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Effects of the density dependence of the nuclear symmetry energy on ground-state properties of superheavy
nuclei are studied in the relativistic mean-field theory. It is found that the softening of the symmetry energy plays
an important role in the empirical shift [Phys. Rev. C 67, 024309 (2003)] of spherical orbitals in superheavy
nuclei. The calculation based on the relativistic mean-field models NL3 and FSUGold supports the double shell
closure in 292120 with the softening of the symmetry energy. In addition, the significant effect of the density
dependence of the symmetry energy on the neutron skin thickness in superheavy nuclei is investigated.
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I. INTRODUCTION

The persistent interest in the synthesis of superheavy nuclei
(SHN) has continued because of recent progress [1–14].
This is a hot field where people often expect the next
new superheavy element (SHE) that can be synthesized in
the laboratory. Indeed, since the cross section of the SHE
synthesis is very small, it is much more difficult to synthesize
heavier and heavier SHE [2]. For instance, the cross section
of the cold fusion reduces almost exponentially with the
increase of the nuclear charge in the superheavy region. One
important factor that affects the synthesis is the shell closure
in superheavy nuclei. However, predictions have turned out
to be quite divisive for various theoretical approaches. For
instance, the microscopic-macroscopic model predicts the
double shell closure at (Z = 114, N = 184) [15] and various
nonrelativistic models with Skyrme forces can predict different
double shell closures at (Z = 114, N = 184) [16], (Z = 120,
N = 172) [16–18], or (Z = 126, N = 184) [16,17,19], while
most relativistic mean-field (RMF) models predict the double
shell closure at (Z = 120, N = 172) [16,17,20]. In general, the
diversity of predictions on the shell closure in the superheavy
region is associated with various single-particle properties near
the Fermi surface.

In the recent decade, the extraction of the constraint on
the density dependence of the symmetry energy has been
another hot spot in nuclear physics due to the availability
of high-quality radioactive beams. The density dependence
of the symmetry energy plays an important role in under-
standing many important issues in astrophysics (see, e.g.,
Refs. [21–23]), structural properties of proton- or neutron-rich
nuclei and the reaction dynamics of heavy-ion collisions (see,
e.g., Refs. [24–27]). However, the density dependence of the
symmetry energy is still poorly known, especially at high
densities [27]. Recent extraction of the neutron skin thickness
of 208Pb from collective flow data of heavy-ion collisions
[28–30] exhibited the softening tendency of the symmetry
energy. Because the density dependence of the symmetry
energy can reflect the surface property of the isovector
potential, the effect on the single-particle property and the
characteristics of the shell closure in SHN may be induced by

the softening of the symmetry energy. Moreover, it was found
that the existence of the central depression is important for the
double shell closure in 292120 [16,31,32]. In the presence of
the central depression, the sensitivity of the properties of SHN
to various density dependencies of the symmetry energy can
be affected. Though the properties of SHN have been explored
in a great number of works [15–20,31–45], investigations on
the symmetry-energy-dependent effect are scarce. Thus, it
is the aim of this work to investigate the effect of the softening
of the symmetry energy on the ground-state properties of SHN,
especially the shell closure.

In the past, the isoscalar-isovector coupling was first
introduced in RMF models to mimic various density de-
pendencies of the symmetry energy in Ref. [22], and its
effects on the properties of finite nuclei, nuclear matter,
and neutron stars have extensively been investigated in the
literature [22,24,25,46–50]. It is an economic way to simulate
various density dependencies of the symmetry energy with the
inclusion of the isoscalar-isovector coupling in RMF models.
In addition, the RMF theory is successful in describing the
properties of nuclei from proton drip line to neutron drip line,
because it can provide a dynamic description for the spin-orbit
interaction (e.g., see reviews in Refs. [51–53]). In this work, we
thus perform the investigation with RMF models. This article
is arranged as follows. In Sec. II, brief formulas are given
for RMF models. The results and discussion are presented in
Sec. III. At last, a summary is given in Sec. IV.

II. A BRIEF FORMALISM

The relativistic Lagrangian can be written as

L = ψ
[
iγµ∂µ − MN + gσσ − gωγµωµ

− gργµτ3b
µ

0 − e 1
2 (1 + τ3)γµAµ

]
ψ

− 1
4FµνF

µν + 1
2m2

ωωµωµ − 1
4BµνB

µν

+ 1
2m2

ρb0µb
µ

0 − 1
4AµνA

µν

+ 1
2

(
∂µσ∂µσ − m2

σ σ 2
) + U

(
σ, ωµ, b

µ

0

)
, (1)
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where ψ ,σ ,ω, and b0 are the fields of the nucleon, scalar,
vector, and neutral isovector-vector, with their masses MN ,
mσ , mω, and mρ , respectively. Aµ is the photon field. gi(i =
σ, ω, ρ) are the corresponding meson-nucleon couplings. Fµν ,
Bµν , and Aµν are the strength tensors of ω and ρ mesons and
photons, respectively,

Fµν = ∂µων − ∂νωµ, Bµν = ∂µb0ν − ∂νb0µ,
(2)

Aµν = ∂µAν − ∂νAµ.

The self-interacting terms of σ and ω mesons and the isoscalar-
isovector coupling are given generally as

U
(
σ, ωµ, b

µ

0

) = − 1
3g2σ

3 − 1
4g3σ

4 + 1
4c3(ωµωµ)2

+ 4g2
ρg

2
ω	vωµωµb0µb

µ

0 . (3)

Here, the isoscalar-isovector coupling term is introduced to
modify the density dependence of the symmetry energy.

Using the Euler-Lagrangian equation, the equations of
motion for nucleons and mesons can be obtained. In the RMF
approximation, the mesons are approximated by their classic
fields with quantum motion neglected. The Dirac equation in
RMF is written as[−iα∇ + βM∗

N + gωω0(r) + gρτ3b0(r) + e 1
2 (1 + τ3)A0(r)

]
×ψα(r) = Eαψα, (4)

with M∗
N = MN − gσσ (r) and Eα the single-particle energy.

For simplicity, the isospin subscript for the ρ-meson field is
omitted hereafter. For the mesons and photons, the equations
of motion are given as(

� − m2
φ

)
φ(r) = −sφ(r), (5)

where for the photon, mφ = 0, and

sφ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gσρs(r) − g2σ
2(r) − g3σ

3(r), σ ,

gωρB(r) − c3ω
3
0 − 8g2

ωg2
ρ	vω0(r)b2

0(r), ω,

gρρ3(r) − 8g2
ρg

2
ω	vb0(r)ω2

0(r), ρ,

eρc(r), photon.

(6)

Here ρs , ρB , ρ3, and ρc are the scalar, vector, isovector, and
charge densities, respectively. We see that the fields b0 and
ω0 can be modified by the isoscalar-isovector coupling. This
modification can also affect the spin-orbit potential, which is
written as

Uls = 1

2M2
ε

d

rdr
[V σ (r) + V (r)]L · S, (7)

where

Mε = M∗
N + Eα − V (r) ≈ 2MN − [gσσ (r) + V (r)],

(8)

V (r) = gωω0(r) + gρb0(r)t + e

(
1 + t

2

)
A0,

with t = ±1 for the proton and the neutron, respectively.
The total binding energy is given as

B = EN + Eσ + Eω0 + Eb0 + Ec + ECM

=
∑

α

(Eα − MN )

− 1

2

∫
d3r

[
gσσ (r)ρs(r) + 1

3
g2σ
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4(r)

]

+ 1

2

∫
d3r

[
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ω4

0(r)
]

+ 1
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∫
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[
ρ3(r) + 8gρg

2
ω	vω

2
0(r)b0(r)

]
+ 1

2
e

∫
d3rA0(r)ρc(r) − 3

4
41A1/3. (9)

In practical calculations, the BCS pairing interaction is
also included using the constant pairing gaps that are ob-
tained from the prescription of Möller and Nix [54]: �n =
4.8/N1/3, �p = 4.8/Z1/3 with N and Z being the neutron
and proton numbers, respectively. This prescription was also
used for the SHN in Ref. [43]. The cutoff 82A−1/3 MeV
above the nucleon chemical potentials is used to normalize the
pairing energy [52]. The coupled Dirac and meson equations
are solved for spherical nuclei with an iterative procedure.
The details of solving the equations can be found in the
literature [51–53] and are not reiterated here.

III. RESULTS AND DISCUSSION

We first study the properties of the SHN with the RMF
parameter set NL3 [55] where the isoscalar-isovector coupling
is taken into account to mimic various density dependencies of
the symmetry energy. For comparisons, calculations are also
performed with the RMF parameter set FSUGold [48] that
features the isoscalar-isovector coupling. In RMF models, the
symmetry energy can be written as

Esym = 1

2

(
gρ

m∗
ρ

)2

ρB + k2
F

6E∗
F

= 1

2δ
gρb0 + k2

F

6E∗
F

, (10)

where m∗
ρ is the ρ-meson effective mass with m∗

ρ =√
m2

ρ + 8	v(gωgρω0)2, δ is the isospin asymmetry with δ =
ρ3/ρB , and E∗

F is the Fermi energy. The first term is the
potential part of the symmetry energy and the second term
is the kinetic part. The modification to the symmetry energy
is dictated by the potential part through the isoscalar-isovector
coupling. For a given 	v , we follow Ref. [22] to readjust the
ρNN coupling constant gρ so as to keep the symmetry energy
unchanged at kF = 1.15 fm−1 (ρ = 0.7ρ0). As shown in Fig. 1,
the symmetry energy is softened by the isoscalar-isovector
coupling. With this softening of the symmetry energy, the
appreciable reduction of the neutron skin thickness in heavy
nuclei can be obtained without compromising the success in
reproducing a variety of ground-state properties [22]. Due
to the inclusion of the isoscalar-isovector coupling, the total
binding energy of heavy nuclei changes by a few MeV, and in
SHN this change can rise moderately. To reduce the variation
of the binding energy in SHN, one may readjust slightly
the parameters such as the meson-nucleon coupling constants
and mesons. Without priority, here we readjust slightly the σ

meson mass mσ . For simplicity, we do not perform the best-fit
procedure, and the value of mσ is just refitted to the binding
energy of 208Pb. The readjusted parameters with various 	v

and properties of 208Pb are listed in Table I. Except for the
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FIG. 1. Density dependence of the symmetry energy with various
isoscalar-isovector couplings in NL3 and FSUGold.

original parameter sets NL3 and FSUGold, other parameter
sets listed in Table I are named according to the value of 	v .
Next, we perform calculations for SHN with these parameter
sets and examine the sensitivity of ground-state properties of
SHN to differences in the symmetry energy.

In Fig. 2, we plot the single-particle energies for 292120 in
the NL3 calculations. Results with various isoscalar-isovector
couplings are displayed in columns. The large gaps for
N = 172 and Z = 120, as shown in Fig. 2, indicate that
the nucleus 292120 is doubly magic. It is seen that the shell
closure at N = 172 and Z = 120 undergoes a small but
favorable enhancement due to the inclusion of the isoscalar-
isovector coupling. As shown in the left panel, the position of
π1h9/2 relative to that of π3s1/2 shifts appreciably with the
inclusion of the isoscalar-isovector coupling. For the large 	v ,
even the level inversion takes place. This shift agrees favorably
with the one called the empirical shift in Refs. [33,34]. Up
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FIG. 2. Single-particle energies in 292120 with various parameter
sets in the NL3 calculations.

to now, there has been no direct data of the single-particle
energies of SHN, while the so-called empirical shift is
obtained by extracting available single-particle energies in
deformed nuclei of the A ∼ 250 region (e.g., 249Bk) [56–59].
Because several deformed single-particle levels observed in
the A ∼ 250 nuclei emerge from spherical subshells in SHN,
the appropriate description of empirical shifts can provide
support for the predictions on properties of SHN, especially the
nuclear magicity. With the inclusion of the isoscalar-isovector
coupling, the empirical shift between π1h9/2 and π3s1/2 can
be well reproduced. It is also interesting to see that the low-j
levels π3p3/2 and π3p1/2 can be significantly modified by
the isoscalar-isovector coupling. However, its influence on the
shell closure at Z = 120 remains small. As a result, the shell
gap for Z = 120 is just weakly affected by the empirical shift.
This means that these parameter sets including the original
NL3 can provide a reliable prediction on the shell closure at
Z = 120. On the other hand, the empirical shift for ν1i11/2 [33]
in the single-neutron spectrum is not reproduced with the
inclusion of the isoscalar-isovector coupling. In Ref. [33], it
can be seen that the shell closure at N = 172 is just moderately
affected by the empirical shift. The present prediction on the
large gap for N = 172 does not contradict the earlier analysis

TABLE I. Readjusted parameters in NL3 and FSUGold with ground-state properties of 208Pb. The binding energy per nucleon
(B/A), proton radius (rp), and neutron skin thickness (rp − rn) are listed. The slightly modified incompressibility is listed in the last
column.

Model 	v gρ mσ (MeV) B/A (MeV) rp (fm) rn − rp (fm) κ (MeV)

NL3 0.000 4.4740 508.194 7.889 5.459 0.281 271.78
NL3w15 0.015 4.9652 508.240 7.890 5.465 0.238 272.25
NL3w30 0.030 5.6642 508.270 7.890 5.475 0.195 272.56
NL3w50 0.050 7.3236 508.270 7.890 5.496 0.132 272.56
FSUGw15 0.015 5.0403 491.490 7.883 5.463 0.248 229.96
FSUGold 0.030 5.8837 491.500 7.883 5.473 0.207 230.00
FSUGw45 0.045 7.3695 491.480 7.883 5.488 0.158 229.92
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with the empirical shift. Indeed, the relative energies between
ν2g9/2, ν2g7/2, and ν3d5/2, one of which determines the N =
172 gap, are almost independent of RMF parametrizations (see
Ref. [33] and references therein. The situation of the neutron
shell closure at N = 184 is less known, because there is no
empirical constraint on ν4s1/2. However, the N = 184 gap is
almost independent of the shifts of the interior levels caused
by the inclusion of the isoscalar-isovector coupling. Similarly,
the N = 184 gap would not be much affected even if the
empirical shift for ν1i11/2 were accurately reproduced. In this
sense, the occurrence of the shell closure at N = 184 seems
unlikely.

Now, let us examine the underlying factors that cause the
significant shift in single-particle spectra with the inclusion
of the isoscalar-isovector coupling. As shown in Fig. 2, the
spin-orbit splitting can be modified by the isoscalar-isovector
coupling, and the modification increases moderately with
the angular momentum. However, the modification to the
spin-orbit coupling is just moderate and is not sufficient
to cause the empirical shift. Another factor that affects the
modification to the single-particle spectrum is the orbit-orbit
interaction. The orbit-orbit interaction can generally be given
in the form of centrifugal force, and it reflects the flatness
of the nuclear potential. In Fig. 3, the nucleon potentials
and density distributions in 292120 are plotted. As shown
in the upper left panel of Fig. 3, the homogeneity of the
proton potential in the central region can be modified by
the isoscalar-isovector coupling. This modification can bring
about the moderate change in the single-proton levels. Both
changes in the orbit-orbit and spin-orbit interactions thus lead
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FIG. 3. Nucleon potentials (upper panels) and nucleon density
distributions (lower panels) in 292120 with various parameter sets
in the NL3 calculations. The nucleon potential is defined as U =
V (r) − gσ σ (r); also see Eq. (8).

to significant empirical shifts of proton levels, as observed
in 292120. Similarly, the shifts in the single-neutron levels
can be understood by the modification in the orbit-orbit
and spin-orbit interactions caused by the isoscalar-isovector
coupling. Though the isoscalar-isovector coupling can affect
shifts in the single-particle levels for both protons and neutrons
significantly, its modification to the proton or charge radius is
much less than that to the neutron radius. This can be seen in
Fig. 3 by comparing the modification to the neutron density
distribution with that to the proton one.

Furthermore, it is significant to establish a quantitative
correlation between the density dependence of the sym-
metry energy and the relative shift of single-particle en-
ergies. It is known that the symmetry energy can be ex-
panded in the vicinity of saturation density in the following
form [60,61]:

Esym(ρB) = Esym(ρ0) + L

3

ρB − ρ0

ρ0

+ κsym

18

(ρB − ρ0)2

ρ2
0

+ · · · , (11)

where L and κsym are the slope and curvature of the symmetry
energy at saturation density, respectively, defined as

L = 3ρ0
∂Esym

∂ρB

∣∣∣∣
ρ0

, κsym = 9ρ2
0

∂2Esym

∂ρ2
B

∣∣∣∣
ρ0

. (12)

The slope of the symmetry energy defines the symmetry
pressure through the relation psym = ρ0L/3. Historically,
the proper inclusion of the spin-orbit coupling has played
an important role in giving rise to the correct shape of
nuclear potential and hence the ordering of the energy levels.
Because the spin-orbit interaction is associated with the surface
property subject to the subsaturation density region, it is useful
to similarly define the slope and curvature of the symmetry
energy at half saturation density, Lh (ph

sym) and κh
sym. As seen

in Fig. 2, the relative shifts of the orbitals change with respect
to the isoscalar-isovector coupling. Because the correlations
between these relative shifts and the density dependence of
the symmetry energy are similar, we plot as an example in
Fig. 4 the relative shift between π1h9/2 and π3s1/2 as a function
of the symmetry pressure and curvature. As shown in Fig. 4,
the relative shift of these two levels is approximately linear in
the symmetry pressure (at saturation density) and correlates
quadratically with the symmetry pressure at half saturation
density. A stronger correlation at half saturation density
reflects the strong dependence of single-particle energies on
the surface property of finite nuclei. In the right-hand panel,
it is shown that the relative shift of the two levels is linear
in the curvature at half saturation density, which is consistent
with the quadric correlation as shown in the middle panel.
It was found in the early days of the RMF theory that the
proper density dependence of the potential was important for
a correct spin-orbit potential and hence the ordering of orbitals
(e.g., see Refs. [62,63]. Similarly, it is here interesting to see
that the density dependence of the symmetry energy (or of
the isovector potential) affects moderately the single-particle
energies. In particular, in the present work we can obtain the
relative shift between π1h9/2 and π3s1/2 with the appropriate

044306-4



EFFECTS OF THE DENSITY DEPENDENCE OF THE . . . PHYSICAL REVIEW C 81, 044306 (2010)

-0.25

0

0.25

0.5

2.5 5

   pSYM (MeV/fm
-3

)

 E
3s

1/
2

 -
 E

1h
9/

2
 (

M
eV

)

1 1.5

   p
h

SYM

-100 0

κ h
SYM   (MeV)

FIG. 4. Relative shift between π1h9/2 and π3s1/2 as a function
of the symmetry pressure and curvature. The lines in the left- and
right-hand panels are obtained with a linear fit. The pressure in the
left-hand panel is evaluated at saturation density, while the pressure
and curvature in the middle and right-hand panels, respectively, are
calculated at half saturation density.

density dependence of the symmetry energy. The correlations
shown in Fig. 4 also exist for other SHN, even if the central
depression disappears. Here, the central depression plays a
role in enhancing the correlation strength (e.g., the slope in the
linear correlation).

Next, we turn to the discussion on the two-nucleon gaps.
In addition to the gap in the single-particle spectrum, a direct
measure of the shell closure is the appearance of the peak in
the two-nucleon gaps, which are defined as [17]

δ2n = S2n(N + 2, Z) − S2n(N,Z)

= 2B(N,Z) − B(N − 2, Z) − B(N + 2, Z), (13)

δ2p = S2p(N,Z + 2) − S2p(N,Z)

= 2B(N,Z) − B(N,Z − 2) − B(N,Z + 2), (14)

where S2n and S2p are the two-neutron and two-proton sepa-
ration energies, respectively. The peak of the two-nucleon gap
reflects the large change of the two-nucleon separation energy,
signaling the shell closure. Moreover, the two-nucleon gap
can reflect appropriately the gap size in the single-particle
spectrum [16]. In Fig. 5, we plot the binding energy per nucleon
(upper panel) and the two-neutron gap (lower panel) for the
Z = 120 isotopes in the NL3 calculations. As shown in the
upper panel of Fig. 5, the difference between binding energies
is small for different isoscalar-isovector couplings, and this is
attributed to the refitting of mσ . As shown in the lower panel
of Fig. 5, the two-neutron gap at N = 172 can earn a moderate
rise with the inclusion of the isoscalar-isovector coupling,
which is consistent with the observation of the single-neutron
spectrum in Fig. 2. The similar increasing tendency also occurs
for the N = 198 shell gap. As shown in the lower panel of
Fig. 5, the peak of the two-neutron gap occurs at N = 172,
184, and 198 in the Z = 120 isotopes. In comparison with the
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FIG. 5. Binding energies per nucleon of Z = 120 isotopes (upper
panel) and two-neutron gaps (lower panel) with various parameter sets
in the NL3 calculations.

sharp peak at N = 172, peaks at N = 184 and 198 become
much more blunt. This indicates that the shell gaps at N = 184
and 198 are not well developed. Also, we examine the δ2n for
the Z = 126 isotopes, and the case is similar.

As shown in Fig. 5, the two-neutron gap can be affected
by the isoscalar-isovector coupling. In some isotopes such
as 292120 and 318120, the two-neutron gap can gain a
rise with the inclusion of the isoscalar-isovector coupling.
However, the modification to the two-neutron gap caused
by the isoscalar-isovector coupling is not governed by the
isotopic effect in SHN. For instance, this is clear from
comparing the modification to δ2n at N = 172 with the one
at N = 184. In fact, the relatively pronounced modification
is associated with the specific geometries, such as the central
depression or enhancement. It was pointed out in Ref. [32]
that the central depression in 292120 is predominantly from
the proton occupation of high-j orbitals, while the neutron
central depression results from the strong coupling between
protons and neutrons. In the presence of the central depression,
the change in the neutron potential and density distribution
caused by the isoscalar-isovector coupling exhibits a radial
inhomogeneity, as shown in the right-hand panels of Fig. 3.
This inhomogeneity causes consistently modifications to the
level shifts and the two-neutron gaps. With the increase of
the neutron numbers, the neutron central depression tends to
disappear, while the central enhancement appears with more
neutrons. The inhomogeneity of the modifications produced in
the presence of the central enhancement explains the change in
the two-neutron gap in more neutron-rich isotopes, as shown
in the lower panel of Fig. 5.
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FIG. 6. Two-proton gap δ2p for N = 172 isotones with various
parameter sets in the NL3 calculations.

To examine the proton shell closure, we plot in Fig. 6
the two-proton gap for the N = 172 isotones. As shown in
Fig. 6, there is only one peak at Z = 120. No peak is observed
at Z = 114 and 126. The proton shell closure at Z = 126
was predicted by the Hartree-Fock approach with a variety of
Skyrme interactions [16,17], while the RMF models disincline
the appearance of this shell closure. As seen in Fig. 2, though
the isoscalar-isovector coupling tends to shift the relative
position between π1i11/2 and π3p orbitals, the formation of
the Z = 126 shell closure does not appear. In RMF models, the
Z = 114 shell closure has only been predicted by parameter
sets NL-SH and NL-RA1 due to the relatively large spin-orbit
splitting of 2f orbitals [64,65]. In NL3, the spin-orbit splitting
of 2f orbitals is not large, and though the modification of the
isoscalar-isovector coupling to δ2p is rather pronounced, as
shown in Fig. 6, it is far from sufficient to form the Z = 114
shell gap. It is necessary to point out that the isotopic effect is
prominent for the two-proton gap. For instance, as observed
in Fig. 6, the sensitivity of the δ2p to the isoscalar-isovector
coupling differs clearly for the N = 172 isotones with Z =
114 and 116. Indeed, the pronounced isotopic effect exists for
the Z = 120 shell closure. δ2p = 3.5 MeV in 292120 reduces
to 2.7 MeV in 304120. Further, the peak at Z = 120 disappears
totally in 318120. As far as the double shell closure in spherical
SHN is concerned, 292120 turns out to be the most possible
candidate with various parameter sets in the NL3 calculations.
This is consistent with the prediction in Refs. [16,17,20,32].

Now, we discuss the results with the FSUGold. In Fig. 7,
the single-particle energies for 292120 are plotted with var-
ious parameter sets in the FSUGold calculations. Though
the isoscalar-isovector coupling is already included in the
FSUGold, its strength is changed in FSUGw15 and FSUGw45
in order to manifest the importance of this coupling. Compared
to the results shown in Fig. 2, the role of the isoscalar-isovector
coupling in the single-particle properties is similar to that in
FSUGold, and here the nucleus 292120 is also doubly magic.
Though the role of the isoscalar-isovector coupling is less
prominent for the empirical shift between π3s1/2 and π1h9/2
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FIG. 7. Single-particle energies in 292120 with various parameter
sets in the FSUGold calculations.

than that in the NL3 results, it can favorably reduce the relative
energy between these two levels. Similarly, we can establish
correlations as in Fig. 4 for the FSUGold results, while here
for brevity we neglect the display of the correlations. However,
some distinctions of the single-particle spectrum are given
with the FSUGold results. For instance, an inversion of levels
ν1k17/2 and ν2h11/2 is observed in the FSUGold calculations,
while it does not take place in the NL3 calculations. The similar
inversion also occurs between the ν1i11/2 and ν3p orbitals.
Moreover, the shell gap at N = 184 is suppressed as compared
to that with the NL3. On the contrary, the gap for N = 198 in
FSUGold well develops, and the isoscalar-isovector coupling
can further enhance the magnitude of this gap. This implies
that N = 198 is a magic number with the FSUGold. With the
moderate increase of the proton number, the N = 198 shell
gap remains large. For instance, the size of the N = 198 shell
gap in 324126 is even a little larger than that in 318120.

The N = 198 shell closure can consistently be observed
using the δ2n. Figure 8 displays the binding energies and
two-neutron gaps for the Z = 120 isotopes. As shown in the
lower panel of Fig. 8, the two-neutron gap at N = 198 is clearly
increased by softening the symmetry energy. In addition to
the large N = 172 gap, we see that the large N = 198 gap
emerges. The situation of the shell closure at N = 198 in
FSUGold differs from that in NL3. This distinction can be
associated with different model constructions. For instance,
the nonlinear self-interaction of the ω meson is included in
FSUGold. Moreover, the compression modula of the NL3 and
FSUGold differ by about 40 MeV. In general, the lower incom-
pressibility in FSUGold allows more nucleons to be accommo-
dated in the potential well. For the two-proton gap in FSUGold,
it is less sensitive to differences in the symmetry energy than
that in NL3, while the isotopic effect is similar to that in NL3.
The increase of the neutron number suppresses the Z = 120
proton gap. The two-proton gap is 2.7 and 2.3 MeV with N =
172 and 184, respectively. As compared to the NL3 results,
the value of δ2p with the FSUGold turns out to be smaller. The
peak disappears with N = 198, similar to the NL3 results.
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To examine the consistency of the calculation, we plot
in Fig. 9 the change in nucleon density distributions in the
FSUGold calculations. It is shown that in 318120 the neutron
density is enhanced in the central region. In presence of this
central enhancement, the radial inhomogeneity appears to
increase the sensitivity of the two-neutron gap to differences in
the symmetry energy. For 292120, it was mentioned in Ref. [32]
that the magnitude of the central depression increases with
the decrease of the compression modulus. We note that the
central depression in 292120 in the FSUGold model is not
more prominent than that in the NL3 model as shown in
Fig. 3. Indeed, this can be attributed to the nonlinear ω-meson
self-interaction in the FSUGold model that lowers the potential
barrier. For 304120, as shown in the middle panel of Fig. 9,
there exists an inhomogeneity of the modification added by
the isoscalar-isovector coupling, and this is consistent with the
moderate decrease of the two-neutron gap at N = 184 with
the 	v , as seen in the lower panel of Fig. 8.

Next, we investigate the neutron skins in SHN. As it is
known, the neutron skin thickness in heavy nuclei such as 208Pb
is sensitive to differences in the symmetry energy. In SHN, the
case is similar. In Fig. 10, we display neutron skin thicknesses
in Z = 120 isotopes for various parameter sets in the NL3
and FSUGold calculations. In general, the sensitivity of the
neutron skin thickness to differences in the symmetry energy
can be well understood in the following way [61,66,67]. The
pressure of pure neutron matter at saturation density is equal
to the symmetry pressure. As the symmetry pressure decreases
with the inclusion of the isoscalar-isovector coupling, the
neutron skin thickness reduces in neutron-rich SHN. However,
two interesting features are also observed in Fig. 10. First,
the neutron skin thicknesses in various SHN can roughly be
separated into two reaches according to the slope. The reach
with the larger slope is associated with the large neutron
gap at N = 172. With the addition of neutrons above this
gap the neutron skin thickness thus increases clearly. As the
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FIG. 9. Nucleon density distributions in the Z = 120 isotopes
with various parameter sets in the FSUGold calculations.

occupation surpasses the much smaller gap at N = 184, the
nuclear attraction from the interior gap can still appreciably
restrain the extension of neutrons. This leads to a smaller slope
at the larger isospin asymmetry. Second, we observe that the
difference of the neutron skin thickness increases moderately
at large isospin asymmetries. Because of the looser binding
with the increase of the isospin asymmetry, it gives rise to
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FIG. 10. Neutron skin thicknesses for SHN with various pa-
rameter sets in the NL3 (upper panel) and FSUGold (lower panel)
calculations.

044306-7



WEI-ZHOU JIANG PHYSICAL REVIEW C 81, 044306 (2010)

6.2

6.3

6.4

6.5

Z=120

NL3w30
NL3w50

NL3
NL3w15∆

 R
c 

(f
m

)

6.2

6.3

6.4

170 180 190 200

∆
FSUGold
FSUGw15

FSUGw45

 N

FIG. 11. The same as in Fig. 10 but for charge radii.

an enhanced sensitivity to differences in the symmetry energy.
Indeed, the correlation between the neutron skin and symmetry
pressure in SHN deviates from a simple linear relation for
heavy nuclei due to the more extended neutron distribution
given by a looser binding compared to that of heavy nuclei.

It is necessary to mention that the uncertainty of the
neutron skin thickness is predominately from the changes
in the neutron radius. Figure 11 displays the charge radii of
the Z = 120 isotopes for various parameter sets in the NL3
and FSUGold calculations. It is shown that the change in
charge (or proton) radii is much smaller than the corresponding
neutron skin thickness that is shown in Fig. 10. Moreover, for
a considerable domain, it is seen that the charge radius of SHN
can be well approximated as a constant. This is favorable,
as one expects that the inclusion of the isoscalar-isovector
coupling shouldn’t compromise the success of the models in
reproducing a variety of ground-state properties. Recently, the
precision measurement of the neutron radius of 208Pb has
been proposed at the Jefferson Laboratory via the parity-
violating electron scattering on neutrons in 208Pb [68]. The
measurement of the neutron radius that promises 1% accuracy
will impose a strict constraint on the density dependence of
the symmetry energy. Correspondingly, this also provides a
significant constraint on the properties of SHN through the
relationship that can be established for properties between
SHN and 208Pb.

At last, we mention a few weak points in this work. First,
with the isoscalar-isovector coupling included or changed in
the best-fit models, we fitted the corresponding parameters
without using the best-fit procedure. Considering the important
effect of the isoscalar-isovector coupling on the empirical shift,
its inclusion seems necessary in the construction of the best-fit
models for the study of SHN in the future. Second, we note that
the effect of the isoscalar-isovector coupling on the empirical

shift of neutron levels is not as satisfactory as that of proton
levels, though the prediction on the N = 172 shell closure
in SHN is not much affected by this coupling. For a more
detailed investigation of level shifts in the future, it may be
favorable to consider the coupling with the surface vibration
modes [69,70] and the influence of the relatively small Lorentz
mass of nucleons in RMF models. Third, in this work we have
used the simple BCS theory with phenomenological pairing
gaps. For this point, we address it in some detail. It would be
interesting to treat the pairing interaction in a dynamical way
such as in the relativistic Hartree-Boguliubov (RHB) theory
(for reviews, e.g., see Refs. [33,53,71]) for the open-shell SHN
that are usually deformed (e.g., see Refs. [35–37]), though the
effect of pairing interactions on the shell closure is small. To
our knowledge, a RHB model in the coordinate space is still
not available for deformed nuclei, especially SHN [71], and in
the RHB model the calculation for deformed nuclei is usually
performed with the harmonic oscillator basis expansion. Due
to the numerical complication, the RHB calculation in the
deformed framework is still limited (see Refs. [34,72] and
references therein). In fact, most works treat the nucleon
pairings in open-shell and deformed SHN using the BCS
theory. It is interesting to note that the RMF model plus the
BCS pairing works quite well for the open-shell nuclei except
for drip-line nuclei [73,74], because for most isotopes the
nucleon occupation number in the continuum is just moderate.
For most open-shell SHN, we find that the occupation in
the continuum is also comparatively small. In this sense,
the results obtained for most open-shell SHN with the RMF
model plus the BCS pairing are comparable to those obtained
with the RHB model. Recently, a separable pairing force was
proposed for the RHB model with considerable reduction of
the computing time [72], and it would hopefully be developed
to study properties of open-shell SHN.

IV. SUMMARY

In summary, we have investigated the dependence of the
ground-state properties of spherical SHN on the density
dependence of the symmetry energy within RMF models.
The various density dependencies of the symmetry energy are
simulated by changing the strength of the isoscalar-isovector
coupling in RMF models (NL3 and FSUGold). It is found that
the isoscalar-isovector coupling produces an important effect
on the empirical shift of spherical orbitals in SHN. Especially,
the empirical shift between the π3s1/2 and π1h9/2 orbitals in
NL3 is nicely reproduced by including the isoscalar-isovector
coupling. This provides favorable support for the Z = 120
shell closure. In addition, the isoscalar-isovector coupling can
produce a small but favorable effect on the N = 172 shell
closure. With both models NL3 and FSUGold that differ in the
compression modulus, the double shell closure is predicted in
292
172120. The shell closure is also investigated in more Z = 120
isotopes. We have discussed the association of the central
depression or enhancement with the effect of the softening
of the symmetry energy in SHN. In comparison with the
moderate modification to single-particle energies and shell
gaps, significant reduction of the neutron skin thickness in
SHN is expected to be obtained by softening the symmetry
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energy. Moreover, the proton radius is little changed, similar
to the situation in 208Pb.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 10975033,

the China Jiangsu Provincial Natural Science Founda-
tion under Grant BK2009261, the Knowledge Innova-
tion Project of the Chinese Academy of Sciences un-
der Grant KJXC3-SYW-N2, and the China Major State
Basic Research Development Program under Contract
2007CB815004.

[1] S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).
[2] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733

(2000).
[3] P. A. Wilk et al., Phys. Rev. Lett. 85, 2697 (2000).
[4] Y. T. Oganessian et al., Phys. Rev. C 69, 021601(R) (2004).
[5] Y. T. Oganessian et al., Phys. Rev. C 70, 064609 (2004).
[6] K. Morita et al., Eur. Phys. J. A 21, 257 (2004).
[7] Z. G. Gan et al., Eur. Phys. J. A 20, 385 (2004).
[8] J. Dvorak et al., Phys. Rev. Lett. 97, 242501 (2006).
[9] Y. T. Oganessian et al., Phys. Rev. C 74, 044602 (2006).

[10] Y. T. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
[11] Y. T. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007).
[12] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58,

292 (2007).
[13] S. L. Nelson, K. E. Gregorich, I. Dragojevic, M. A. Garcia, J. M.

Gates, R. Sudowe, and H. Nitsche, Phys. Rev. Lett. 100, 022501
(2008).

[14] M. Morjean et al., Phys. Rev. Lett. 101, 072701 (2008).
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