is comparable to the one devoted to the evaluation
of the exchange field in the HF method. Therefore, zero range
pairing interactions are thoroughly used in standard mean field
calculations in order to reduce the computational burden (see
Ref. [1] for a recent review). The price to pay for the use of zero
range pairing forces is the introduction of an “active space”
around the Fermi level to cut away the ultraviolet divergences
inherent to any contact interaction (the pairing matrix elements
are independent of the momentum transfer in nuclear matter).
Thus, it is customary to take into account in the gap equation
only those single particle levels lying inside a so called
“active window” around the Fermi level and whose (sharp or
soft) boundaries are defined using reasonable (but arbitrary)
assumptions. The boundaries of the window as well as the
pairing interaction strength are usually fixed locally but they
are usually not allowed to vary as a function of other relevant
degrees of freedom like the quadrupole deformation of the
nucleus. As a consequence, the impact of the rigid definition
of the “pairing active window” in some observable magnitudes
can be relevant (see, for instance, [2] for a discussion on the
impact of the window’s size on fission barriers). From this
perspective, the use of finite range pairing forces seems to be
quite unavoidable and this is a common argument to praise
the use of Gogny type interactions [3] in HFB or HF + BCS
like mean field calculations [1,4]. It has to be mentioned that
a renormalization scheme for the phenomenological contact
pairing interactions has been proposed in Refs. [5,6] to cure the
“active window” problem. Recently, proposals to use as pairing
interaction in finite nuclei a realistic finite range two body
bare interaction [7] or a low momentum evolved version of
it [7–9] have been discussed in the literature: the essence of the
proposals is to introduce a separable interaction in momentum
representation [7] that is used to fit the realistic interaction (or
a low momentum evolved version of it) by resorting to fitting
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protocols involving nucleon-nucleon phase shifts or pairing
gaps in nuclear matter. As a consequence of the separable
character in momentum space the force is nonlocal in real
space but in a way that simplifies the evaluation of the matrix
elements needed for finite nuclei calculations [8,9]. Separable
interactions were also used as a way to tackle the solution of the
Lippman-Schwinger equation for the T operator with realistic
nucleon-nucleon potentials [10]. Recently, a separable form
in momentum space of the pairing interaction of a Gaussian
two-body force (as in the Gogny force) has been proposed
[11–13] as an alternative to more standard approaches based on
zero range contact pairing interactions. As the approximation
relies on the same ideas of Refs. [8,9] a nonlocal form of
the approximate interaction in real space is obtained. The
non locality of the interaction suggests the introduction of
the Talmi-Brody-Moshinsky transformation [14–16] to center
of mass and relative coordinate to simplify the evaluation of
the pairing matrix elements in the harmonic oscillator basis.
Explicit expression for the matrix elements are given in [11] for
an harmonic oscillator basis with spherical quantum numbers
and a Gaussian interaction. Next, it has been shown that this
new form is consistent with the RPA framework [12]. Finally,
the scheme has been extended [13] to the case of a harmonic
oscillator basis with axial quantum numbers. The extension to
the case of a harmonic oscillator basis with triaxial quantum
numbers is straightforward. In the present paper I show that
the transformation to center of mass and relative coordinates
can be used for general two body interactions to obtain a
kind of separable expression for the pairing two-body matrix
elements which involves the one-body matrix elements of the
interaction for the relative coordinate wave functions. The use
of the spectral representation of this interaction matrix leads
to a more explicit separable form of the kind considered in
[7–9,11–13]. By using two specific examples in one dimension
it is shown that the number of separable terms in the expansion
can be severely cut down for short range interactions. The
validity of the expansion concerning ultraviolet divergences is
also discussed. Finally, computational schemes to deal with
the Yukawa (and Coulomb) potential are discussed. It has
to be stressed that the present approach is not limited to
pairing matrix elements and can easily be extended to deal
with the exchange matrix elements required for the evaluation
of the Fock potential and therefore it could be used as an
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approximation scheme to shorten the numerical burden of
HFB calculations with finite range forces like Gogny [3], other
recent proposals based on the Yukawa potential [17], and even
the Coulomb potential.

II. SEPARABLE APPROXIMATION TO TWO-BODY
MATRIX ELEMENTS

A. General procedure

Let us consider the (not antisymmetrized) two-body
matrix element νn1,n2,n3,n4 = ∫

d�r1
∫

d�r2φ
∗
n1

(�r1)φ∗
n2

(�r2)v(�r1 −
�r2)φn3 (�r1)φn4 (�r2) for harmonic oscillator (HO) wave functions
φn(�r) (this is not a fundamental restriction as more general
single particle wave functions can always be expanded in a
HO basis). Taking into account that at the end we will be
folding this matrix elements with a matrix (either the pairing
tensor or the density for the exchange potential) with indexes
n3 and n4 the best approach for the evaluation of this matrix
element is that of Talmi [14] and Brody-Moshinsky [15,16]
(see also [18,19] for a general discussion). Within this method,
the product of HO single particle wave functions with different
arguments φn3 (�r1)φn4 (�r2) is expanded in terms of suitable
center of mass �R = 1√

2
(�r1 + �r2) and relative coordinate �r =

1√
2
(�r1 − �r2) wave functions (this unusual definition of the

center of mass and relative coordinate renders some of the
expressions simpler than with the usual definition)

φn3 (�r1)φn4 (�r2) =
∑
Nn

MNn
n3n4

φN ( �R)φn(�r). (1)

The center of mass and relative coordinate wave functions have
the same structural form as the original wave functions and the
expansion is finite (the range of values of N and n is finite).
This is a direct consequence of the special structure of the HO
wave functions (the product of a Gaussian times a polynomial).
Apart from the HO, this peculiarity is only preserved in
the case of plane waves and the developments considered
below can be extended easily to this case too. The expansion
coefficients MNn

n1n2
are referred to as Talmi-Brody-Moshinsky

[14–16] coefficients (TBMC). The TBMC have a selection
rule that will help to reduce the number of final separable
terms, it is n1 + n2 = N + n (see Appendix A for the general
expression and selection rules in the one-dimensional case)
which implies that only one of the two sums in Eq. (9)
is relevant. Explicit forms of the TBMC coefficients have
been discussed several times in the literature both in the 3D
spherical form of the HO wave functions [14–16] as in the one-
dimensional case [20]. Introducing the expansion of Eq. (9)
into the definition of the matrix element we obtain the result

νn1,n2,n3,n4 =
∑
N

∑
nn′

M∗Nn
n1n2

vnn′MNn′
n3n4

, (2)

where we have made use of the orthogonality of the center
of mass wave functions φN ( �R) and introduced the matrix
elements

vnn′ =
∫

d�rφ∗
n(�r)v(

√
2�r)φn′(�r). (3)

Please note the
√

2 factor in the argument of the interaction
that is a direct consequence of the definition of the relative
coordinate. This result can be easily generalized to nonlocal
interactions of the form

〈�r1�r2|v̂|�r1
′�r2

′〉 = δ( �R − �R ′)v(�r, �r ′), (4)

where �R ′ and �r ′ are the center of mass and relative coordinates
associated to �r1

′ and �r2
′. Applying the transformation of

Eq. (1) we obtain for the HO matrix elements the same
expression as in Eq. (2) but replacing vnn′ of Eq. (3) by

vnn′ =
∫

d�r
∫

d�r ′φ∗
n(�r)v(�r, �r ′)φn′(�r ′). (5)

The vnn′ are matrix elements of a hermitian matrix and
therefore can be written, by resorting to the spectral decompo-
sition of the matrix, as

vnn′ =
∑
L

D∗
nLvLDn′L, (6)

where the coefficients vL (the eigenvalues of vnn′ ) are real
quantities. By introducing the coefficients

M̃NL
n1n2

=
∑

n

MNn
n1n2

DnL (7)

we can finally cast Eq. (2) in a form that corresponds clearly to a
separable expansion for pairing and exchange matrix elements
as

νn1,n2,n3,n4 =
∑
N

∑
L

M̃∗NL
n1n2

vLM̃NL
n3n4

. (8)

This separable expansion is still exact and can be used to
express the pairing field also as a sum of separable terms

�n1n2 =
∑
n3n4

νn1,n2,n3,n4κn3n4 =
∑
NL

M̃∗NL
n1n2

vL�NL

with �NL = ∑
n3n4

M̃NL
n3n4

κn3n4 . At this point it is worth men-
tioning that this procedure can be straightforwardly extended
to the evaluation of the exchange field by introducing the new
TBMC as

φ∗
n1

(�r1)φn4 (�r2) =
∑
Nn

M̄Nn
n1n4

φN ( �R)φn(�r) (9)

to obtain

νn1,n2,n3,n4 =
∑
N

∑
nn′

M̄Nn
n1n4

vnn′M̄∗ Nn′
n2n3

which can be used for the evaluation of the exchange field.
This possibility has not been considered in Refs. [11,13].

The drawback of the (still exact) separable expansion being
considered is that the number of terms involved is enormous
unless some property of the interaction is invoked to restrict
it. To do so, we can use the general ideas of linear algebra on
how to approximate an arbitrary matrix in terms of low rank
Kronecker tensor products (see [21,22] for an introduction to
the subject) to justify the rank one approximation

vnn′ ≈ d∗
ndn′ , (10)

where dn = √
v0Dn0 and we are assuming that the L = 0

term in Eq. (6) corresponds to the largest eigenvalue v0 of
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the interaction matrix vnn′ . In this way we have reduced the
number of separable terms by a factor that corresponds to
the dimension of the matrix vnn′ . For better accuracy, we can
pursue further this idea to suggest the approximation

vnn′ ≈
LC∑

L=0

D∗
nLvLDn′L (11)

(where vL with L = 0, . . . , LC stand for the LC + 1 largest
eigenvalues of the matrix vnn′ ). Obviously, low rank Kronecker
tensor products do not necessarily have to be based on the
eigenvectors of the interaction matrix v and other alternatives
inspired in the physics to be described could be incorporated
easily [a possibility that comes up immediately is to use for dn

in Eq. (10) a linear combination of the eigenvectors of v with
weights physically inspired by the problem to be treated and
to be fitted for the optimal reproduction of some quantity].

B. Zero range interaction

In the following we will consider some typical interactions
to asses the validity of the preceding approximation scheme
and we will start by considering a zero range contact
interaction v(�r) = Gδ(�r). In this case, the matrix vnn′ is simply
given by

vnn′ = G

23/2
φ∗

n(0)φn′(0) (12)

which implies, in the language of Eq. (6), that all the
eigenvalues vL are zero except the L = 0 one. For this
interaction, the rank one approximation of Eq. (10) is exact
and the reduction in the number of separable term is quite
significant. Introducing the quantity

M̃N
n1n2

=
∑

n

MNn
n1n2

φn(0)

we finally obtain

νn1,n2,n3,n4 = G

23/2

∑
N

M̃∗N
n1n2

M̃N
n3n4

. (13)

Apart from the analytical result, this formula is telling us
that for short range interactions the expansion of Eq. (11) is
expected to be accurate enough by considering only a limited
number of terms.

In order to get a deeper insight into the number of separable
terms in the preceding expansion for the zero range force
we will focus on the one-dimensional case. Our basis will
be the one-dimensional harmonic oscillator basis φn(x) with
n = 0, . . . ,M and containing M + 1 elements. The TBM
expansion of the 1-D HO wave functions is an expansion
of the product of two polynomials in the variables x1 and
x2 in terms of the product of polynomials in the variables
X = 1√

2
(x1 + x2) and x = 1√

2
(x1 − x2). Although its explicit

expression is known since a long time [20], we present in
Appendix A a brief derivation based on the generating function
of the Hermite polynomials. As a consequence of the explicit
form of the TBM coefficients, both quantum numbers N

(center of mass) and n (relative) should range from 0 up to

2M (i.e., 2M + 1 possible values) if none of the selection
rules of the TBM coefficients is taken into account. The parity
selection rule (−1)n1+n2 = (−1)N+n of the TBM coefficients
can be used to reduce the number of terms in the N sum. As
φn(0) is only different from zero for even values of n, the parity
of N has to be the one of n1 + n2 and therefore the number of
terms in the N sum of Eq. (13) gets reduced to half the initial
value (M + 1 to be more precise).

C. Gaussian interaction

In order to analyze in more detail the consequences of the
proposed expansion, we will study the example of a Gaussian
interaction of range µ in one dimension. The more realistic
three-dimensional case can be elucidated from the results ob-
tained here as, in that case, the matrix elements are the product
of the one-dimensional ones along each of the three spatial
dimensions. In addition, the zero-range interaction results can
be recovered in the limit µ → 0 providing further insight into
the number of terms to be retained as well as potential problems
with ultraviolet divergences. The one-dimensional HO wave
functions will be denoted as ϕn(z; b) = exp(− 1

2
z2

b2 )ϕ̃n(z/b)
where ϕ̃(z/b) is the polynomial part of the HO wave function
given by the product of the Hermite polynomial of degree n

times the normalization constant of the 1D HO wave function.
The quantity to evaluate is

vnn′ =
∫

dz ϕ∗
n(z; b) exp

(
−2z2

µ2

)
ϕn′(z; b)

=
∫

dz ϕ̃∗
n(z/b) exp

[
−

(
2

µ2
+ 1

b2

)
z2

]
ϕ̃n′(z/b).

This integral can be carried out in many different ways but
for our purposes it is better to use the transformation matrix
D(b′/b) connecting ϕ̃n(z/b) with ϕ̃n(z/b′)

ϕ̃n(z/b) =
n∑

n′=0

Dnn′(b′/b)ϕ̃n′ (z/b′),

defined in Appendix B, to write

vnn′ =
∑
L

D∗
nL(B/b)Dn′L(B/b)

with B/b = µ/
√

µ2 + 2b2 = η. It is better to write the
preceding result as

vnn′ =
∑
L

D̃∗
nL(η)η2L+1D̃n′L(η) (14)

to make explicit the dependence in the range of the Gaussian
µ. Although this expression is not an explicit power expansion
in η due to the dependence of D̃ on this parameter, it is close
to be so because the ratio between the L + 2 term of the
sum and the L one is given by η4[1 + µ2/(2b2)]2(n − L)(n′ −
L)/[(L + 2)(L + 1)] that shows a dominant η4 behavior. As
η typically goes as µ/b we can conclude that Eq. (14) is a
kind of expansion on the range of the interaction µ. For small
ranges µ → 0 the parameter η tends to µ/(

√
2b) and therefore

the most significant term in the sum is L = 0. The remaining
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FIG. 1. Largest eigenvalues λi of the interaction matrix in the
case of a one-dimensional Gaussian interaction of range µ. The
eigenvalues shown are plotted as a function of the parameter η defined
in the text. Notice the log-log character of the plot.

terms decrease as µ2L and justify to cut the expansion of
Eq. (14) at some small LC

v
App
nn′ =

LC∑
L=0

D̃∗
nL(η)η2L+1D̃n′L(η). (15)

Using the connection between a Gaussian of vanishing range
and the δ function

δ(x1 − x2) = lim
µ→0

1√
π

e−(x1−x2)2/µ2

µ

it is possible to obtain Eq. (12) from Eq. (14) by appropriately
taking the µ → 0 limit. As can be shown easily, the µ → 0
limit of D̃n0(η) (the only remaining term is L = 0) is given by
π1/4b1/2ϕn(0) as required.

At this point it is worth noticing that neither the eigenvalues
nor the eigenvectors of the vnn′ matrix in the Gaussian case
are given by η2L+1 or by the coefficients D̃n′L(η) above [see
Eq. (14)]. In order to understand the differences, the largest
eigenvalues obtained by numerical diagonalization in the case
N = 40 and for b = 2 fm are plotted in Fig. 1 as a function
of η. We observe in the log-log plot that for small values
of η the eigenvalues have a linear behavior that corresponds
to η2L+1 for L = 0, . . . , recovering in this case the result
of Eq. (14). However, for larger values of η this is not the
case indicating that the eigenvalues of vnn′ depart from the
quantities in Eq. (14). An interesting observation regarding
the behavior of the eigenvalues is that they are a decreasing
function as µ decreases, justifying the idea that keeping only
the largest eigenvalues is a kind of short-range expansion of
the matrix elements. Obviously, if all the terms are considered,
both the expansion of Eq. (14) and the general one of the
spectral decomposition of the matrix vnn′ give the exact answer.
The differences will show up in the approximate case when
only a finite number of terms is retained. We have checked
that the spectral decomposition always gives the best results
if quantified in terms of the mean square deviation σv =√∑

nn′(vnn′ − vApp
nn′ )2/(N + 1), but none of the approximate

matrix elements v
App
nn′ reproduce the exact ones, as it may

happen when using Eq. (15). As a consequence of the selection

rules of the D coefficients involved, the exact values of vnn′

for low values of n and n′ can be obtained from Eq. (15) even
for small values of LC . This is not in contradiction with what
it was said about σv , as the approximation based on Eq. (15)
provides, for large values of n and n′, worse matrix elements
than the ones obtained using the spectral decomposition of
vnn′ . The analysis below of the two-body matrix elements
has been carried out in parallel using both possibilities and
it has been found that, although the spectral decomposition
provides again a better overall approximation for the two-body
matrix elements, those with small quantum numbers (the most
relevant for the physics of the system to be described) are
slightly better reproduced by the approximations based in
Eq. (15). For the above reasons we will only show results
based on Eq. (15).

The result obtained in Eq. (15) for short ranges µ suggests
to approximate vnn′ by keeping only the L = 0 term. However,
taking into account that the transformation coefficients D(η)
preserve parity, we realize that the L = 0 approximation will
make automatically zero the vnn′ matrix elements with odd n.
Therefore, we have to include both L = 0 and L = 1 as the
leading order. The next-to-leading order will correspond to
take L = 2 and 3 and so on. In order to test the convergence
rate of such an approximation we have performed calculations
comparing the exact matrix elements of the one-dimensional
Gaussian interaction with those obtained using Eq. (8) and
restricting the sum in L from 0 up to a parameter denoted
LC as well as the sum in N from 0 up to NC . The size
of the one-dimensional HO basis considered is of 21 shells
(n = 0, . . . , 20) and there are 97 241 nonzero matrix elements.
The results for a Gaussian of range µ = 0.7 fm are depicted
in Fig. 2. In the left-hand side panels all the matrix elements
are plotted (y axis, approximate values, x axis exact ones)
for different values of NC and LC . On the right-hand side
panels, the same plot is presented but this time only the matrix
elements with n1, n2, n3, and n4 smaller than 7 are shown.
There are two reasons: first that the realistic single particle
orbitals are usually close to the HO wave functions with the
same quantum number n and therefore its expansion on the
HO basis usually requires the n − 2, n and n + 2 states for
a reasonable representation. The second reason is that only a
limited number of orbitals around the Fermi level usually play
a role in the pairing properties and therefore only the quantum
numbers n required to accommodate A particles are required.
Usually seven major shells (the corresponding quantity in the
three-dimensional case) are required to well accommodate of
the order of 200 particles. Therefore, in the left-hand side
panels there are many matrix elements that will contribute
little to the pairing field and can be safely disregarded for
the discussion of the quality of the approximation. That is,
the matrix elements depicted in the right-hand side panels are
supposed to be the most relevant for the pairing properties
of the nucleus. Obviously these are tentative arguments that
can only be validated by performing numerical test in specific
cases. For instance, the results obtained in Refs. [11,13] clearly
validate the above arguments in the cases considered. By
looking at the plot we observe how the bigger the values of NC

and LC are the better the approximation is (the points gather
around the y = x line). We even observe how the Nc = 10
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FIG. 2. Approximate matrix elements (y axis) for different values
of LC and NC are plotted versus the exact values (x axis) for the
one-dimensional Gaussian interaction with range µ = 0.7 fm and
harmonic oscillator length bz = 2.0 fm. In the left-hand side panels,
all matrix elements with n1, n2, n3, and n4 ranging from 0 up to 20
(i.e., a total of 214 matrix elements) are depicted. On the right-hand
side panels only those matrix elements with n1, n2, n3, and n4 smaller
than 7 are depicted (see text for details).

and LC = 1 approximation, including 11 separable terms, is
already quite reasonable for the reduced set of relevant matrix
elements (right hand side panels). In Fig. 3 the same kind
of plots as the ones of Fig. 2 are presented but this time for
a Gaussian twice the previous range, i.e., µ = 1.4 fm. We
immediately realize the worsening of the approximation, what
is consistent with the previous findings that this is a kind of
“short-range” expansion. In this figure we observe that the
convergence with Nc is much faster than the one with LC

because already the NC = 10 numbers compare quantitatively
well with the ones of NC = 40 whereas for LC the results with
LC = 3 are much better than the ones for LC = 1.

0.1

0

-0.1

0.1

0

-0.1

0.1
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FIG. 3. Same as Fig. 2 but for a range µ = 1.4 fm of the Gaussian
interaction.

Finally, in Fig. 4 we present a more detailed study of the
convergence with NC in the case of µ = 1.4 fm keeping fixed
LC to the reasonable value of 3. We observe how decreasing
the value of NC from 10 to 8 to 6 degrades the quality of the
approximation for the relevant matrix elements (right-hand
side panels) but this is not significant and it is quite likely
that even NC = 6 (12 separable terms) will provide already
reasonable values of the pairing tensor in calculations with real
nuclei. This point can only be tested in realistic calculations
and work along this direction is in progress.

It is also interesting to compare the approach of
Refs. [7–9,11–13] with the present one. In those references
the two-body Gaussian interaction is replaced by

〈�r1�r2|v|�r1
′, �r2

′〉 = Gδ( �R − �R ′)
∑

α

λαPα(r)Pα(r ′), (16)

where �R and �r are the center of mass and relative coordinate
of �r1 and �r2. The functions Pα(r) are taken as Gaussian
with widths adjusted to reproduce nucleon-nucleon phase
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FIG. 4. Comparison between exact (x axis) and approximate
(y axis) pairing matrix elements of an one-dimensional Gaussian
interaction with range µ = 1.4 fm as a function of NC (see text for
details as well as Fig. 2 for the meaning of the left-hand side and
right-hand side panels).

shifts [7,9] or the nuclear matter pairing gap [11–13]. More
involved expressions and fitting strategies were used in [8].
This form of the interaction corresponds to the class introduced
in Eq. (4) and therefore we can use Eq. (5) to obtain vnn′ =∑

α λα(Pα)∗n(Pα)n′ , where (Pα)n = ∫
d�rφn(�r)Pα(r). For each

of the Pα(r) factors, the corresponding term is nothing
but a rank one Kronecker approximation to the exact vnn′

matrix of the interaction. The vectors (Pα)n considered in
Refs. [7–9,11–13] are inspired by physical requirements and
the free parameters entering their definitions can be used (as
it is the case) to find an optimal (in physical terms) approxi-
mation to vnn′ by the requirements of reproducing as well as
possible some nuclear properties. From our previous numerical
study we can conclude that our “blind” approximation is also
well suited to deal with the problem.

D. Ultraviolet divergence

From the previous results one could conclude that, because
the low rank separable expansion is a kind of “short-range”
expansion, it should show some sort of ultraviolet divergence
like the pairing matrix elements of a zero-range contact
interaction. In this section I will show that this is not the
case. First of all, I will remind the reader about the origin of

the ultraviolet divergence. It is a direct consequence of the fact
that the nuclear matter pairing matrix elements

−G〈�k1, �k2|δ(�r1 − �r1)|�k′
1,

�k′
2〉 = − G

(2π )323/2
δ( �K − �K ′)

(17)

of a contact interaction do not depend on the momentum
transfer vector �q = �k − �k′ (we have introduced the vectors
�K = 1√

2
(�k1 + �k2) and �k = 1√

2
(�k1 − �k2)) favoring infinitely

high momentum transfers unless some cut off is introduced.
In the one-dimensional HO case, the structure of the general
matrix elements is more difficult to visualize, but for the
sake of discussion, we can restrict to the specific matrix
elements −G〈n, 0|δ(x1 − x2)|n, 0〉 which, as can be shown
easily using the preceding formulas, are independent of n

and given by −G/
√

2. The constant value favors, as in the
nuclear matter case, the scattering of the n = 0 state into high
n states. For an one-dimensional Gaussian of range µ the
expression of the previous matrix element is not as simple
as in the case of the zero range force, and therefore it is
preferable to plot it as a function of n in order to discuss
its properties. In Fig. 5 we have plotted the matrix elements
〈n, 0| exp[−(x1 − x2)2/µ2]|n, 0〉 as a function of n as well
as three of the low rank approximations corresponding to
NC = 60 and LC = 1 and 3 and NC = 10 and LC = 3 (see
caption for details). The conclusions from this plot are that
the matrix element is a decreasing function of n quenching
the promotion to high n states and therefore the ultraviolet
divergence. Also, the similarities between the exact matrix
elements and the two typical low rank approximations with
NC = 60 for all values of n are remarkable. In the case
NC = 10 and LC = 3 the approximation is reasonable up to
n = 15 and from there on the matrix elements are too small
as compared to the exact ones. In any case, we conclude
that the low rank approximations maintain the characteristic
decreasing with n of the matrix elements that is needed to
prevent the ultraviolet divergence.

0 5 10 15 20 25 30
n

0

0.1

0.2

0.3

0.4

0.5

v n
 0

 n
 0

 

µ = 1.4 fm
b = 2.0 fm

FIG. 5. Matrix element vn,0,n,0 for the one-dimensional Gaussian
interaction of range µ = 1.4 fm and oscillator length parameter
b =2.0 fm plotted as a function of n. Full curve corresponds to the
exact result, dashed ones to the approximation with NC = 60 and
LC = 1 and LC = 3 (the one closer to the exact result). The dotted
curve corresponds to the NC = 10 and LC = 3 approximation.
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E. General interactions

As discussed previously the case of a general interaction in-
volves the evaluation of the matrix vnn′ and its diagonalization.
The evaluation of vnn′ can be carried out numerically using, for
instance, Gauss-Hermite integration thanks to the presence of
the HO wave functions in the matrix elements. The resulting
formula is also in the form of Eq. (6) as can be inferred by
using an one-dimensional example

vnn′ =
∫ ∞

−∞
dz ϕ∗

n(z; b)v(
√

2z)ϕn′(z; b)

≈
NH∑

i=−NH

wiϕ̃
∗
n(zi)v(

√
2bizi)ϕ̃n′(zi)

=
NH∑

i=−NH

D∗
ni[wiv(

√
2bizi)]Dn′i , (18)

where zi and wi are the nodes and weights of the Gauss-
Hermite integration, ϕ̃n′(z) is the reduced HO wave function
defined above and the coefficients Dni = ϕ̃n(zi). Also in
this case, if v(r) is short range, the quantity wiv(

√
2bizi)

will decrease as zi increases. In the case of a Gaussian
interaction this procedure will reproduce the exact answer and
will provide an alternative (but equivalent) description of the
previous results for the Gaussian. Another alternative to this
procedure, that lends more analytical results, is to represent the
interaction to be treated by means of its Gauss transform. The
Gauss transform is a derivative of the more popular Laplace
transform, where a change of variables allows to express given
functions as linear combinations of Gaussian with different
widths. The best known example of this treatment is that of
the Yukawa potential [23]

e−µr

r
= 2√

π

∫ ∞

0
e−r2t2−µ2/(4t2)dt (19)

that can straightforwardly be used to deal with the Coulomb
interaction by taking the µ → 0 limit (see Ref. [24] for an
early application in nuclear physics). The advantages of this
method are first that the separable expansion for the Gaussian is
known analytically and can be used straight ahead and second
that the Gaussian interaction is separable along the three spatial
directions allowing to treat the problem as three uncorrelated
one-dimensional problems one for each spatial direction. The
latter advantage is specially helpful to deal with the Coulomb
interaction. Given the long range of the Coulomb force the
number of terms required for an accurate separable expansion
of a general matrix element is expected to be larger than for
a gaussian. However, the relevant Coulomb matrix elements
for the nuclear case involve single particle wave functions
which are located inside the nucleus and therefore explore the
Coulomb potential in the interior of the nucleus. For those
matrix elements, the Coulomb force can be considered as a
short-range interaction with a range of the order of the size
of the nucleus and therefore the number of separable terms
required for an accurate representation are expected to be much
smaller than the ones required for a general matrix element of
the Coulomb interaction.

F. Density dependent forces

In the applications of the HFB method it is common to find
terms in the interaction/energy functional that are referred to as
“density dependent” (DD) terms and are given by the general
expression

v(�r1, �r2) = f (�r)G( �R). (20)

Usually, f (�r) = δ(
√

2�r) and G = ρα , that is, the density raised
to some (usually noninteger) power α. Applying the ideas
developed in this article it is easy to obtain in this case

νn1,n2,n3,n4 =
∑
K

∑
L

M̃∗KL
n1n2

fLgKM̃KL
n3n4

, (21)

where we have introduced the coefficients

M̃KL
n1n2

=
∑
Nn

MNn
n1n2

DnLENK (22)

given in terms of the spectral decomposition of the matrices
f and G with eigenvalues fL and gK , respectively. In the
common situation where f (�r) = δ(

√
2�r) the fL are constant

and equal to 1/23/2 and DnL = φn(0) independent of L.

III. CONCLUSIONS

By means of the transformation properties of the HO basis
to the center of mass and relative coordinate a separable
expansion of the pairing and exchange matrix elements of
a general two-body interaction is obtained. The study of
two specific examples: the contact delta force and the one-
dimensional Gaussian interaction show that the number of
terms of the separable expansion to be considered can be
substantially reduced without affecting too much the accuracy
of the approximate formula. The separable expansion turns
out to be a kind of “short-range” expansion. The issue of
ultraviolet divergences inherent to any short range expansion
is analyzed. The proposed separable expansion opens up a new
avenue to deal with finite range interactions both in the pairing
and exchange channel. In the former case, the cumbersome
definition of the “cut-off window” is avoided by the implicit
finite range. The possibility to extend these considerations to
other finite-range interactions like the Coulomb potential is
also discussed.
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APPENDIX A: TALMI-BRODY-MOSHINSKY
COEFFICIENTS IN ONE DIMENSION

The Talmi-Brody-Moshinsky coefficients in one dimension
are defined as

ϕn1 (x1)ϕn2 (x2) =
∑
Nn

MNn
n1n2

ϕN (X)ϕn(x),
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where X = 1√
2
(x1 + x2) and x = 1√

2
(x1 − x2) are the center

of mass and relative coordinate, respectively, and ϕn(x) =
(
√

π2nn!b)−1/2Hn(x/b) exp(− 1
2

x2

b2 ) is the one-dimensional
HO wave function written in terms of the Hermite polynomials.
Explicit expression of MNn

n1n2
have already being obtained in

the literature [20] but we will introduce here another derivation
which is simple and straightforward. We will take advantage
of the generating function of the one-dimensional HO wave
functions

G(x/b,t) = exp

(
−1

2

x2

b2
+ 2

x

b
t − t2

)
=

∑
n

χn(t)ϕn(x)

with χn(t) = (
√

πb2nn!)1/2tn/n!. Given the Gaussian form
of the generating function we have G(x1/b,t1)G(x2/b,t2) =
G(X/b,T )G(x/b,t), where T = 1√

2
(t1 + t2) and t = 1√

2
(t1 −

t2). Expanding in the right-hand side of the last identity χN (T )
and χn(t) in powers of t1 and t2 and comparing with the same
powers in the left-hand side we finally obtain

MNn
n1n2

= δn1+n2,N+n

(
n1!n2!

2n1+n2N !n!

)1/2

×
∑
m

(−1)m
(

N

n1 − n + m

) (
n

m

)
,

where the selection rule is made explicit.

APPENDIX B: TRANSFORMATION COEFFICIENTS

In this appendix I supply the expression for the expansion
coefficients of the one-dimensional reduced HO wave function

ϕ̃n(x/b) = exp( 1
2

x2

b2 )ϕn(x/b) = (
√

π2nn!b)−1/2Hn(x/b) in
terms of the same object but for a different length scale b′

ϕ̃n(x/b) =
n∑

n′=0

Dnn′

(
b′

b

)
ϕ̃n′ (x/b′). (B1)

There are many ways to obtain the D coefficients although
probably the more economical one is to use the generating
function of the Hermite polynomials Hn(x/b) which is given
by (see previous appendix)

G̃(x/b,t) = exp
(

2
x

b
t − t2

)
=

∑
n

tn

n!
Hn(x/b). (B2)

Using the generating function we can write G̃(x/b,t) =
G̃(x/b′, t ′) exp(−(1 − η2)t2) where η = b′/b and t ′ = ηt .
Equating equal powers in t in the previous expression and
using Eq. (B2) we obtain

Hn(x/b) =
∑
n′

(−1)
n−n′

2
n!ηn′

(1 − η2)
n−n′

2

n′!
(

n−n′
2

)
!

�n,n′Hn′ (x/b′)

which is an identity that finally yields

Dnn′(η) = �n,n′ (−1)
n−n′

2

(
n!

n′!

)1/2
ηn′+1/2(1 − η2)

n−n′
2

2
n−n′

2
(

n−n′
2

)
!

.

(B3)

In this expression, the function �n,n′ = 1
2 [1 + (−1)n+n′

] which
is one if n and n′ have the same parity (even or odd) and zero
otherwise has been introduced. Notice also that Dnn′ (η) = 0 if
n′ > n in agreement with the limits of the sum in Eq. (B1).
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