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The framework of relativistic energy-density functionals is extended to include correlations related to the
restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is
used to perform configuration mixing of angular-momentum-projected wave functions, generated by constrained
self-consistent relativistic mean-field calculations for triaxial shapes. The effects of triaxial deformation and of
K mixing is illustrated in a study of spectroscopic properties of low-spin states in 24Mg.
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I. INTRODUCTION

Among the microscopic approaches to the nuclear many-
body problem, the framework of nuclear energy-density func-
tionals (EDF) is the only one that can presently be used over
the whole nuclear chart, from relatively light systems to super-
heavy nuclei and from the valley of β stability to the particle
drip lines [1–3]. Modern energy-density functionals provide
the most complete and accurate description of structure phe-
nomena related to the evolution of shell structure in medium-
mass and heavy nuclei, e.g., the appearance of new regions of
deformed nuclei, shape coexistence, and shape transitions.

In practical implementations the EDF framework is realized
on two specific levels. The simplest implementation is in
terms of self-consistent mean-field models, in which an EDF
is constructed as a functional of one-body nucleon density
matrices that correspond to a single product state: the Slater de-
terminant of single-particle or single-quasiparticle states. This
framework can thus also be referred to as single reference (SR)
EDF. In the self-consistent mean-field approach the many-
body problem is effectively mapped onto a one-body problem,
and the exact EDF is approximated by a functional of powers
and gradients of ground-state nucleon densities and currents,
representing distributions of matter, spins, momentum, and
kinetic energy. In principle the SR nuclear EDF can incorporate
short-range correlations related to the repulsive core of the
internucleon interaction, and long-range correlations mediated
by nuclear resonance modes. The static SR EDF is character-
ized by symmetry breaking (e.g., translational, rotational, par-
ticle number), and can provide only an approximate description
of bulk ground-state properties. To calculate excitation spectra
and electromagnetic transition rates in individual nuclei, it
is necessary to extend the SR EDF framework to include
collective correlations related to the restoration of broken
symmetries and to fluctuations of collective coordinates.

*jmyao@swu.edu.cn

Collective correlations are sensitive to shell effects, display
pronounced variations with particle number, and cannot be
incorporated in a SR EDF. On the second level that takes
into account collective correlations through the restoration of
broken symmetries and configuration mixing of symmetry-
breaking product states, the many-body energy takes the form
of a functional of all transition density matrices that can be
constructed from the chosen set of product states. This level of
implementation is also referred to as multireference (MR) EDF
framework.

In recent years several accurate and efficient models and
algorithms have been developed that perform the restoration
of symmetries broken by the static nuclear mean field and take
into account fluctuations around the mean-field minimum. The
most effective approach to configuration mixing calculations
is the generator coordinate method (GCM) [4,5]. With the
simplifying assumption of axial symmetry, GCM configura-
tion mixing of angular-momentum-, and even particle-number-
projected quadrupole-deformed mean-field states, has become
a standard tool in nuclear structure studies with Skyrme
energy density functionals [1,6], the density-dependent Gogny
force [7], and relativistic density functionals [8,9]. A variety
of structure phenomena have been analyzed using this ap-
proach. For instance, the structure of low-spin deformed and
superdeformed collective states [10–12]; shape coexistence in
Kr and Pb isotopes [13,14]; shell closures in the neutron-rich
Ca, Ti, and Cr isotopes [15]; and shape transition in Nd
isotopes [16,17].

Much more involved and technically difficult is the de-
scription of intrinsic quadrupole modes including triaxial
deformations. Intrinsic triaxial shapes are essential for the
interpretation of interesting collective modes, such as chiral
rotations [18,19] and wobbling motion [20]. The inclusion
of triaxial shapes can dramatically reduce barriers separating
prolate and oblate minima, leading to structures that are soft
or unstable to triaxial distortions [21]. Such a softness toward
dynamical γ distortions will give rise to the breakdown of the
K-selection rule in electromagnetic transitions of high-spin
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isomers [22]. It may also has important influence on the electric
monopole transition strength B(E0 : 0+

2 → 0+
1 ) [23].

Only very recently a fully microscopic three-dimensional
GCM model has been introduced [24], based on Skyrme
mean-field states generated by triaxial quadrupole constraints
that are projected on particle number and angular mo-
mentum and mixed by the generator coordinate method.
This method is actually equivalent to a seven-dimensional
GCM calculation, mixing all five degrees of freedom of the
quadrupole operator and the gauge angles for protons and
neutrons. In this work we develop a model for configuration
mixing of angular-momentum-projected triaxial relativistic
mean-field wave functions. In the first part, reported in
Ref. [25], we have already considered three-dimensional
angular-momentum projection (3DAMP) of relativistic mean-
field wave functions, generated by constrained self-consistent
mean-field calculations for triaxial quadrupole shapes. These
calculations were based on the relativistic density functional
PC-F1 [26], and pairing correlations were taken into account
using the standard BCS method with both monopole and zero-
range δ interactions. Correlations related to the restoration of
rotational symmetry broken by the static nuclear mean field
were analyzed for several Mg isotopes. Here we extend the
model of Ref. [25] and perform GCM configuration mixing of
3DAMP relativistic mean-field wave functions.

In Sec. II we introduce the model, briefly outline the
relativistic point-coupling model that will be used to generate
mean-field wave functions and to describe in detail the
procedure of configuration mixing of angular-momentum-
projected wave functions. In Sec. III the 3DAMP + GCM
model is tested in illustrative calculations of the low-energy
excitation spectrum of 24Mg. Section IV summarizes the
results of the present investigation and ends with an outlook
for future studies.

II. THE 3DAMP + GCM MODEL

The GCM is based on the assumption that, starting from
a set of mean-field states |�(q)〉 that depend on a collective
coordinate q, one can build approximate eigenstates of the
nuclear Hamiltonian

|�α〉 =
∫

dqfα(q) |�(q)〉. (1)

Detailed reviews of the GCM can be found in Refs. [4,5]. In the
present study the basis states |�(q)〉 are Slater determinants of
single-nucleon states generated by self-consistent solutions of
constrained relativistic mean-field (RMF) + BCS equations.
To be able to compare theoretical predictions with data, it
is of course necessary to construct states with good angular
momentum. Thus the trial angular-momentum-projected GCM
collective wave function |�JM

α 〉, an eigenfunction of Ĵ 2 and
Ĵz, with eigenvalues J (J + 1)h̄2 and Mh̄, respectively, reads∣∣�JM

α

〉 =
∫

dq
∑
K�0

f JK
α (q)

1

(1 + δK0)
|JMK+, q〉, (2)

where α = 1, 2, . . . labels collective eigenstates for a given an-
gular momentum J . The details of the 3D angular-momentum
projection are given in Ref. [25]; here we outline only the basic

features. Because of the D2 and time-reversal symmetry of a
triaxially deformed even-even nucleus, the projection of the
angular momentum J along the intrinsic z axis [K in Eq. (2)]
takes only non-negative even values:

K =
{

0, 2, . . . , J for J mod 2 = 0

2, 4, . . . , J − 1 for J mod 2 = 1.
(3)

The basis states |JMK+, q〉 are projected from the intrinsic
wave functions |�(q)〉:

|JMK+, q〉 = [
P̂ J

MK + (−1)J P̂ J
M−K

]|�(q)〉, (4)

where P̂ J
MK is the angular-momentum projection operator:

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (5)

where � denotes the set of three Euler angles (φ, θ , and ψ) and
d� = dφ sin θdθdψ . DJ

MK (�) is the Wigner D function, with
the rotational operator chosen in the notation of Edmonds [27]:
R̂(�) = eiφĴz eiθĴy eiψĴz . The set of intrinsic wave functions
|�(q)〉, with the generic notation for quadrupole deformation
parameters q ≡ (β, γ ), is generated by imposing constraints
on the axial q20 and triaxial q22 mass quadrupole moments in
self-consistent RMF + BCS calculations. These moments are
related to the Hill-Wheeler [28] coordinates β (β > 0) and γ

by the following relations:

q20 =
√

5

16π
〈2z2 − x2 − y2〉 = 3

4π
AR2

0β cos γ, (6a)

q22 =
√

15

32π
〈x2 − y2〉 = 3

4π
AR2

0
1√
2
β sin γ, (6b)

where R0 = 1.2A1/3 fm. The total mass quadrupole moment
qm reads:

qm =
√

16π

5

√
q2

20 + 2q2
22. (7)

The calculation of single-nucleon wave functions, energies,
and occupation factors starts with the choice of the EDF. As
in our previous analysis on collective correlations in axially
deformed nuclei [8,9], and in the first part of this work [25],
the present illustrative calculation is based on the relativistic
functional PC-F1 (point-coupling Lagrangian) [26]:

ERMF =
∫

d rERMF(r)

=
∑

k

∫
d rv2

k ψ̄k(r) (−iγ∇ + m) ψk(r)

+
∫

d r
(

αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jµjµ + γV

4
(jµjµ)2 + δV

2
jµ�jµ

+ αT V

2
j

µ

T V (jT V )µ + δT V

2
j

µ

T V �(jT V )µ

+αT S

2
ρ2

T S +δT S

2
ρT S�ρT S + e

1 − τ3

2
ρV A0

)
, (8)
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where ψk(r) denotes a Dirac spinor. The local isoscalar and
isovector densities and currents

ρS(r) =
∑
k>0

v2
k ψ̄k(r)ψk(r), (9a)

ρT S(r) =
∑
k>0

v2
k ψ̄k(r)τ3ψk(r), (9b)

jµ(r) =
∑
k>0

v2
k ψ̄k(r)γ µψk(r), (9c)

j
µ

T V (r) =
∑
k>0

v2
k ψ̄k(r)γ µτ3ψk(r), (9d)

are calculated in the no-sea approximation, i.e., the summation
runs over all occupied states in the Fermi sea. The occupation
factors v2

k of each orbit are determined in the simple BCS ap-
proximation, using a δ-pairing force. The pairing contribution
to the total energy is given by

Epair[κ, κ∗] = −
∑

τ=n,p

Vτ

4

∫
d3rκ∗

τ (r)κτ (r), (10)

where Vτ is a constant pairing strength and the pairing tensor
κ(r) reads

κ(r) = −2
∑
k>0

fkukvk|ψk(r)|2. (11)

The pairing window is constrained with smooth cutoff factors
fk , determined by a Fermi function in the single-particle
energies εk:

fk = 1

1 + exp[(εk − εF − �Eτ )/µτ ]
, (12)

where εF is the chemical potential determined by the constraint
on average particle number: 〈�(q)|N̂τ |�(q)〉 = Nτ . The cutoff
parameters �Eτ and µτ = �Eτ/10 are chosen in such a way
that 2

∑
k fk = Nτ + 1.65N

2/3
τ , where Nτ is the number of

neutrons (protons) [29].
The weight functions f JK

α (q) in the collective wave
function Eq. (2) are determined from the variation:

δEJ = δ

〈
�JM

α

∣∣ Ĥ ∣∣�JM
α

〉
〈
�JM

α

∣∣�JM
α 〉 = 0, (13)

i.e., by requiring that the expectation value of the energy is
stationary with respect to an arbitrary variation δf JK

α . This
leads to the Hill-Wheeler-Griffin (HWG) integral equation:∫

dq ′ ∑
K ′�0

[
H J

KK ′ (q, q ′) − EJ
α N J

KK ′(q, q ′)
]
f JK ′

α (q ′) = 0,

(14)

where H and N are the angular-momentum-projected GCM
kernel matrices of the Hamiltonian and the norm, respectively.
With the generic notation O ≡ N or H , the expression for
the kernel reads:

OJ
KK ′ (q, q ′) = �KK ′

[
OJ

KK ′(q, q ′) + (−1)2J OJ
−K−K ′ (q, q ′)

+ (−1)J OJ
K−K ′ (q, q ′) + (−1)J OJ

−KK ′ (q, q ′)
]
,

(15)

where for the operator Ô ≡ 1 or Ĥ :

OJ
KK ′ (q, q ′) = 〈�(q)|ÔP̂ J

KK ′ |�(q ′)〉, (16)

and �KK ′ = 1/[(1 + δK0)(1 + δK ′0)].
The overlap 〈�(q)|Ĥ R̂|�(q ′)〉 can be evaluated in coordi-

nate space, and we rewrite the Hamiltonian kernel HJ
KK ′ (q, q ′)

in the following form:

HJ
KK ′(q, q ′) =

∫
d rHJ

KK ′(r; q, q ′), (17)

where

HJ
KK ′ (r; q, q ′)= 2J +1

8π2

∫
d�DJ∗

KK ′H(r; q,q ′; �)n(q,q ′; �).

(18)
The norm overlap n(q, q ′; �) is defined by:

n(q, q ′; �) ≡ 〈�(q)|R̂(�)|�(q ′)〉. (19)

The calculation of the overlap matrix elements H(r; q, q ′; �)
requires the explicit form of Ĥ . So far we have implicitly
assumed that the system is described by a Hamiltonian.
However, for energy-density functionals this is strictly valid
only if the density dependence can be expressed as a
polynomial of ρ. By using product wave functions, a density
functional can formally be derived from a Hamiltonian that
contains many-body interactions. A prescription based on
the generalized Wick theorem [30] states that the Hamilton
overlap matrix elements have the same form as the mean-field
functional, with the intrinsic single-particle density matrix
elements replaced by the corresponding transition density
matrix elements [31]. In this work we employ the relativistic
point-coupling model PC-F1 [26], which contains powers of
the scalar density ρS up to fourth order, and therefore the above
prescription can be applied. For a detailed discussion of open
problems we refer the reader to Ref. [32] and references cited
therein.

Consequently, H(r; q, q ′; �) has the same form as the
mean-field functional ERMF(r) in Eq. (8) provided the intrinsic
densities and currents are replaced by transition densities and
currents. Further details about the calculation of the norm
overlap n(q, q ′; �) and transition EDF H(r; q, q ′; �) can be
found in Ref. [25].

The basis states |�(q)〉 are not eigenstates of the proton
and neutron number operators Ẑ and N̂ . The adjustment of
the Fermi energies in a BCS calculation ensures only that the
average value of the nucleon number operators corresponds
to the actual number of nucleons. It follows that the wave
functions |�JM

α 〉 are generally not eigenstates of the nucleon
number operators and, moreover, the average values of the
nucleon number operators are not necessarily equal to the
number of nucleons in a given nucleus. This happens because
the binding energy increases with the average number of
nucleons and, therefore, an unconstrained variation of the
weight functions in a GCM calculation will generate a ground
state with the average number of protons and neutrons larger
than the actual values in a given nucleus. In order to restore
the correct mean values of the nucleon numbers, we follow the
standard prescription [33,34] and modify the HWG equation
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by replacing H(r; q, q ′; �) with

H′(r; q, q ′; �) = H(r; q, q ′; �) − λp[Z(r; q, q ′; �) − Z0]

− λn[N (r; q, q ′; �) − N0], (20)

where Z0 and N0 are the desired proton and neutron numbers,
respectively. Z(r; q, q ′; �) and N (r; q, q ′; �) are the transition
vector densities in r-space for protons and neutrons, respec-
tively. The Lagrangian parameters λτ=p,n are in principle
determined in such a way that each AMP GCM collective state
has the correct average particle number. In that case, however,
the Lagrangian parameters λτ will be state dependent and, as
a consequence, the orthonormality of the states |�JM

α 〉s is no
longer guaranteed. In Ref. [34] a simple ansatz was introduced
for a state-independent value of the Lagrangian parameter; that
is, the value of λτ=p,n was chosen to be the mean BCS Fermi
energy, determined by averaging over the collective variable
q. The average particle numbers in the resulting AMP GCM
states differ only slightly from the desired correct values. In
the present model we take the same λτ values as those in
the mean-field calculation, i.e., λτ (q) for the diagonal terms
(q ′ = q), and [λτ (q) + λτ (q ′)]/2 for the off-diagonal ones
(q ′ 	= q) in H′(r; q, q ′; �). We find that with this prescription
the average particle numbers for low-lying excitation states
are in excellent agreement with those obtained by taking the
λτ value averaged over the collective variable q.

The domain of quadrupole deformation parameters q ≡
(β, γ ) is discretized, and the HWG integral equation is trans-
formed into a matrix eigenvalue equation. The corresponding
kernels OJ

KK ′(q, q ′) have to be calculated between all pairs of
mesh points in q space. In the current version of the model
the full space K ⊗ q is a direct product of the K subspace and
the q subspace, with dimension D = (J + 2)nq/2 for even J

or D = (J − 1)nq/2 for odd J . nq is the number of points on
the mesh in q space, and J is the total angular momentum.
Correspondingly, the kernels OJ

KK ′ (q, q ′) −→ OJ (i, j ). The
quantum number K and the value of (β, γ ) at each point of
the full space K ⊗ q can be determined as shown in Fig. 1.

The first step in the solution of the HWG matrix eigenvalue
equation is the diagonalization of the norm overlap kernel

J: Odd (I=J-1)

iq=mod(i,n
q
)

K=2*Int[(i-1)/n
q
]

...i=1 n
q

n
q
+1... 2n

q
2n

q
+1 ... (J+2)*n

q
/2...J*n

q
/2+1

 
J*n

q
/2

 

K=0 K=2 K=J

iq=i if iq=0, then iq=n
q

K=2*{Int[(i-1)/n
q
]+1}K=2 K=4 K=I

J: Even

...i=1 n
q

n
q
+1... 2n

q
2n

q
+1 ... I*n

q
/2...(I-2)*n

q
/2+1

 
(I-2)*n

q
/2

 

FIG. 1. (Color online) Distributions of the K quantum number
(K) and q values (iq) in the full K ⊗ q space. The dimension of
the direct product of the K subspace and the q subspace is D =
(J + 2)nq/2 for even J or D = (J − 1)nq/2 for odd J . nq is the
number of points on the mesh in q space, and J is the total angular
momentum.

N J (i, j ) ∑
j

N J (i, j )uJ
k (j ) = nJ

k uJ
k (i). (21)

Since the basis functions |�(q)〉 are not linearly independent,
many of the eigenvalues nJ

k are very close to zero. They
correspond to “high momentum” collective components, i.e.,
the corresponding eigenfunctions uJ

k (i) are rapidly oscillating
in the q space but carry very little physical information.
However, due to numerical uncertainties, their contribution
to the matrix elements of the collective Hamiltonian (22) can
be large, and these states should be removed from the basis.
Therefore, a small positive constant ζ is introduced so that
states with nJ

k /nJ
max < ζ are excluded from the GCM basis,

where nJ
max is the largest eigenvalue of the norm kernel. From

the remaining states, also called “natural states,” one builds
the collective Hamiltonian

HJ
kl = 1√

nJ
k

1√
nJ

l

∑
i,j

uJ
k (i)H J (i, j )uJ

l (j ), (22)

which is subsequently diagonalized∑
l

HJ
klg

Jα
l = EJ

α gJα
k . (23)

The solution of Eq. (23) determines both the energies EJ
α and

the amplitudes f JK
α (q) of collective states with good angular

momentum |�JM
α 〉

f JK
α (q) =

∑
k

gJα
k√
nJ

k

uJ
k (i). (24)

The weight functions f JK
α (q) are not orthogonal and cannot

be interpreted as collective wave functions for the deformation
variables. The collective wave functions gJ

α (i) are calculated
from the norm overlap eigenstates:

gJ
α (i) =

∑
k

gJα
k uJ

k (i), (25)

gJ
α (i) are orthonormal and, therefore, |gJ

α (i)|2 can be inter-
preted as a probability amplitude.

The center-of-mass (c.m.) correction is defined by:

〈Ec.m.〉(Jα) = 〈
�JM

α

∣∣ P̂2
c.m.

2mA

∣∣�JM
α

〉
=

∑
ij

∑
KK ′

f JK∗
α (i)f JK ′

α (j )
1

2mA

×〈�(qi)|P̂2
c.m.P

J
KK ′ |�(qj )〉. (26)

The projected overlap matrix elements 〈�(qi)|
P̂2

c.m.P
J
KK ′ |�(qj )〉 are treated in zeroth order of the Kamlah

approximation, i.e., considering the fact that 〈�(qi)|�(qj )〉 is
sharply peaked at qi = qj , the projected matrix elements are
approximated by the unprojected ones [4], and

1

2mA
〈�(qi)|P̂2

c.m.P̂
J
KK ′ |�(qj )〉 ≈ N J

KK ′ (qi, qj )Ec.m.(qi),

(27)
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where Ec.m.(q) is the center-of-mass correction evaluated for
the intrinsic wave functions |�(q)〉,

Ec.m.(q) = 1

2mA
〈�(q)|P̂2

c.m.|�(q)〉, (28)

where m is the nucleon mass and A is the number of nucleons.
P̂c.m. = ∑A

i p̂i is the total momentum. The energy of the
collective state |�J

α 〉 is, therefore, given by

E(J+
α ) = EJ

α + 〈Ec.m.〉(Jα). (29)

Once the amplitudes f JK
α (q) of nuclear collective wave

functions |�JM
α 〉 are known, it is straightforward to calculate

all physical observables, such as the electromagnetic transition
probability, spectroscopic quadrupole moments, and the aver-
age particle number. The B(E2) probability for a transition
from an initial state (Ji, αi) to a final state (Jf , αf ) is defined
by

B(E2; Ji, αi → Jf , αf )

= e2

2Ji + 1

∣∣∣∣∣∣
∑
qf ,qi

〈Jf , qf ||Q̂2||Ji, qi〉
∣∣∣∣∣∣
2

, (30)

Using the generalized Wigner-Eckart theorem for the
spherical tensor operator Q̂λµ

P̂ J
KMQ̂λµP̂ J ′

M ′K ′ = CJ M
J ′M ′λµ

∑
K̄µ′

CJ K
J ′K̄λµ′Q̂λµ′ P̂

J ′
K̄K ′ (31)

and the relation

P̂ J
MKP̂ J ′

M ′K ′ = δJJ ′δKM ′ P̂ J
MK ′ (32)

for projection operators [4], one obtains for the reduced matrix
element 〈Jf , qf ||Q̂2||Ji, qi〉:
〈Jf , qf ||Q̂2||Ji, qi〉

= Ĵf

∑
KiKf

f
∗Jf Kf

αf
(qf )f JiKi

αi
(qi)

×
∑
µK ′

(−1)Jf −Kf

(
Jf 2 Ji

−Kf µ K ′

)
Q2µ(K ′,Ki ; qf , qi)

(33)

with Ĵf = 2Jf + 1, f JK
α (q) = (−1)J f J−K

α (q) for K < 0 and

Q2µ(K ′,Ki ; qf , qi) ≡ 〈�(qf )|Q̂2µP̂
Ji

K ′Ki
|�(qi)〉. (34)

More details on the calculation of the reduced E2 matrix
element are given in Appendix. The matrix elements of
the charge quadrupole operator Q̂2µ = e

∑
p r2

pY2µ(�p) are
calculated in the full configuration space. There is no need for
effective charges, and e simply corresponds to the bare value
of the proton charge.

Electric monopole (E0) transitions are calculated from
the off-diagonal matrix elements of the E0 operator. The
corresponding diagonal matrix elements are directly related
to mean-square charge radii that provide signatures of shape
changes in nuclei. The relation between E0 transitions
and shape transitions and coexistence phenomena has been
extensively investigated [23,35–37]. The E0 transition rate

τ (E0) between 0+
1 and 0+

2 can be separated into two factors:
the electronic and the nuclear [36]

1

τ (E0)
= ρ2

21�, (35)

where the nuclear factor ρ2
21 is defined by:

ρ2
21(E0) = ∣∣〈0+

2 |T̂ (E0)|0+
1 〉∣∣2

/e2R4
0, (36)

and T̂ (E0) = ∑
k ekr

2
k . The off-diagonal matrix elements of

the E0 operator can be evaluated using angular-momentum-
projected GCM wave functions:

〈0+
2 |T̂ (E0)|0+

1 〉
=

∑
qi ,qj

f ∗
0+

2
(qj )f0+

1
(qi)〈�(qj )|T̂ (E0)P̂ 0

00|�(qi)〉. (37)

Finally, it will be useful to check the average number of
particles for a collective state |�JM

α 〉:
NJ

α = 〈
�JM

α

∣∣N̂ ∣∣�JM
α

〉
=

∑
qj ,qi ;K1,K2

�K1K2f
∗JK2
α (qj )f JK1

α (qi)

×
∫

d�DJ∗
K2K1

〈�(qj )|N̂R̂(�)|�(qi)〉, (38)

where N̂ = ∑
k a

†
kak is the particle number operator, and

〈�(qj )|N̂R̂(�)|�(qi)〉
〈�(qj )|R̂(�)|�(qi)〉

=
∫

d rρV (r; qj , qi ; �). (39)

ρV (r) is the zeroth component of the nucleon vector current [cf.
Eq. (9)], and the expression for the corresponding transition
vector density ρV (r; qj , qi ; �) has been given in Ref. [25].
Since the intrinsic state |�(qi)〉 corresponds to a BCS wave
function, i.e., it is not an eigenstate of the particle number
operator, the trace of the transition density in Eq. (39) generally
does not equal the total nucleon number.

III. THE LOW-SPIN SPECTRUM OF 24Mg

In this section we perform several illustrative configura-
tion mixing calculations that will test our implementation
of the 3D angular-momentum projection and the generator
coordinate method. The intrinsic wave functions that are used
in the configuration mixing calculation have been obtained
as solutions of the self-consistent relativistic mean-field
equations, subject to constraint on the axial and triaxial mass
quadrupole moments. The interaction in the particle-hole
channel is determined by the relativistic density functional
PC-F1 [26], and a density-independent δ force is used as the
effective interaction in the particle-particle channel. Pairing
correlations are treated in the BCS approximation. The
pairing strength parameters Vτ (τ = p, n) are adjusted by
fitting the average gaps of the mean-field ground state [38]
of 24Mg

〈�〉 ≡
∑

k fkv
2
k�k∑

k fkv
2
k

, (40)
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to the experimental values obtained from odd-even mass dif-
ferences using the five-point formula: �(5)

n = 3.193 MeV and
�(5)

p = 3.123 MeV. The quantities fk are defined in Eq. (12)
and v2

k are the occupation probabilities of single-nucleon states.
The resulting pairing strengths are Vn = 511.300 fm3 MeV for
neutrons and Vp = 518.350 fm3 MeV for protons. We note that
these values differ from the universal parameters of Ref. [26],
which have been adjusted to pairing properties of heavy nuclei.
With the original pairing strengths of Ref. [26], the resulting
gaps for 24Mg are considerably smaller than the ones obtained
from experimental odd-even mass differences.

Parity, D2 symmetry, and time-reversal invariance are
imposed in the mean-field calculation, and this implies that
the spacelike components of the single-nucleon four-currents
(jµ, j

µ

T V ) vanish. The scalar (ρS, ρT S) and vector (ρV , ρT V )
densities in the EDF of Eq. (9) are symmetric under reflections
with respect to the yz, xz, and xy planes. Obviously these
symmetries are not fulfilled by the transition densities and,
therefore, the octant x, y, z � 0 must be extended to the entire
coordinate space when evaluating transition densities.

To solve the Dirac equation for triaxially deformed po-
tentials, the single-nucleon spinors are expanded in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
(HO) in Cartesian coordinate [39] with Nsh major shells. In
Ref. [25] it has been shown that Nsh = 8 is sufficient to
obtain a reasonably converged mean-field potential energy
curve for 24Mg. The HO basis is chosen isotropic, i.e., the
oscillator parameters bx = by = bz = b0 = √

h̄/mω0 in order
to keep the basis closed under rotations [40,41]. The oscillator
frequency is given by h̄ω0 = 41A−1/3. The Gaussian-Legendre
quadrature is used for integrals over the Euler angles φ, θ and
ψ in the calculation of the norm and Hamiltonian kernels.
With the choice of the number of mesh points for the Euler
angles in the interval [0, π ] (Nφ = Nψ = 8 and Nθ = 12), the
calculation achieves an accuracy of ≈0.05% for the energy
of a projected state with angular momentum J � 6 in the
ground-state band [25].

The nucleus 24Mg presents an illustrative test case for the
3DAMP + GCM approach to low-energy nuclear structure.
The principal motivation for considering this nucleus is the
direct comparison of the present analysis with the results of
Ref. [24], where a 3DAMP + GCM model has been developed
based on Skyrme triaxial mean-field states that are projected
on particle number and angular momentum and mixed by the
generator coordinate method. Collective phenomena are, of
course, much more pronounced in heavy nuclei and, therefore,
the goal is to eventually apply the present approach to the
rare-earth nuclides and the actinide region. This will require
not only a large oscillator basis but also a large number of
mesh points for the Gaussian quadrature in coordinate space,
as well as a finer mesh for the Euler angles and the deformation
parameters.

Axially symmetric AMP + GCM calculations are at present
routinely performed for heavy nuclei [8], and from such studies
one can estimate that Nf ≈ 16 shells have to be included
in the oscillator basis for the systems in the mass region
around Pb. Note that the computing time necessary for the
evaluation of one overlap matrix element scales approximately
with N6

f . For instance, the number of mesh points in the

axial deformation β that was used in Ref. [8] is a factor
4 larger than in the present analysis and, moreover, in the
3D case one also needs a finer mesh for the integration over
Euler angles. These considerations show that a straightforward
application of the existing 3DAMP + GCM codes to A ≈ 200
heavy nuclei will basically depend on the availability of
large-scale general-purpose computer resources. On the other
hand, the introduction of additional approximations could
considerably reduce the computing requirements. For instance,
the overlap functions are strongly peaked at q = q ′, and the use
of Gaussian overlap approximations has produced excellent
results in many cases. These approximations form the basis for
the derivation of a collective Bohr Hamiltonian for quadrupole
degrees of freedom [42,43].

A. Convergence of the 3DAMP + GCM calculations

The convergence of the 3DAMP + GCM calculation has
been examined with respect to both the number of mesh
points in the β, γ plane and the cutoff parameter ζ that
is used to remove from the GCM basis the eigenstates of
the norm overlap kernel N J with very small eigenvalues
nJ

k /nJ
max < ζ . In the first step the cutoff is set to ζ = 5 × 10−3,

and we compare low-lying spectra of 24Mg that are obtained
in 3DAMP + GCM calculations with different numbers of
points of the discretized generator coordinates. We consider
the following sets of generator coordinates: (AI, AII, AIII)
include only axial deformations (prolate and oblate shapes)

(i) AI: (β, γ ) = (0.1, 0◦), (0.3, 0◦), (0.5, 0◦), (0.7, 0◦), (0.9,
0◦), (1.1, 0◦);

(ii) AII: (β, γ ) = (0.1, 0◦), (0.1, 60◦), (0.3, 0◦), (0.3, 60◦),
(0.5, 0◦), (0.5, 60◦), (0.7, 0◦), (0.7, 60◦), (0.9, 0◦), (0.9,
60◦), (1.1, 0◦), (1.1, 60◦);

(iii) AIII: (β, γ ) = (0, 0◦), (0.1, 0◦), (0.1, 60◦), (0.2, 0◦),
(0.2, 60◦), (0.3, 0◦), (0.3, 60◦), (0.4, 0◦), (0.4, 60◦),
(0.5, 0◦), (0.5, 60◦), (0.6, 0◦), (0.6, 60◦), (0.7, 0◦), (0.7,
60◦), (0.8, 0◦), (0.8, 60◦), (0.9, 0◦), (0.9, 60◦), (1.0, 0◦),
(1.0, 60◦), (1.1, 0◦), (1.1, 60◦).

(TI, TII, TIII) denote different sets with γ 	= 0 (triaxial
shapes):

(i) TI: γ = 0◦, 30◦, 60◦;
(ii) TII: γ = 0◦, 20◦, 40◦, 60◦;

(iii) TIII: γ = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦.

The sets of (β, γ ) mesh points shown in Fig. 2 have been
used in the present analysis.

In Table I we display the excitation energies and B(E2)
values of low-spin yrast states in 24Mg, calculated with the
3DAMP + GCM model but including only axially deformed
mean-field states (coordinate sets AI, AII, and AIII, as
shown in Fig. 2). One notes that the largest differences in
the calculated excitation energies are within 10% and the
B(E2 : J → J − 2) values agree within 5%. The major step
for the energies comes from the inclusion of oblate shapes
(AII) in the GCM configuration mixing calculations. It lowers
the total ground-state energy by ≈300 keV and increases the
energies by ≈150 keV for the 2+

1 , 200 keV for the 4+
1 , and

150 keV for the 6+
1 state. The refinement of the mesh in AIII

produces only small changes.
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FIG. 2. (Color online) The distribution of mesh points in the
β, γ plane for the sets AI, AII, AIII, AI + TI, AI + TII, AI + TIII,
AIII + TI, AIII + TII, and AIII + TIII.

Similar results are found when comparing results of
3DAMP + GCM calculations based on triaxial intrinsic states:
AI + TI, AI + TII, and AI + TIII in Table II and AIII + TI,
AIII + TII, and AIII + TIII in Table III. The effect of including
triaxial deformations, i.e. the γ degree of freedom, is perhaps
best illustrated in the comparison between results obtained
with the sets of generator coordinates AIII (Table I) and
AIII + TIII (Table III). The inclusion of triaxial states in
the GCM configuration mixing calculation lowers the total
energies by 39 keV for 0+

1 , 180 keV for 2+
1 , 226 keV for

4+
1 , and 262 keV for 6+

1 . The corresponding B(E2 : J →
J − 2) values are enhanced by 3.94%, 5.29%, 7.63% for
Jπ

α = 2+
1 , 4+

1 , 6+
1 , respectively.

The influence of the γ degree of freedom, and the
convergence of 3DAMP + GCM calculations with respect
to the number of mesh points of the discretized genera-
tor coordinates, can clearly be seen in the comparison of
calculations with mean-field states at the mesh points of
coordinate sets AI, AI + TIII and AIII, AIII + TIII. The

TABLE I. Ground-state energies Egs, excitation energies Ex (in
MeV), and B(E2) values (in e2fm4) for transitions between low-spin
states in 24Mg, calculated with the 3DAMP + GCM model for the
generator coordinate sets AI, AII, and AIII (see text for details).

Quantities AI AII AIII

Egs(0
+
1 ) −196.985 −197.291 −197.279

Ex(2+
1 ) 2.196 2.351 2.330

Ex(4+
1 ) 5.394 5.905 5.849

Ex(6+
1 ) 10.426 10.591 10.568

B(E2 : 2+
1 → 0+

1 ) 78.155 78.721 79.135
B(E2 : 4+

1 → 2+
1 ) 137.679 140.814 139.750

B(E2 : 6+
1 → 4+

1 ) 177.025 169.246 168.527

TABLE II. Same as Table I but for the generator coordinates sets
AI + TI, AI + TII, and AI + TIII (see text for details).

Quantities AI + TI AI + TII AI + TIII

Egs(0
+
1 ) −197.285 −197.304 −197.307

Ex(2+
1 ) 2.241 2.198 2.177

Ex(4+
1 ) 5.776 5.725 5.677

Ex(6+
1 ) 10.485 10.413 10.360

B(E2 : 2+
1 → 0+

1 ) 80.523 80.849 81.435
B(E2 : 4+

1 → 2+
1 ) 144.441 145.926 147.178

B(E2 : 6+
1 → 4+

1 ) 171.275 178.015 182.199

inclusion of triaxial shapes lowers the energies by ≈300 keV.
On the other hand, very similar results are obtained in
calculations based on coordinate sets that differ only in the
number of axial points. Therefore, we find that, if prolate as
well as oblate configurations are included, the spectroscopic
properties of low-spin states in 24Mg are not very sensitive
to the number of axial mesh points. The inclusion of the γ

degree of freedom changes this situation somewhat but not
dramatically for the ground stated band where the admixtures
with K 	= 0 are small. This is consistent with the results of the
3DAMP + GCM calculation with particle-number projection
[24], based on the nonrelativistic Skyrme density functional.
It was shown, namely that the number of axial states that can
be added to the set of triaxial states is not large. Redundancies
appear very quickly in the norm kernel when more states
are added to the nonorthogonal basis, and this is simply
a consequence of very few level crossings as function of
deformation in 24Mg. In Table IV we show the excitation
energies and B(E2) values for low-lying states in 24Mg,
calculated with the 3DAMP + GCM model based on a set
of axial mean-field states with β = 0, 0.1, 0.2, . . . , 1.1 and
γ = 0◦, 60◦, as functions of the cutoff parameter ζ , that defines
the basis of “natural states.” Eigenstates of the norm overlap
kernel N J with eigenvalues nJ

k /nJ
max < ζ are removed from

the GCM basis (nJ
max is the largest eigenvalue of the norm

kernel for a given angular momentum). The excitation energies
are not sensitive to the particular value of the cutoff parameter
provided ζ < 1 × 10−2, whereas the effect on the B(E2)
values is <1% for smaller values of ζ . However, ζ cannot be
taken arbitrarily small, because spurious states are introduced
in the basis for very small eigenvalues of the norm overlap
kernel. The remaining calculations presented in this work have
been performed using the value ζ = 5 × 10−3.

TABLE III. Same as Table I but for the generator coordinates sets
AIII + TI, AIII + TII, and AIII + TIII (see text for details).

Quantities AIII + TI AIII + TII AIII + TIII

Egs(0
+
1 ) −197.290 −197.306 −197.318

Ex(2+
1 ) 2.239 2.205 2.189

Ex(4+
1 ) 5.735 5.695 5.662

Ex(6+
1 ) 10.452 10.388 10.345

B(E2 : 2+
1 → 0+

1 ) 80.498 81.488 82.256
B(E2 : 4+

1 → 2+
1 ) 143.042 145.525 147.137

B(E2 : 6+
1 → 4+

1 ) 166.952 175.157 181.379
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TABLE IV. Excitation energies Ex (in MeV) and B(E2) values (in e2fm4) for transitions between
low-spin states in 24Mg, calculated with the 3DAMP + GCM model for the generator coordinates
β = 0, 0.1, . . . , 1.1, and γ = 0◦, 60◦ as functions of the cutoff parameter ζ that defines the basis of
“natural states.”

ζ 5 × 10−2 1 × 10−2 5 × 10−3 1 × 10−3 5 × 10−4 1 × 10−4

Ex(2+
1 ) 2.275 2.340 2.330 2.341 2.314 2.320

Ex(4+
1 ) 5.703 5.931 5.849 5.573 5.544 5.580

B(E2 : 2+
1 → 0+

1 ) 77.586 80.138 79.135 79.967 79.113 79.688
B(E2 : 4+

1 → 2+
1 ) 144.403 143.314 139.750 136.372 137.989 138.669

B. Axially-symmetric AMP + GCM calculation

By restricting the set of intrinsic states to axially sym-
metric configurations: γ = 0 and γ = 180◦, the complicated
3DAMP + GCM model is reduced to a relatively simple
1DAMP + GCM calculation. For the choice of generator
coordinates β = 0, 0.1, 0.2, . . . , 1.1; γ = 0 and γ = 180◦, we
have calculated the energies and the average axial quadrupole
deformations of the two lowest GCM states, for each angular
momentum: 0+, 2+, 4+, and 6+ in 24Mg, as shown in Fig. 3.

The mean-field energy surface is somewhat soft with a
prolate deformed minimum at β ≈ 0.50, γ = 0◦, and the total
energy E = −192.807 MeV. This result is consistent with
our previous calculation that used the PC-F1 energy-density
functional plus a monopole pairing force [44] and with an
earlier study that employed the relativistic mean-field model

FIG. 3. (Color online) (Upper panel) Energies and the average
axial deformations for the two lowest GCM states with angular
momentum 0+, 2+, 4+, 6+ in 24Mg, together with the mean-field
(dotted) and the corresponding angular-momentum-projected energy
curves. (Lower panel) Squares of collective wave functions |gJ

α (q)|2
with q22 = 0 for the corresponding lowest GCM states in 24Mg. These
results are obtained in the axial 1DAMP + GCM calculation. Positive
(negative) values of the axial deformation β correspond to prolate
(oblate) configurations.

with the NL2 effective interaction [39]. A rotational yrast
band is calculated in the prolate minimum, with the squares
of collective wave functions (probabilities) concentrated at
β ≈ 0.5.

In Fig. 4 we display the lowest energy levels of angu-
lar momentum Jπ = 0+, 2+, 4+, 6+ in 24Mg, calculated
with the 3DAMP + GCM and 1DAMP + GCM codes, for
the sets of axially symmetric generator coordinates: β =
0, 0.1, 0.2, . . . , 1.1 with both prolate (γ = 0) and oblate
states (γ = 60◦ and γ = 180◦ in 3DAMP + GCM and
1DAMP + GCM models, respectively) (columns I and III),
and with only prolate states γ = 0 (columns II and IV). As
expected, the 3DAMP + GCM and 1DAMP + GCM calcula-
tions produce virtually identical results, with small differences
attributed to the numerical accuracy. In fact, the difference be-
tween the B(E2) values shown in columns I and III can be fur-
ther reduced by increasing the number of mesh points used in
the Gaussian-Legendre quadrature over the Euler angles φ, θ ,
and ψ in the calculation of the norm and Hamiltonian kernels.

C. Triaxial AMP + GCM calculation

In Fig. 5 we plot the self-consistent RMF + BCS triaxial
energy surface of 24Mg in the β-γ plane (0 � γ � 600),
obtained by imposing constraints on the expectation values

FIG. 4. (Color online) Lowest energy levels of angular momen-
tum J π = 0+, 2+, 4+, 6+ in 24Mg, and reduced E2 transition
probabilities in e2fm4, calculated with the 3DAMP + GCM and
1DAMP + GCM models. See text for details.
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FIG. 5. (Color online) Self-consistent RMF + BCS energy sur-
face (left panel) of 24Mg in the β-γ plane (0 � γ � 600), and
angular-momentum-projected energy surface with J π = 0+ (right
panel). The contours join points on the surface with the same energy.
The difference between neighboring contours is 1.0 MeV.

of the quadrupole moments q20 and q22. The panel on the right
displays the projected energy surface with Jπ = 0+:

EJ=0(q) = H J=0(q, q)

N J=0(q, q)
. (41)

The contours join points with the same energy and the
difference between neighboring contours is 1.0 MeV. The
energy surfaces nicely illustrate the effects of including triaxial
shapes and of the restoration of rotational symmetry. The
mean-field energy surfaces are found to be quite soft with
a minimum at an axial prolate deformation β ≈ 0.5. When
compared with the axial plot in Fig. 3, one realizes that the
oblate minimum on the axial projected energy curve with
Jπ = 0+ is actually a saddle point in the γ direction. Projection
shifts the minimum to a slightly triaxial shape with β =
0.50, γ = 20◦, and E = −197.074 MeV. The gain in energy
from the restoration of rotational symmetry is 4.266 MeV.
The fact that angular-momentum projection leads to triaxial
minima in the PES was already noted in 3DAMP calculations
in the 1980s [45], and very similar results have been obtained
recently [24] for the nucleus 24Mg using the Skyrme functional
SLy4. We note, however, that the 3DAMP + GCM model
used in Ref. [24] includes a projection on proton and neutron
numbers that is not carried out in the present analysis.

Figure 6 displays the corresponding average neutron and
proton pairing gaps 〈�〉, defined by Eq. (40), as functions
of deformation variables β and γ . The gaps are relatively
small around the minimum of the potential energy surface
(PES), whereas larger values are calculated at the saddle points.
The fluctuations of pairing gaps reflect the underlying shell
structure.

The solution of the HWG equation (14) yields the excitation
energies and the collective wave functions for each value
of the total angular momentum and parity Jπ . In addition
to the yrast ground-state band, in deformed and transitional
nuclei excited states are usually also assigned to (quasi-)
β and γ bands. This is done according to the distribution
of the angular-momentum projection K quantum number.
Excited states with predominant K = 2 components in the
wave function are assigned to the γ band, whereas the β band
comprises states above the yrast characterized by dominant

FIG. 6. (Color online) Average neutron and proton pairing gaps
of 24Mg in the β-γ plane (0 � γ � 600). The contours join points
on the surface with the same pairing gap. The difference between
neighboring contours is 0.2 MeV.

K = 0 components. As an example, in Fig. 7 we display the
low-spin PC-F1 excitation spectrum of 24Mg obtained by the
1DAMP + GCM calculation with the AIII set of generator
coordinates and by the 3DAMP + GCM calculation with the
AIII + TIII set of mesh points, in comparison with available
data [46–48]. The level scheme is in rather good agreement
with data, but in both cases the calculated spectra are
systematically stretched as compared to experimental bands.
This is because angular-momentum projection is performed
only after variation and, therefore, time-odd components and
alignment effects are neglected. Cranking calculations, for
instance, correspond to an approximate angular-momentum
projection before variation [49], and lead to an enhancement
of the moments of inertia in better agreement with data [50,51].
However, at present the full 3D angular-momentum projection
before variation, plus GCM configuration mixing, is still
beyond the available computing capacities. The agreement of
the calculated quadrupole transition probabilities with data in
Fig. 7 is remarkable, especially considering that the calculation
of B(E2) values is parameter-free, i.e., the transitions are
calculated employing bare proton charges.

In Fig. 8, we plot the corresponding distributions |gJ
α |2 of

Eq. (25), with respect to β and γ , for the ground state 0+
1

and the first excited state 2+
1 (both the K = 0 and K = 2

components) in 24Mg. These quantities give the probabilities
that the intrinsic wave functions of the corresponding states
have a certain quadrupole deformation characterized by the
collective coordinates β and γ . For the ground state, and for
the K = 0 component of 2+

1 , these distributions are largely
concentrated along the prolate symmetry axis. Since the K = 0
component of the 2+

1 state exhausts 92% of the norm, this state
obviously belongs to the K = 0 band built on the nearly prolate
ground state. From the PES shown in the right panel of Fig. 5,
with the pronounced minimum at γ ≈ 200, one would have
expected the maximum of the probability distributions in this
region of the β, γ plane. However, it turns out that the inclusion
of quadrupole fluctuations through GCM configuration mixing
drives the structure built on the ground state back toward
the prolate symmetry axis, i.e., the GCM model calculation
does not predict the existence of a stable triaxial structure
of the intrinsic states of the ground-state band of 24Mg. The
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FIG. 7. (Color online) The low-spin level scheme of 24Mg calculated using the 3DAMP + GCM model and 1DAMP + GCM model with
the PC-F1 relativistic density functional, in comparison with data [46–48]. The B(E2) values are given in units of e2 fm4.

probability distributions for the excited states 3+
1 and 2+

2 are
shown in Fig. 9. For 2+

2 state the K = 2 component exhausts
about 87% of the norm and, therefore, 2+

2 and 3+
1 are assigned

to the K = 2 (quasi-) γ band. The K = 0, K = 2, and K = 4
probability distributions of the states 4+

1 and 4+
2 are displayed

in Fig. 10. Since the K = 0 (K = 2) component of the state
4+

1 (4+
2 ) exhausts 92% (79%) of the norm, 4+

1 belongs to the
ground-state band and 4+

2 to the (quasi) γ band.
Finally, in Fig. 11 we display the average neutron and

proton numbers [cf. Eq. (38)] for the 3DAMP + GCM states
belonging to the three bands of 24Mg in Fig. 7. The dispersion
of the particle number is relative large (≈0.3) for states 0+

1 and
2+

1 .

IV. SUMMARY AND OUTLOOK

The framework of relativistic energy-density functionals
has been very successfully applied to the description of a
rich variety of structure phenomena over the whole nuclear
chart. However, to go beyond the modeling of bulk nuclear

FIG. 8. (Color online) Contour plots of the probability distribu-
tions |gJ

α |2 for the ground state 0+
1 and the first excited state 2+

1 (both
the K = 0 and K = 2 components) in 24Mg.

properties and perform detailed calculations of excitation
spectra and transition probabilities, one must extend the
simple single-reference (mean-field) implementation of this
framework and include long-range correlations related to
restoration of symmetries broken by the static mean field
and to fluctuations of collective coordinates around the
mean-field minimum. Building on recent models [8,9] that
have employed the GCM to perform configuration mixing of
axially symmetric relativistic mean-field wave functions, and
especially on Ref. [25], where we have already considered
3DAMP of relativistic mean-field wave functions, in this
work a model has been developed that uses the GCM in
configuration mixing calculations that involve 3DAMP wave
functions, generated by constrained self-consistent mean-field
calculations for triaxial nuclear shapes.

The current implementation of the relativistic
3DAMP + GCM model has been tested in the calculation of
spectroscopic properties of low-spin states in 24Mg. Starting
with the relativistic density functional PC-F1 [26], and
a density-independent δ force as the effective interaction
in the pairing channel, the intrinsic wave functions are

FIG. 9. (Color online) Same as in Fig. 8 but for the excited states
3+

1 and 2+
2 in 24Mg.
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FIG. 10. (Color online) Same as in Fig. 8 but for the excited states
4+

1 and 4+
2 in 24Mg.

generated from the self-consistent solutions of the constrained
RMF + BCS equations in the basis of a three-dimensional
harmonic oscillator in Cartesian coordinates. The constraints
are on the axial and triaxial mass quadrupole moments. After
restoring rotational symmetry by 3DAMP, the fluctuations of
quadrupole deformations are included by performing GCM
mixing of angular-momentum-projected configurations that
correspond to different values of the generator coordinates
β and γ . The GCM calculation has been tested both with
respect to the number of mesh points in the discretized β, γ

plane and the cutoff-parameter that is used to eliminate
from the GCM basis the “high momentum” eigenvectors of
the norm overlap kernels with extremely small eigenvalues.
Results for excitation energies in the ground-state, (quasi-) γ

and β bands, and the corresponding interband and intraband

FIG. 11. (Color online) Average particle numbers for the
3DAMP + GCM states belonging to the three bands of 24Mg in Fig. 7.

transition probabilities have been compared with available
data on low-spin states in 24Mg. The comparison has shown a
very good agreement between data and the predictions of the
relativistic 3DAMP + GCM model.

The choice of 24Mg allows a direct comparison of the
present analysis with the results of Ref. [24], where a
3DAMP + GCM model has been developed based on Skyrme
triaxial mean-field states that are projected on particle number
and angular momentum and mixed by the generator coordinate
method. Because it includes projection on particle number, the
model of Ref. [24] is much more involved and the numerical
implementation is more difficult. In particular, the use of
general EDFs in GCM calculations, i.e., energy functionals
with an arbitrary dependence on nucleon densities, leads to
discontinuities or even divergences of the energy kernels as
functions of deformation that can possibly produce spurious
contaminations in the calculated excitation spectra (for a
detailed discussion, we refer the reader to Refs. [52–54],
and references cited therein). Even though the results of the
present calculation for 24Mg are in good agreement with
those of Ref. [24], an important advantage of performing
particle-number projection is that it prevents a collapse of
pairing when the level density around the Fermi energy is
reduced as, for instance, close to the minimum of the potential
energy surface. The comparison with Ref. [24] thus points to
an obvious improvement of our 3DAMP + GCM model, i.e.,
the implementation of particle-number projection.

As an alternative approach to five-dimensional quadrupole
dynamics that includes rotational symmetry restoration and
takes into account triaxial quadrupole fluctuations, one can
construct a collective Bohr Hamiltonian with deformation-
dependent parameters. In a recent work [42], we have devel-
oped a new implementation for the solution of the eigenvalue
problem of a five-dimensional collective Hamiltonian for
quadrupole vibrational and rotational degrees of freedom, with
parameters determined by constrained self-consistent relativis-
tic mean-field calculations for triaxial shapes. As in the present
work, in addition to the self-consistent mean-field potential of
the PC-F1 relativistic density functional in the particle-hole
channel, for open-shell nuclei pairing correlations are included
in the BCS approximation. In Ref. [43], the model has been
applied in the study of shape phase transitions in the region
Z = 60, 62, 64 with N ≈ 90. The collective Hamiltonian can
be derived in the Gaussian overlap approximation (GOA)
[4] to the full five-dimensional GCM. With the assumption
that the GCM overlap kernels can be approximated by
Gaussian functions, the local expansion of the kernels up
to second order in the nonlocality transforms the HWG
equation into a second-order differential equation for the col-
lective Hamiltonian. Therefore, having developed both the
five-dimensional quadrupole collective Hamiltonian and the
full 3DAMP + GCM model, we plan to perform microscopic
tests of the GOA in a study of low-spin spectroscopy of
γ -soft transitional nuclei, especially the effect of GOA on
the calculated transitions between bands. In general, we
expect that both models will be a useful addition to the
theoretical tools that can be used in studies of complex
structure phenomena in medium-heavy and heavy nuclei,
including exotic systems far from stability.
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APPENDIX: REDUCED MATRIX ELEMENT OF THE
QUADRUPOLE OPERATOR

The basic expressions for the calculation of EM transition
probabilities in the framework of an AMP + GCM approach
are given in Ref. [7]. Here we start from the reduced matrix
element of the quadrupole operator in Eq. (33) and derive a
formula for the overlap matrix elements Eq. (34):

Q2µ(K ′,K; qi, qj ) ≡ 〈�(qi)|Q̂2µP̂ J
K ′K |�(qj )〉

= 2J + 1

8π2

∫
d�DJ∗

K ′K (�)〈Q̂2µR̂(�)〉ij ,
(A1)

with the overlap function of the quadrupole operator

〈Q̂2µR̂(�)〉ij ≡ 〈�(qi)|Q̂2µR̂(�)|�(qj )〉
= Tr[Q2µρij (�)] 〈R̂(�)〉ij . (A2)

The expressions for the norm overlap 〈R̂(�)〉ij and tran-
sition densities ρij (�) are given in Eqs. (A28) and (C4) of
Ref. [25].

The indices qi, qj run over all generator coordinates.
For nq points on the coordinate mesh, only nq(nq + 1)/2
overlaps need to be evaluated, for instance, those with qi � qj .
The remaining part with qi > qj is determined by simply

exchanging the indices i and j :

Q2µ(K ′,K; qj , qi)

= 2J + 1

8π2

∑
µ′

∫
d�DJ

KK ′ (�)D2
µ′µ(�)〈Q̂†

2µ′R̂(�)〉∗ij .

(A3)

In the derivation of above relation, an irreducible tensor
Q2−µ has been introduced as Q

†
2µ = (−1)µQ2−µ.

The matrix elements of the multipole moment operator
Q̂λµ = rλYλµ in the spherical harmonic oscillator basis |nljm〉
read:

(Qλµ)mm′ = 〈nl|rλ|n′l′〉 · 〈ljm|Yλµ|l′j ′m′〉. (A4)

The radial part is given by

〈nl|rλ|n′l′〉

= (−1)n+n′
[�(n)�(n′)]1/2 ν!ν ′!

[�(n + l + 1
2 )�(n′ + l′ + 1

2 )]1/2

×
∑

σ

�(t + σ )

(σ − 1)!(n− σ)!(n′ − σ)!(σ + ν − n)!(σ + ν ′ − n)!
,

(A5)

with the integers t = 1
2 (l + l′ + λ + 1), ν = 1

2 (l′ − l + λ), and
ν ′ = 1

2 (l − l′ + λ).
Apart from parity conservation (l + l′ + λ ≡ even), the

angular part does not depend explicitly on orbital angular
momenta:

〈ljm|Yλµ|l′j ′m′〉 = (−1)j−m

(
j λ j ′

−m µ m′

)
〈j ||Yλ||j ′〉,

(A6)

where the irreducible matrix elements of the spherical har-
monic are given by the expression

〈j ||Yλ||j ′〉 = (−1)j− 1
2

√
ĵ ĵ ′λ̂
4π

(
j λ j ′

− 1
2 0 1

2

)
. (A7)
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[20] S. W. Ødegård, G. B. Hagemann, D. R. Jensen, M. Bergström,
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[43] Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and

P. Ring, Phys. Rev. C 79, 054301 (2009).
[44] J. M. Yao, J. Meng, D. P. Arteaga, and P. Ring, Chin. Phys. Lett.

25, 3609 (2008).
[45] A. Hayashi, K. Hara, and P. Ring, Phys. Rev. Lett. 53, 337

(1984).
[46] P. M. Endt, At. Data Nucl. Data Tables 55, 171 (1993).
[47] D. Branford, A. C. McGough, and I. F. Wright, Nucl. Phys. A

241, 349 (1975).
[48] J. Keinonen, P. Tikkanen, A. Kuronen, Á. Z. Kiss, E. Somorjai,
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