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Renormalization versus strong form factors for one-boson-exchange potentials
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We analyze the one-boson-exchange potential from the point of view of renormalization theory. We show that
the nucleon-meson Lagrangian, while predicting the NN force, does not predict the NN scattering matrix nor the
deuteron properties unambiguously due to the appearance of short distance singularities. While the problem has
traditionally been circumvented by introducing vertex functions via phenomenological strong form factors, we
propose to impose physical renormalization conditions on the scattering amplitude at low energies. Working in
the large Nc approximation with π , σ , ρ, and ω mesons we show that, once these conditions are applied, results
for low-energy phases of proton-neutron scattering as well as deuteron properties become largely insensitive to
the form factors and to the vector mesons yielding reasonable agreement with the data and for realistic values of
the coupling constants.
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I. INTRODUCTION

The one-boson-exchange (OBE) potential has been a
cornerstone for nuclear physics for many years. It represents
the natural generalization of the one-pion-exchange (OPE) po-
tential proposed by Yukawa [1] and the scalar-meson potential
introduced by Johnson and Teller [2]. With the advent of vector
mesons these degrees of freedom were included as well [3–6].
Actually, Regge theory yields such a potential within a suitable
approximation [7]. The disturbing short distance divergences
were first treated by using a hard core boundary condition [3–5]
and it was soon realized that divergences in the potential
could be treated by introducing phenomenological form factors
incorporating the finite nucleon size [8]. The field theoretical
OBE model of the NN interaction [9,10] includes all mesons
with masses below the nucleon mass, i.e., π , η, ρ(770), and
ω(782). We refer to Refs. [11,12] for accounts of the many
historical iterations of the problem. An important lesson from
these developments has been that the nonperturbative nature of
the NN force is better handled in terms of quantum mechanical
potentials at low energies where relativistic and nonlocal
effects contribute at the few-percentages level. Although such
a framework has remained a useful, appealing, and accurate
phenomenological model after a suitable introduction of
phenomenological strong form factors [10,13] it is far from
being a complete description of the intricacies of the nuclear
force. The highly successful partial wave analysis (PWA) of
the Nijmegen group [14] while providing a spectacular fit with
χ2/DOF < 1 comprising a large body of pn- and pp-scattering
data checks mainly OPE and some contributions from other
mesons, since the interaction below 1.4 fm is parameterized
by an energy-dependent square-well potential.

A traditional test to NN forces in general and OBE potentials
in particular has been NN scattering in the elastic region. In
such a situation, relative NN de Broglie wavelengths larger
than half a fermi are probed; a factor of two larger scale than
the Compton wavelengths of the vector and heavier mesons.
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However, while from this simple-minded argument we might
expect those mesons to play a marginal role, OBE potentials
have traditionally been sensitive to short distances requiring
an unnatural fine-tuning of the vector-meson coupling. As a
consequence there has been some inconsistency between the
couplings required from meson physics, SU(3), or chiral sym-
metry on the one hand and those from NN scattering fits on the
other hand (see also Refs. [15–17]). Part of the disagreement
could only be overcome after even shorter scales were explic-
itly considered [18,19]. While strong form factors incorporate
finite nucleon size, one often uses parametrizations loosely
related to the field-theoretical meson-baryon Lagrangian from
which the meson-exchange picture is derived. It is therefore
not an exaggeration to say that strictly speaking the OBE
potentials have not been solved yet. Of course, this may appear
as a mathematically interesting problem with no relevance to
the physics of NN interactions. However, as we will see, the
meson-nucleon Lagrangian itself while providing the NN OBE
potential from the Born approximation, does not predict the NN
S matrix and the deuteron unambiguously beyond perturbation
theory from the OBE potential. The unspecified information in
the Lagrangian can be advantageously tailored to fit the data
in the low-energy region. We will also show that once this
is done, the vertex functions play a minor role, with a fairly
satisfactory description of central waves and the deuteron.

It is well known that the OBE potentials, although ex-
ponentially suppressed with the corresponding meson mass,
∼e−mr , are by themselves large at short distances and mostly
even diverge as 1/r3. For a singular potential, i.e., a potential
fulfilling limr→0 2µ|V (r)|r2 = ∞ [20,21], the Hamiltonian is
unbounded from below, preventing the existence of a stable
two-nucleon bound state when limr→0 2µV (r)r2 < −1/4.
Of course, the singularity is unphysical as it corresponds to
the interaction of two pointlike static classical particles and
not to extended nucleons with a finite size of about half
a fermi.1 From a quantum mechanical viewpoint, however,
the relative NN de Broglie wavelength provides the limiting

1Of course, the nucleon size depends on the particular electroweak
probe. We give here a typical number.
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resolution scale physically operating in the problem. This
suggests a framework where finite nucleon size effects should
also play a marginal role in NN scattering. In such a case
it should be possible to formulate the problem without any
explicit reference to form factors. In fact, as we will explicitly
demonstrate, renormalization is the natural mathematical tool
to implement the physically desirable decoupling of short-
distance components of the interaction at the energies involved
in NN elastic scattering. We anticipate to stress that this does
not mean that strong form factors are not physical but rather
that a suitable set of renormalization conditions minimizes
their impact in the NN problem.

Within the NN system the problem of infinities has tradition-
ally been cured [8] by the introduction of phenomenologically
or theoretically motivated strong form factors in each meson-
nucleon vertex, �mNN (q2) (m = π , σ , ρ, ω, etc.) where the
off-shell quality of the nucleon legs is usually neglected.
This procedure implements the finite nucleon size but strong
form factors are fitted and constrained in practice to NN-
scattering data and deuteron properties. This corresponds to
the replacement of the potential Vm(q) → Vm(q)[�mNN (q)]2,
where typically a monopole form is taken for each separate
meson �mNN (q) = (�2

mNN − m2)/(�mNN − q2) and gener-
ally �mNN ∼ 1–2 GeV.2 Due to the long-distance distortion
introduced by the vertex function deuteron properties impose
limitations on the lowest cutoff value �πNN > 1.3 GeV still
fitting the result [10].

Because of their fundamental character and the crucial
role played in NN calculations there have been countless
attempts to evaluate strong form factors by several means,
mainly �πNN (q2). These include meson theory [22–27], Regge
models [28], chiral soliton models [29–32], QCD sum rules
[33], the Goldberger-Treimann discrepancy [34] or lattice
QCD [35,36], and quark models [37] (for a recent discussion
see also Ref. [38]). Most calculations yield rather small values
�πNN ∼ 800 MeV generating the soft form factor puzzle for
the OBE potential for several years since the cutoff could
not be lowered below �πNN = 1.3 GeV without destroying
the quality of the fits and the description of the deuteron
[10]. The contradiction was solved by including either ρπ

exchange [39], a strongly coupled excited π ′(1300) state [40],
two-pion exchange [41] or three-pion exchange [42]. Some
of these ways out of the paradox assume the meson-exchange
picture seriously to extremely short distances. However, as
noted in Ref. [32] the contradiction is misleading since a large
cutoff is needed just to avoid a sizable distortion of the OBE
potential in the region r > 0.5 fm which can also be achieved
by choosing a suitable shape of the form factor. This point was
explicitly illustrated by using the Skyrme soliton model form
factors [32]. In fact, this conclusion is coherent with the early
hard core regularizations [3–5], recent lattice calculations [36]
(where an extremely hard �πNN ∼ 1.7 GeV and a rather flat
behavior are found) and, as we will show, the renormalization
approach we advocate.

2For a monopole the operating scale is lower, �mNN/
√

2, because
the square of the form factor enters in the modification of the potential.

The implementation of purely phenomenological vertex
meson-nucleon functions has also notorious side effects, in
particular it affects gauge invariance, chiral symmetry, and
causality via dispersion relations. As it is widely accepted,
besides the description of NN scattering and the deuteron,
one of the great successes and confirmations of meson theory
has been the prediction of meson-exchange currents (MEC’s)
for electroweak processes (see Refs. [43,44] for reviews
and references therein). In the case of gauge invariance,
the inclusion of a form-factor introduced by hand, i.e., not
computed consistently within meson theory, implies a kind
of nonlocality in the interaction. This can be made gauge
invariant by introducing link operators between two points,
thereby generating a path dependence, and thus an ambiguity
is introduced. In the limit of weak nonlocality the ambiguity
is just the standard operator ordering problem, for which no
obvious resolution has been found yet. Form factors can also be
in open conflict with dispersion relations, particularly if they
imply that the interaction does not vanish as a power of the
momentum everywhere in the complex plane. We will show
that within the renormalization approach, all singularities fall
on the real axes and spurious deeply bound states are shifted
to the real negative energy values. The extremely interesting
issue of analyzing the consequences of renormalization for
electroweak processes is postponed for future research.

In the present article we approach the NN problem for
the OBE potential from a renormalization viewpoint. We
analyze critically the role played by the customarily used
phenomenological form factors. As a viable alternative we
carry out the renormalization program to this OBE potential
to manifestly implement short-distance insensitivity as well as
completeness of states by removing the cutoff. In practice,
we use the coordinate space renormalization by means of
boundary conditions [45–47]. The equivalence to momentum-
space renormalization using counterterms for regular and
singular potentials was discussed in Refs. [48,49]. In order
to facilitate and simplify the analysis we will use large Nc

relations for meson-nucleon couplings [50–52] which are well
satisfied phenomenologically and pick the leading tensorial
structures for the OBE potential. In this picture mesons are
stable with their mass scaling as m ∼ N0

c , nucleons are heavy
with their mass scaling as MN ∼ Nc, and the NN potential also
scales as VNN ∼ Nc. The OBE component is dominated by the
π , σ , ρ, and ω mesons [53,54]. Further advantages of using this
large Nc approximation have been stressed in regard to Wigner
and Serber symmetries in Refs. [55–58], in particular the fact
that relativistic, spin-orbit, and meson widths corrections are
suppressed by a relative 1/N2

c factor suggesting a bold 10%
accuracy. However, we hasten to emphasize that despite the use
of this appealing and simplifying approximation in the OBE
potential we do not claim to undertake a complete large Nc cal-
culation since multiple meson exchanges and 	 intermediate
states should also be implemented [54]. In spite of this, some
of our results fit naturally well within naive expectations of
the large Nc approach. The coordinate space renormalization
scheme is not only convenient and much simpler, but it
is also particularly suited within the large Nc framework
where nonlocalities in the potential are manifestly suppressed.
Morevover, an internally consistent multimeson-exchange
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scheme is possible if energy-independent potentials are used
[59,60].

The article is organized as follows. In Sec. II we write down
a chiral Lagrangian in order to visualize the calculation of the
OBE potential in the large Nc limit and analyze its singularities.
The standard approach to prevent the singularity has been to
include form factors to represent vertex functions, an issue
which is analyzed critically in Sec. III where the alternative
between fine-tuning and the appearance of spurious bound
states is highlighted. In Sec. IV we discuss the physical condi-
tions under which a description of NN scattering makes sense
within a renormalization point of view. In addition, we discuss
some general features which apply to the solutions of the
Schrödinger equation with the local and energy-independent
large Nc OBE potential on the basis of renormalization. In Sec.
V we analyze the 1S0 channel from which the scalar-meson
parameters may be fixed. We also discuss the role played by
spurious bound states which appear in this kind of calculations.
The deuteron and the corresponding low-energy parameters
as well as the 3S1-3D1 phase shifts are analyzed in Sec. V.
The marginal influence of form factors in the renormalization
process is shown in Sec. VII. Finally, in Sec. VIII we
summarize our main points and conclusions. In Appendix A
we also review current values for the coupling constants from
several sources entering the potential.

II. OBE POTENTIALS AND THE NEED FOR
RENORMALIZATION

In this section we briefly sketch the well-known process
of deriving the OBE potential from the nucleon-meson
Lagrangian. We appeal a chiral Lagrangian as done in
Refs. [15–17] and keep only the leading Nc contributions to
the OBE potential due to the tremendous simplification which
proves fair enough to illustrate our main point, namely the
lack of uniqueness of the S matrix from the OBE potential.
In a more elaborated version, the present calculation should
include many other effects such as relativistic corrections,
spin-orbit coupling, meson widths, multimeson exchange, and
	 intermediate states.

A. Meson-nucleon chiral Lagrangian

We use a relativistic chiral Lagrangian as done in
Refs. [15–17] as a convenient starting point. The π -σ
Lagrangian reads

Lkin
σπ = σ 2

4
〈∂µU †∂µU †〉 + 1

2
∂µσ∂µσ

−V (σ ) − σm2
π

4
〈U + U †〉, (1)

where U (x) = ei �τ ·π/fπ is the nonlinearly transforming pion
field and 〈, 〉 represents the trace in isospin space. The scalar
field is invariant under chiral transformations3 and the potential
is chosen to have a minimum at σ = fπ . The sigma mass is then

3This is unlike the standard assignment of the linear σ model where
one takes (σ, �π) as chiral partners in the (1/2, 1/2) representation of
the chiral SU(2)R ⊗ SU(2)L group.

m2
σ = V ′′(σ )|σ=fπ

, so that the physical scalar field is defined
by the fluctuation around the vacuum expectation value,
σ = fπ + s. fπ = 92.6 MeV denotes the pion weak-decay
constant, ensuring the proper normalization condition of the
pseudoscalar fields. The vector-meson kinetic Lagrangians are
represented by Proca fields

Lkin
ω = − 1

4 (∂µων − ∂νωµ)(∂µων − ∂νωµ) + 1
2m2

ωωµωµ,
(2)

Lkin
ρ = − 1

4 (∂µρν − ∂νρµ)(∂µρν − ∂νρµ) + 1
2m2

ρρ
µρµ,

and the kinetic nucleon Lagrangian is

Lkin
N = N̄i∂/N. (3)

The chirally invariant form of the meson-nucleon Lagrangian
can be looked up in Ref. [15]. From the vacuum expectation
value of the scalar meson we get the nucleon mass MN =
gσNNfπ and the relevant nucleon-meson interaction vertices
can be obtained from a chiral Lagrangian [15–17] and read

LπNN = −gπNN

2�N

N̄γµγ5τ × ∂µπN,

LσNN = −gσNNσN̄N,

LρNN = −gρNNN̄τ × ρµγµN − fρNN

2�N

N̄σµντ × ∂µρνN,

LωNN = −gωNNN̄γµωµN − fωNN

2�N

N̄σµν∂
µωνN. (4)

Here, �N is a mass scale that we take as �N = 3MN/Nc with
Nc the number of colours in QCD. An overview of estimates
of couplings from several sources is presented in Appendix A.
In the large Nc limit the Lagrangian simplifies tremendously
since one has the following scaling relations [50]4

MN ∼ Nc,

�N ∼ N0
c ,

gπNN ∼ gσNN ∼ gωNN ∼ fρNN ∼
√

Nc,
(5)

fωNN ∼ gρNN ∼ 1/
√

Nc,

mπ ∼ mσ ∼ mρ ∼ mω ∼ N0
c ,

�σ ∼ �ρ ∼ 1/Nc.

The vector/tensor coupling dominance for ω/ρ is well fulfilled
phenomenologically (see Appendix A). Thus, in the large Nc

limit it is convenient to pass to the heavy baryon formulation
by the transformation

N (x) = eiMN v·xB(x), (6)

where B(x) is the heavy isodoublet baryon field and vµ a
four-vector fulfilling v2 = 1, eliminating the heavy mass
term [61,62]. Choosing vµ = (1, 0) the meson-nucleon
Lagrangian becomes

L = −gσNNsB†B + gωNNω0B†B

+ gπNNB†σiτaB∂iφa + fρNN

2�N

εijkB†σiτaB∂jρka.

(7)

4There should be no confusion in forthcoming sections when we
take Nc = 3 and �N = MN and the bookkeeping becomes less
evident.
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In the large Nc limit the contracted SU(4) algebra with the gen-
erators given by the total spin Si = ∑

A σA
i /2, the total isospin

Ta = ∑
A τA

a /2, and the Gamow-Teller Xia = ∑
A σA

i τA
a /4

operators is satisfied [51,52]). One could, of course, have
started directly from the heavy-baryon Lagrangian, Eq. (7),
but the connection with chiral symmetry, in particular the
relativistic mass relation MN = gσNNfπ , would be lost.

B. OBE potentials at leading Nc

From the heavy-baryon Lagrangian, Eq. (7), the calculation
of the NN potential in momentum space is straightforward
[10,13]. However, passing to coordinate space is somewhat
tricky since distributional contributions proportional to δ(�x)
and derivatives may appear. We discard them by just assuming
that r > rc, where rc is a short distance radial cutoff.5 Accord-
ing to their increasing mass the leading Nc contributions to the
OBE potentials read

Vπ (r) = 1

12
�τ1 · �τ2

g2
πNN

4π

m2
π

�2
N

[
�σ1 · �σ2

e−mπ r

r

+ S12
e−mπ r

r

(
1 + 3

mπr
+ 3

(mπr)2

) ]
, (8)

Vσ (r) = −g2
σNN

4π

e−mσ r

r
, (9)

Vρ(r) = 1

12
�τ1 · �τ2

f 2
ρNN

4π

m2
ρ

�2
N

[
2�σ1 · �σ2

e−mρr

r

− S12
e−mρr

r

(
1 + 3

mρr
+ 3

(mρr)2

) ]
, (10)

Vω(r) = g2
ωNN

4π

e−mωr

r
, (11)

where the tensor operator S12 = 3σ1 · x̂σ2 · x̂ − σ1 · σ2 has
been defined. Thus, the structure of the leading large Nc-OBE
potential has the general structure [53]

V (r) = VC(r) + τ1 · τ2[σ1 · σ2WS(r) + S12WT (r)]. (12)

Thus, we have as the only nonvanishing components

VC(r) = −g2
σNN

4π

e−mσ r

r
+ g2

ωNN

4π

e−mωr

r
,

WS(r) = 1

12

g2
πNN

4π

m2
π

�2
N

e−mπ r

r
+ 1

6

f 2
ρNN

4π

m2
ρ

�2
N

e−mρr

r
,

WT (r) = 1

12

g2
πNN

4π

m2
π

�2
N

e−mπ r

r

[
1 + 3

mπr
+ 3

(mπr)2

]

− 1

12

f 2
ρNN

4π

m2
ρ

�2
N

e−mρr

r

[
1 + 3

mρr
+ 3

(mρr)2

]
.

(13)

5As discussed at length in Refs. [49,63] these terms are effectively
inessential under renormalization of the corresponding Schrödinger
equation via the coordinate boundary condition method, which will
be explained shortly.

At short distances we have

VC(r) → g2
ωNN − g2

σNN

4π

1

r
, (14)

WS(r) → 1

12

g2
πNNm2

π + 2f 2
ρNNm2

ρ

4π�2
N

1

r
, (15)

WT (r) → 1

4

g2
πNN − f 2

ρNN

4π�2
N

1

r3
. (16)

As we see, the potential is singular at short distances except
for the very special value fρNN = gπNN (see Appendix B).
While the central VC and spin WS contributions present a mild
Coulomb singularity, the tensor force component WT develops
a more serious type of singularity, a situation that appeared
already for the simpler OPE potential [45].

C. The OBE potential and ambiguities in the S matrix

We will show next that the S matrix associated to the
OBE potential is necessarily ambiguous, precisely because
of the short distance 1/r3 singularity in the nonexceptional
situation gπNN 
= fρNN . The exceptional case, gπNN = fρNN ,
is not far from phenomenological values (see Appendix A)
and will be treated in Appendix B.6 We do so by proving
that the standard regularity conditions for the wave function
do not uniquely determine the solution of the Schrödinger
equation. Actually, at short distances, i.e., those much smaller
than meson masses, r � 1/m, the NN problem due to the
OBE potential corresponds to the interaction of two spin-1/2
magnetic dipoles, namely

− ∇2�k(�x) + Udd (�x)�k(�x) = p2�k(�x), r � 1/m, (17)

where the reduced dipole-dipole potential7 is given by

Udd (�x) = MVdd (�x)

= ± R

r3
(3σ1 · x̂σ2 · x̂ − σ1 · σ2), (18)

with R a length scale and in our particular case

± R = M

16π�2
N

(
g2

πNN − f 2
ρNN

)
, (19)

the positive or negative sign depends on whether gπNN >

fρNN or gπNN < fρNN , respectively.
The above potentials become diagonal in the standard total

spin �S2, parity UP , isospin �T , and total angular momentum
�J = �L + �S basis, so the states are labeled by the spectroscopic

notation 2S+1LJ . We note that Fermi-Dirac statistics implies
(−1)L+S+T = −1. Thus, τ1 · τ2 = 2T (T + 1) − 3 and σ1 ·
σ2 = 2S(S + 1) − 3. For spin-singlet states S = 0 and J = L,
the parity is natural UP = (−1)J and one has S12 = 0. For
uncoupled spin-triplet states S = 1 one has J = L, natural

6Actually quite often the ρ exchange is used as a regulator of the π

exchange.
7Note that we are not assuming here this potential at large distances

and so the standard long range problems of dipole-dipole scattering
never appear.
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parity UP = (−1)L, and S12 = 2. For coupled spin-triplet
states S = 1 one has L = J ± 1, unnatural parity UP =
(−1)J+1 and

S12 =
[ − 2(J−1)

2J+1
6
√

J (J+1)
2J+1

6
√

J (J+1)
2J+1 − 2(J+2)

2J+1

]
. (20)

For the uncoupled spin-triplet channel we have

− v′′
J (r) +

[
2R

r3
+ J (J + 1)

r2

]
vJ (r) = p2vJ (r). (21)

At very short distances we may neglect the centrifugal barrier
and the energy yielding

− v′′
J (r) ± 2R

r3
vJ (r) = 0, r � 1/m,R, 1/p. (22)

The general solution can be written in terms of Bessel
functions. Using their asymptotic expansions we may write
at short distances8

v+,J (r) →
( r

R

)3/4
[C1Re+4

√
2
√

R
r + C2Re−4

√
2
√

R
r ],

(23)
v−,J (r) →

( r

R

)3/4
[C1Ae−4i

√
R
r + C2Ae4i

√
R
r ].

Clearly, in the repulsive case the regularity condition fixes
the coefficient of the diverging exponential to zero, C1R =
0, whereas in the attractive case both linearly independent
solutions are regular and the solution is not unique. In the
case of the triplet coupled channel, for r � 1/m,R, 1/p, i.e.,
neglecting centrifugal barrier and energy, the system of two
coupled differential equations becomes[

−u′′
J (r)

−w′′
J (r)

]
± R

r3

[
− 2(J−1)

2J+1
6
√

J (J+1)
2J+1

6
√

J (J+1)
2J+1 − 2(J+2)

2J+1

] [
uJ (r)

wJ (r)

]
= 0.

(24)

This system can be diagonalized by going to the rotated basis[
v1,J (r)

v2,J (r)

]
=

⎡
⎣

√
J

2J+1 −
√

J+1
2J+1√

J+1
2J+1

√
J

2J+1

⎤
⎦ [

uJ (r)

wJ (r)

]
, (25)

where the new functions satisfy

− v′′
1,J (r) ∓ 4R

r3
v1,J (r) = 0, (26)

8The solutions of −y ′′(x) − y(x)/x3 = 0 are

√
xJ1(2/

√
x) = − x

3
4√
π

cos(π/4 + 2/
√

x) + · · ·

√
xY1(2/

√
x) = − x

3
4√
π

cos(π/4 − 2/
√

x) + · · · ,

whereas the solutions of −y ′′(x) + y(x)/x3 = 0 are

√
xK1(2/

√
x) = 1

2

√
πx

3
4 e−2/

√
x + · · ·

√
xI1(2/

√
x) = 1

2
√

π
x

3
4 e2/

√
x + · · ·

−v′′
2,J (r) ± 8R

r3
v2,J (r) = 0. (27)

Note that here the signs are alternate, i.e., when one of the
short-distance eigenpotentials is attractive the other one is
repulsive and vice versa, and hence the type of solutions in
Eq. (23) can be applied. This means that in general there will
be solutions that are not necessarily fixed by the regularity
condition at the origin, and thus the OBE potential does not
predict the S matrix uniquely. Instead, a complete parametric
family of S matrices will be generated depending on the
particular choice of linearly independent solutions, which are
not dictated by the OBE potential itself.

Thus, some additional information should be given. The
traditional way is to introduce form factors which besides
implementing the finite nucleon size have the additional benefit
of killing the singularity so that the regularity condition fixes
the solution uniquely as we discuss in Sec. III. Another
way, which we discuss in the rest of the article, is to fix
directly the integration constants from data with or without
form factors. As we will show, this new way of proceed-
ing does not make much difference, showing a marginal
influence of form factors and hence reducing their impact
(see Sec. VII).

III. THE STANDARD APPROACH TO OBE POTENTIALS
WITH FORM FACTORS

A. Features of vertex functions

A physically motivated way out to avoid the singularities
is to implement vertex functions in the OBE potentials
corresponding to the replacement (q2 = q2

0 − �q2 is the four-
momentum)

VmNN (q) → VmNN (q)[�mNN (q2)]2. (28)

Note that this assumes (i) off-shell independence and (ii) that
the form factor is accurately known. Standard choices are to
take form factors of the monopole [10] and exponential [7]
parametrizations

�mon
mNN (q2) = �2 − m2

�2 − q2
, (29)

�
exp
mNN (q2) = exp

[
q2 − m2

�2

]
, (30)

fulfilling the normalization condition �mNN (m2) = 1. These
forms are so constructed as to have the same slope at small
values of q2 in the large cutoff expansion

�mNN (q2) = 1 + q2 − m2

�2
+ O(�−4). (31)

so that the meaning for the cutoff is similar at low energies. In
coordinate space this can be easily implemented for Yukawa
potentials using

Y�(r) =
∫

d3q

(2π )3

eiq·x

q2 + m2
[�mNN (q2)]2, (32)
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FIG. 1. The potentials VC(r), WS(r), and WT (r) in MeV as a function of the distance (in fm). We include the effect of both exponential,
Eq. (30), and monopole Eq. (29) form factors for �πNN = 1300 MeV and �πNN = 2000 MeV. All other cutoffs are kept to �σNN = �ρNN =
�ωNN = 2000 MeV.

yielding

Y mon
� (r) = e−mr

4πr
− e−�r

4πr

[
1 + r

�2 − m2

2�

]
, (33)

which at short distances becomes finite,

Y mon
� (r) = 1

4π

(� − m)2

2�
+ O(r2) (34)

and diverges linearly for � → ∞. The exponentially regular-
ized Yukawa potential reads

Y
exp
� (r) = e−mr

8πr
+ e−mr

8πr
Erf

(
�2r − 4m

2
√

2�

)

− emr

8πr
Erfc

(
�2r + 4m

2
√

2�

)
, (35)

where Erf and Erfc are the error function and complementary
error function, respectively.9 For �r � 1 we have the finite
result

Y
exp
� (r) = e−2m2/�2

�√
2π4π

− m

4π
Erfc

(√
2m

�

)
+ O(r2), (36)

which diverges linearly for � → ∞. In the limit �r � 1
behaves as

Y
exp
� (r) = e−mr

4πr
− e− 1

8 �2r2
e−2m2/�2

√
2π�πr2

+ · · · (37)

and the distortion of the original Yukawa potential is much
more suppressed in the exponential than in the case of
monopole form factor.

In any case we note the amazing feature that the form factors
have a radically different effect on different components of
the potential. While VC and WS with a mild ∼1/r short
distance behavior become finite, the tensor force behaving
as WT ∼ 1/r3 vanishes at the origin after due to the form
factors, Wmon

T (0) = W
exp
T (0) = 0. This can be seen from the

9They are defined as

Erf(z) = 1 − Erfc(z) = 2√
π

∫ z

0
dte−t2 = 1 − e−z2

√
πz

[1 + O(z−1)].

expression

lim
r→0

∫
d3q

(2π )3
eiq·x σ1 · qσ2 · q

q2 + m2
[�mNN (q2)]2

= 1

3
σ1 · σ2

[∫
d3q

(2π )3
[�mNN (q2)]2 − m2Y�(0)

]
, (38)

which corresponds to take an angular average at short
distances. This feature suggests that the impact of the tensor
force at short distances should be small and looks to be clearly
against the result of the short distance analysis outlined in Sec.
II where there is a strong mixing at short distances. As we will
show in Sec. VI, within the renormalization approach there is
no contradiction; physical observables will naturally display a
small mixing.10

We show in Fig. 1 the potentials VC(r), WS(r), and WT (r)
in MeV as a function of the distance (in fm). We also include
the effect of both exponential, Eq. (30), and monopole, Eq.
(29), form factors for �πNN = 1.3 GeV and �πNN = 2 GeV.
All other cutoffs are kept to the values �σNN = �ρNN =
�ωNN = 2 GeV. As we see, the distortion of the tensor
component due to the strong form factor takes place already
at r ∼ 1 fm for softest cutoff �πNN = 1.3 GeV. The key issue
here is to decide to what extent and for what distances this
distortion faithfully represents the true physical effect due
to the finite nucleon size. This boils down to determine if
one can visualize finite nucleon size effects when the probing
wavelength is not shorter than 0.5 fm � r � 1 fm. The fact
that the monopole and exponential parametrizations agree
down to r ∼ 0.5 fm but differ from the bare unregularized
potential suggests that one could look for a true physical
effect based on model independent distortions in the region
slightly above 0.5 fm. This point will be analyzed further
in Sec. VII.

Finally, note that the multiplicative manner in which form
factors are introduced. Although this looks quite natural, it
does build in correlations that may not reflect the real freedom

10In other words, the counterterm structure is not of the naive form
suggested by Eq. (38) but a more general one including the tensor
operator S12. See also the discussion in Sec. IV.
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one has in general; a dynamical calculation need not comply
to this factorization scheme.

B. The problem of short distance sensitivity vs.
spurious bound states

The advantage of using vertex functions is that they make
the OBE nonsingular at short distances. As a consequence, the
choice of the regular solution determines the solution uniquely.
In this section we analyze critically the use of form factors
that are customarily employed in NN calculations based on
the OBE potential. We will see that for natural choices of
meson-nucleon parameters (see Appendix A), the NN potential
displays short distance insensitivity and at the same time
spurious deeply bound states. However, if we insist on not
having spurious bound states the resulting description is highly
short-distance sensitive.

As we have mentioned, NN scattering in the elastic
region below pion production threshold involves center-of-
mass (c.m.) momenta p < pmax = 400 MeV. Given the fact
that 1/mω ∼ 1/mρ ∼ 0.25 fm � 1/pmax = 0.5 fm we expect
heavier mesons to be irrelevant, and ω and ρ to be marginally
important, even in s waves, which are most sensitive to short
distances. This desirable property has not been fulfilled in the
traditional approach to OBE forces. In order to illustrate this,
we consider the 1S0 channel, where the potential (without form
factor) is

V1S0 (r) = VC(r) − 3WS(r)

= −g2
πNNm2

π

16πM2
N

e−mπ r

r
− g2

σNN

4π

e−mσ r

r

+ g2
ωNN

4π

e−mωr

r
− f 2

ρNNm2
ρ

8πM2
N

e−mρr

r
. (39)

We take mπ = 138 MeV, MN = 939 MeV, mρ = 770 MeV,
mω = 783 MeV, and gπNN = 13.1, which seem firmly estab-
lished, and treat mσ , gσNN , gωNN , and fρNN as fitting param-
eters. To see the role of vector mesons we note the redundant
combination of coupling constants g2

ωNN − f 2
ρNNm2

ρ/(2M2
N )

which appears in the 1S0 potential when we take mρ = mω,
a tolerable approximation within the present context. To
avoid unnecessary strong correlations we define the effective
coupling

g∗
ωNN =

√
g2

ωNN − f 2
ρNNm2

ρ

2M2
N

. (40)

Natural values for the coupling constants from SU(3) sym-
metry or from the radiative decay ω → e+e− are (see
Appendix A) gωNN = 9–10.5 and fρNN = 14–18 implying
g∗

ωNN = 0–7. In Fig. 2 the potential without and with monopole
and exponential vertex functions is depicted for several values
of g∗

ωNN . As we see, the differences start below 1 fm where the
standard short-distance repulsive core is achieved by large and
unnatural values of g∗

ωNN and not so much depending on the
form factors. On the other hand, if we use the regularized 1S0

potential at r = 0 and take the natural values for the coupling
constants gωNN = 9–10.5 and fρNN = 14–18 the potential at
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FIG. 2. The 1S0 potential V1S0
(r) in MeV as a function of the

distance (in fm) for the different scenarios with large and small ω

couplings. We include the effect of both exponential, Eq. (30), and
monopole Eq. (29) form factors for �πNN = 1300 MeV. All other
cutoffs are kept to �σNN = �ρNN = �ωNN = 2000 MeV.

the origin becomes

V1S0 (0) = −(1000 − 3000) MeV, (41)

which is huge and attractive. The number of states is approxi-
mately given by the WKB estimate

NB ∼ 1

π

∫ ∞

0

√−MV1S0 (r)dr, (42)

which yields numbers around unity. In fact the potential
accommodates a deeply bound state, at about

EB = −(500 − 2000) MeV, (43)

within the natural parameter range. This state does not exist
in nature and should clearly be ruled out from the description
on a fundamental level. On the other hand, we do not expect
such a state to influence the low-energy properties below the
inelastic pion production threshold Ec.m. = 175 MeV in any
significant manner.

In the standard approach the scattering phase-shift δ0(p) is
computed by solving the (s-wave) Schrödinger equation in r
space

− u′′
p(r) + MNV (r)up(r) = p2up(r) (44)

up(r) → sin [pr + δ0(p)]

sin δ0(p)
(45)

with a regular boundary condition at the origin

up(0) = 0. (46)

This boundary condition obviously implies a knowledge of the
potential in the whole interaction region, and it is equivalent
to solve the Lippmann-Schwinger equation in p space. In
the usual approach [10,13] everything is obtained from the
potential assumed to be valid for 0 � r < ∞. In practice,
and as mentioned above, strong form factors are included
implementing the finite nucleon size and reducing the short
distance repulsion of the potential, but the regular boundary
condition is always kept. One should note, however, that due to
the unnaturally large NN 1S0 scattering length (α0 ∼ −23 fm),
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TABLE I. Fits to the 1S0 phase shift of the Nijmegen group [64] using the OBE potential without or with strong
exponential and monopole form factor. We take m = 138.03 MeV and gπNN = 13.1083 [65] and mρ = mω = 770 MeV
and fit mσ , gσNN and g∗

ωNN . We use �πNN = 1300 MeV and �σNN = �ρNN = �ωNN = 2000 MeV. EB represents the
energy of the (spurious) bound state when it does exist.

rc (fm) mσ (MeV) gσNN g∗
ωNN χ 2/DOF α0 (fm) r0 (fm) EB (MeV)

�(q2) = 1 0 547.55(4) 13.559(8) 19.68(2) 0.869 −23.742 2.702 –
�(q2) = 1 0.1 500.9(5) 9.61(1) 8.09(2) 0.484 −23.742 2.504 −638

�(q2) = �exp(q2) 0 552.57(5) 13.78(2) 19.21(4) 0.664 −23.741 2.703 –
�(q2) = �exp(q2) 0 525.1(1) 10.41(1) 2.9(1) 0.213 −23.740 2.698 −578

�(q2) = �mon(q2) 0 551.7(1) 13.99(1) 19.978(11) 0.971 −23.741 2.707 –
�(q2) = �mon(q2) 0 532.5(2) 10.81(1) 3.04(3) 0.241 −23.739 2.696 −597

any change in the potential V → V + 	V has a dramatic
effect on α0, since one obtains

	α0 = α2
0MN

∫ ∞

0
	V (r)u0(r)2dr (47)

a quadratic effect in the large α0. This implies that potential
parameters must be fine-tuned, and in particular the short-
distance physics. To illustrate this we make a fit the np data
of Ref. [64]. The results using the OBE potential without
or with strong exponential and monopole form factor11 are
presented in Table I. In all cases we have at least two possible
but mutually incompatible scenarios. An extreme situation
corresponds to the case with no form factors.12 The small errors
should be noted, in harmony with the fine-tuning displayed by
Eq. (47) and the corresponding couplings and scalar mass are
determined to high accuracy but turn out to be incompatible.
This is just opposite to our expectations and we may regard
these fits, despite their success in describing the data, as
unnatural. The ambiguity in these solutions are typical of the
inverse scattering problem and has to do with the number
of bound states allowed by the potential. Actually, this can
be seen from Fig. 3 where the zero-energy wave function is
represented. According to the oscillation theorem, the number
of interior nodes determines the number of bound states.
Thus, the larger values of g∗

ωNN correspond to a situation with
no-bound states since u0(r) does not vanish, whereas for the
smaller g∗

ωNN values one has a bound state as u0(r) has a zero,
which energy can be looked up in Table I. Of course, such a
bound state does not exist in nature and it is thus spurious. On
the other hand, the spurious bound states always take place at
more than twice the maximum energy probed in NN scattering,
Ec.m. = 175 MeV, and we should not expect any big effect
from such an state. Note that despite the repulsive ω-vector
and attractive ρ-tensor couplings, the total potential does not

11In this particular channel the regularity condition, Eq. (46)
determines the solution completely since the potential without vertex
functions V1S0

(r) ∼ 1/r is not singular at short distances in the sense
that limr→0 2µ|V (r)|r2 = ∞ [20,21].
12Strong nonlinear and well determined correlations have been found

making a standard error analysis inapplicable. In this situation we
prefer to quote errors by varying independently the fitting variables
gσNN , mσ , and g∗

ωNN until 	χ 2 = 3.53 as it corresponds to 3 degrees
of freedom.

present short-distance repulsion (with or without form factors)
in the solution with natural couplings and a spurious bound
state. The net short distance repulsion comes about only in the
solution with unnaturally large coupling (see Fig. 2).

From Table I one can clearly understand the large values of
the gωNN coupling constant needed in OBE models as com-
pared to those from SU(3) symmetry gωNN ∼ 9 or from the
radiative decay ω → e+e− yielding gωNN = 10.2(4). Using
the definition of g∗

ωNN , Eq. (40), we get for fρNN = 14–18
large values of gωNN = 20–22 for the case with no bound state,
whereas more natural values gωNN = 8.5–10.5 are obtained
for the case with one (spurious) bound state.

IV. BOUNDARY CONDITION RENORMALIZATION AND
ULTRAVIOLET COMPLETENESS

According to the discussion of subsection II C the short-
distance 1/r3 singularity of the OBE potential makes the
solution ambiguous, and thus there is a flagrant need of
additional information not encoded in the potential itself.
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FIG. 3. Zero-energy wave function for the singlet pn 1S0 channel
as a function of distance (in fm) and for the different scenarios with
large and small ω couplings. We include the effect of both exponential,
Eq. (30), and monopole Eq. (29) form factors for �πNN = 1300 MeV.
All other cutoffs are kept to �σNN = �ρNN = �ωNN = 2000 MeV.
This wave function goes asymptotically to u0(r) → 1 − r/α0 with
α0 = −23.74 fm the scattering length in this channel. The zero at
about r = 0.5 fm signals the existence of a spurious bound state.
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Of course, once we realize the freedom of choosing suitable
linear combinations of independent solutions, we may question
how general this choice can be, even if the potential is not
singular. In this section we derive constraints on the short-
distance boundary condition. As mentioned already, we work
with energy-independent potentials. In this section we show
what this requirement implies for the renormalization program.
Using the potential of Eq. (12) we solve the Schrödinger
equation,

− 1

M
∇2�k(�x) + V (�x)�k(�x) = Ek�k(�x), (48)

where �(�x) is a spin-isospin vector with 4 × 4 = 16 com-
ponents, which usually satisfies the outgoing wave boundary
condition,

�k(�x) →
[
ei�k·�x + f (k̂′, k̂)

eikr

r

]
χ

s,ms

t,mt
, (49)

with f (k̂′, k̂) the quantum mechanical scattering matrix ampli-
tude and χ

s,ms

t,mt
a 4 × 4 total spin-isospin state. We apply a radial

cutoff rc and consider that the local potential V (�x) is valid
for the long-distance region r > rc. The precise form of the
interaction for the short-distance region r < rc is not necessary
as the limit rc → 0 will be taken at the end. To fix ideas
we assume an energy-independent nonlocal potential, as we
expect genuine energy dependence to show up as subthreshold
inelastic (e.g., pion production) effects. Any distributional
terms ∼δ(�x) arising from the long-distance potential V (�x)
are necessarily included in the inner region, r < rc. The inner
wave function �k(�x) satisfies

− 1

M
∇2�k(�x) +

∫
d3x ′V (�x ′, �x)�k(�x ′) = Ek�k(�x) (50)

and will be assumed to be regular at the origin. Using standard
manipulations and the Green identity we get for the inner and
outer regions

(Ep − Ek)
∫

r<rc

d3x�
†
k(�x)�p(�x)

=
∫

d �S · [ �∇�
†
k(�x)�p(�x) − �

†
k(�x) �∇�p(�x)]r=rc

, (51)

and

(Ep − Ek)
∫

r>rc

d3x�
†
k (�x)�p(�x)

= −
∫

d �S · [ �∇�
†
k (�x)�p(�x) − �

†
k (�x) �∇�p(�x)]r=rc

, (52)

respectively, where the difference in sign from the inner to
the outer integration comes from opposite orientations in
the integration surface. Clearly, orthogonality of states in the
whole space for different energies,∫

r<rc

d3x�
†
k(�x)�p(�x) +

∫
r>rc

d3x�
†
k (�x)�p(�x) = 0, (53)

can be achieved by setting the general and common boundary
condition,

∂r�p(x̂rc) = Lp(x̂rc)�p(x̂rc)
(54)

∂r�p(x̂rc) = Lp(x̂rc)�p(x̂rc).

Here, Lp(x̂rc) is a self-adjoint matrix that may depend on
energy and may be chosen to commute with the symmetries of
the potential V (�x).13 Deriving with respect to the energy the
inner boundary condition, Eq. (51), i.e., taking Ep = Ek +
	E and �p(�x) = �k(�x) + 	E∂�p(�x)/∂E, we get∫

dx̂�†
p(x̂rc)

∂Lp(x̂rc)

∂E
�p(x̂rc)

= − 1

Mr2
c

∫ rc

0
r2dr

∫
dx̂�†

p(x̂r)�p(x̂r), (55)

whence the negative definite character of the energy derivative.
Actually, we see that M∂Lp(x̂rc)/∂E ∼ rc. The important
issue here is that regardless on the representation at short
distances, the boundary condition must become energy in-
dependent when rc → 0, namely

lim
rc→0

∂Lp(x̂rc)

∂E
= 0, (56)

provided one has

lim
rc→0

∫ rc

0
dr

r2

r2
c

∫
dx̂�†

p(x̂r)�p(x̂r) = 0, (57)

which is guaranteed for a finite wave function at the origin.
Thus we may take a fixed energy, e.g., zero energy, as a
reference state.

lim
rc→0

Lp(x̂rc) = lim
rc→0

L0(x̂rc). (58)

The condition of Eq. (57) is the natural quantum mechanical
requirement that the contribution to the total probability in
the (generally unknown) short-distance region is small. This
is the physical basis of the renormalization program that
corresponds to the mathematical implementation of short-
distance insensitivity and that we carry out below for the OBE
potential. It should be noted that this requirement depends
on the potential. The condition of Eq. (57) implies that in
the limit rc → 0 one must always choose a normalizable
outer solution �k(�x) at the origin and the boundary condition
must be chosen independent on energy. Note that energy
dependence would be allowed if the cutoff was kept finite,
and still the requirement of orthogonality in the whole space
could be fulfilled for an interaction characterized by a nonlocal
and energy-independent potential in the inner region. This
simultaneous disregard of both nonlocal and energy-dependent
effects was advocated long ago by Partovi and Lomon [6] on
physical grounds, and as we see, it is a natural consequence
within the renormalization approach.

The renormalization procedure is then conceptually simple
since any finite energy state with given quantum numbers can
be chosen as a reference state to determine the rest of the
bound-state spectrum and scattering states. For instance, using
a bound state (the deuteron) �d (�x), at long distances (see

13In practice this would mean taking

L(x̂rc) = LC(rc) + τ1 · τ2[LS(rc)σ1 · σ2 + LT (rc)S12],

which suggests at most only three counterterms for all partial waves.

044002-9
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Sec. VI for details)

�d (�x) → AS√
4πr

e−γ r

[
1 + η√

8
S12

]
χsms

pn , (59)

we integrate in the deuteron equation

− 1

M
∇2�d (�x) + V (�x)�d (�x) = −γ 2

M
�d (�x) (60)

and determine the short-distance boundary condition matrix
L(x̂rc) from

∂r�d (x̂rc) = L(x̂rc)�d (x̂rc). (61)

Then, using the same boundary condition matirx L(x̂rc) for
the finite-energy state,

∂r�k(x̂rc) = L(x̂rc)�k(x̂rc), (62)

we integrate out the finite-energy equation (48) whence the
scattering amplitude may be obtained. In this manner the
deuteron binding energy defines the appropriate self-adjoint
extension spanning the relevant Hilbert space in the 3S1-3D1

channel. Renormalization is achieved by taking the limit
rc → 0 at the end of the calculation. The conditions under
which such a procedure is meaningful will be discussed below
for the particular partial waves under study, but a fairly general
discussion can be found in Refs. [45,47,63]. Relevant cases for
chiral potentials where this condition turned out not to be true
are discussed in Ref. [63]. We will also encounter below a
similar situation in our description of the deuteron and the
3S1-3D1 channel. As a consequence of the previous limit the
completeness relation reads∫

d3k

(2π )3
�k(�x)�†

k (�x ′) +
∑
En<0

�n(�x)�†
n(�x ′) = δ(�x − �x ′)1.

(63)

In addition to the deuteron, the sum over negative-energy
states contains mostly spurious bound states, and for the
singular potential, such as the one we are treating here,
there are infinitely many. They show up as oscillations in
the wave function at short distances and are a consequence
of extrapolating the long-distance potential to short distances.
On the other hand, from the above decomposition one may
write a dispersion relation for the scattering amplitude14 of the
form

f (k̂′, k̂) = fB(k̂′, k̂) − M

4π

∑
En<0

〈�k′|V |�n〉〈�n|V |�k〉
E − En

− M

4π

∫
d3q

(2π )2

〈�k′|V |�q〉〈�q |V |�k〉
E − q2/M

, (64)

where fB(k̂′, k̂) is the Born amplitude and the physical and
spurious bound states occur as poles in the scattering matrix
at negative energies E = En and the discontinuity cut along

14This is done by using the Lippmann-Schwinger equation
in the form T = V + V GV with G = (E − H )−1 and nor-
malization 〈�k|�x〉 = ei�k·�k and 〈�k|�x〉 = �k(�x) whence f (k̂′, k̂) =
−M/(4π )〈�k′|T (E)|�k〉.

the real and positive axis is given by the second term only.
Clearly, the influence of these spurious bound states poles is
suppressed if their energy En � Ed . Given the fact that these
states do occur in practice it is mandatory to check their precise
location to make sure that they do not influence significantly
the calculations or one should study the dependence of the
observables on the short-distance cutoff rc starting from a
situation where it is small but still large enough as to prevent
the occurrence of spurious bound states. It should be noted,
however, that in no case can the spurious states occur in the first
Riemann sheet of the complex energy plane. This restriction
complies to causality and implies in particular the fulfillment
of Wigner inequalities, as was discussed for the 1S0 channel in
Ref. [63].15

V. THE SINGLET CHANNEL

A. Equations and boundary conditions

The 1S0 wave function in the pn center-of-mass system can
be written as

�(�x) = 1√
4πr

u(r)χsms

pn (65)

with the total spin s = 0 and ms = 0. The function u(r) is the
reduced S-wave function, satisfying

− u′′
p(r) + U1S0 (r)up(r) = p2up(r), (66)

where one has

U1S0 = M(VC − 3WS). (67)

At short distances the OBE potential behaves as a Coulomb-
type interaction,

U1S0 (r) → ± 1

Rr
, (68)

where

± 1

R
= M

4π

[
g2

ωNN − f 2
ρNNm2

ρ

2M2
N

− g2
σNN − f 2

πNN

]
(69)

Here, fπNN = gπNNmπ/(2MN ). The repulsive or attractive
character of the interaction depends on a balance among
coupling constants. The short-distance solution can be written
as a linear combination of the regular and irregular solutions
at the origin

up(r) → c1(p) + c2(p)r/R, (70)

15Causality violations, i.e., poles in the first Riemann sheet of the
complex energy plane are easy to encounter (see, e.g., Ref. [63]),
particularly with energy-dependent boundary conditions. A promi-
nent example is an s wave without potential and having
u′

p(0)/up(0) = p cot δ0(p) = −1/α0 + r0p
2/2 + v2p

4, which for the
1S0-channel values of parameters α0 = −23.74 fm, r0 = 2.75 fm,
and v2 = −0.48 fm3 yields, in addition to the well-known virtual
state in the second Riemann sheet Ev = −0.066 MeV, a spurious
bound state at EB = −18.37 MeV and an unphysical pole at
E = 128.88 ± i46.45 MeV. However, finite cutoffs and energy-
independent boundary conditions are guaranteed not to exhibit these
problems, while some spurious bound states may be removed.
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where in principle the arbitrary constants c1(p) and c2(p)
depend on energy. To fix the undetermined constants we
impose orthogonality for r > rc between the zero-energy state
and the state with momentum p getting

u′
p(rc)uk(rc) − u′

k(rc)up(rc)

= (k2 − p2)
∫ ∞

rc

uk(r)up(r)dr = 0. (71)

Taking the limit rc → 0 implies the following energy-
independent combination [46]:

c1(p)

c2(p)
= c1(k)

c2(k)
= c1(0)

c2(0)
, (72)

leaving one fixed ratio that can be determined from, e.g., the
zero-energy state or any other reference state.

B. Phase shifts

For a finite-energy-scattering state we solve for the OBE
potential with the normalization

up(r) → sin[pr + δ0(p)]

sin δ0(p)
, (73)

with δ0(p) the phase shift. For a potential falling off exponen-
tially ∼e−mπ r at large distances, one has the effective range
expansion at low energies, |p| < mπ/2,

p cot δ0(p) = − 1

α 0
+ 1

2
r0p

2 + v2p
4 + · · · (74)

with α0 the scattering length and r0 the effective range. The
phase shift is determined from Eq. (73). Thus, for the zero-
energy state we solve

− u′′
0(r) + U1S0 (r)u0(r) = 0, (75)

with the asymptotic normalization at large distances, obtained
from Eq. (73),

u0(r) → 1 − r

α0
, (76)

In this equation α0 is an input, so one integrates in Eq. (75)
from infinity to the origin. Then, the effective range defined as

r0 = 2
∫ ∞

0
dr

[(
1 − r

α0

)2

− u0(r)2

]
(77)

can be computed.
To determine the phase shift δ0(p) one proceeds as follows.

From Eq. (76) and integrating in Eq. (75) one determines c1(0)
and c2(0) and uses Eq. (72) to determine the ratio c1(p)/c2(p)
and then integrates out Eq. (66), matching Eq. (73). This way
the phase shift δ0(p) is determined from the potential and
the scattering length as independent parameters. As it was
shown in Ref. [49] this procedure is completely equivalent
to renormalize the Lippmann-Schwinger equation with one
counterterm.

C. Fixing of scalar parameters

In this work we will fix our parameters in such a way that
the 1S0 phase shift is reproduced. This has the advantage that
the scalar-meson parameters are determined for the rest of ob-
servables. Thus, fixing the scattering length α0 = −23.74 fm
and the OPE potential parameters gπNN = 13.1 and mπ =
138.04 MeV we fit gσNN and mσ to the 1S0 phase shift of
the Nijmegen group [64]. In the absence of vector-meson
contributions, i.e., taking gωNN = fρNN = 0 the fit yields

gσNN = 9(1) mσ = 501(25) MeV (78)

with a χ2/DOF = 0.13. As we see from Fig. 4, there is a
large, in fact linear, correlation between the scalar coupling
and mass, while the fit is quite good, as we can see. For
comparison we also show the result with OPE which, despite
reproducing the threshold behavior, does a poor job elsewhere.
We quote also the effective range values from the low-energy
theorem (see Appendix C),

r0 = 1.3081 − 4.5477

α0
+ 5.1926

α2
0

(π )

= 1.5089 fm,

r0 = 2.4567 − 5.5284

α0
+ 5.7398

α2
0

(π + σ )

= 2.6989 fm, (79)
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values: a finite cutoff rc = 0.4 fm and the renormalized case rc =
0 fm.

where the corresponding numerical values when the
experimental α0 = −23.74 fm have also been added.

It is interesting to analyze the dependence of the fitted
scalar parameters on the short-distance cutoff radius, rc. A
priori we should see the σ exchange for rc � 1/mσ = 0.4 fm.
From Fig. 5 we see the masses and the couplings providing an
acceptable fit χ2/DOF < 1 for which a reliable error analysis
may be undertaken. As we see this happens for rc < 0.6
fm and two stable plateau regions, yielding two potentially
conflicting central mσ values. An error analysis both at a
finite cutoff value rc = 0.4 fm and the renormalized cutoff
limit rc = 0 fm gives two overlapping and hence compatible
bands. This shows that in this case the data do not discriminate
below rc = 0.5 fm. Much above that scale, the σ meson

becomes nearly irrelevant, as the coupling becomes rather
small.

Alternatively, we may treat the cutoff itself as a fitting
parameter. To avoid the large mσ -gσNN correlations displayed
in Fig. 4 we fix the coupling constant to its central value
gσNN = 9.1 and get then rc = 0.10+0.13

−0.07 fm and mσ = 500(3)
MeV. This shows that removing the cutoff is not only a nice
theoretical requirement but also a preferred phenomenological
choice.

To analyze now the role of vector mesons we note, as al-
ready discussed in subsection III B, the redundant combination
of coupling constants g2

ωNN -f 2
ρNNm2

ρ/(2M2
N ) that appears in

the 1S0 potential when we take mρ = mω. We thus define the
effective coupling g∗

ωNN as in Eq. (40). This combination is
responsible for the repulsive contribution to the potential in
the 1S0 channel. From typical values of the couplings gωNN =
9–10.5 and fρNN = 15–17 we expect g∗

ωNN to be effectively
small. We show in Fig. 6 the corresponding χ2/DOF as well as
the readjusted scalar mass mσ and coupling gσNN as a function
of the effective combination of coupling constants, g∗

ωNN .
As we see, the fit is rather insensitive but actually slightly
worse than without vector mesons when their contribution is
repulsive. Thus, we will fix this effective coupling to zero
which corresponds to take

g2
ωNN = f 2

ρNNm2
ρ

2M2
N

. (80)

This choice has the practical advantage of fixing gσNN and
mσ to the values provided in Eq. (78) also when the leading
Nc vector-meson contributions are included. Moreover, it is
also phenomenologically satisfactory as we have discussed
above. In Sec. VI we will also see that deuteron or triplet
3S1-3D1 do not fix the deviations from the relation given by
Eq. (80).

D. Discussion: Short-range repulsion vs. spurious bound states

The linear gσNN -mσ correlation can be established solely
by requiring that the effective range, say the Nijmegen value
r0 = 2.67 fm, be reproduced [66]. Actually, Eq. (78), yields
the combination Cσ = g2

σNN/m2
σ = 331(50) GeV−2 which is

fixed by the effective range and not by the scattering length.
This is in contrast with the resonance saturation viewpoint
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adopted in Ref. [67] where this combination fixes the scattering
length.

Furthermore, our calculation shows that an accurate fit
without explicit contribution of the vector mesons is possible.
In particular, our potential exhibits no repulsive region. This
is in apparent contradiction with the traditional viewpoint that
the ω meson is responsible for the short-range repulsion of the
nuclear force.

To understand this issue we plot in Fig. 7 the zero-energy
wave function obtained by integrating in with the physical
scattering length α0. As we see, there appear two zeros, indicat-
ing, according to the oscillation theorem, the existence of two
negative-energy spurious bound states. To compute such a state
we solve Eq. (66) with negative energy EB = −γ 2

B/M , for
an exponentially decaying wave function, uB(r) → ABe−γBr

(normalized to one) and impose orthogonality to the zero-
energy state, namely

u0u
′
B − u′

0uB |r=rc
= 0, (81)

from which γB can be determined. A direct calculation
yields EB1 = −777 MeV and AB1 = 15.64 fm−1/2 and EB2 =
−11077 MeV and AB2 = 27.43 fm−1/2. If we regard the
scattering amplitude as a function of energy in the complex
plane, these spurious bound-state energies are well beyond the
maximum center-of-mass energy we want to describe in elastic
NN scattering, Ec.m. � 175 MeV, and so have no practical
effect on the scattering region. The appearance of spurious
bound states in EFT approaches are commonplace; one must
check that they are beyond the considered energy range.

In order to discuss this point further we may try several ways
of removing the unwanted poles and to quantify the effect on
the results. Unitarity implies the usual relation between the
partial-wave amplitude and the phase shift

[f0(p)]−1 = p cot δ0(p) − ip. (82)

Actually, the contribution of a negative-energy state to the
s-wave scattering amplitude is a pole contribution

f0(p)|B = −A2
B

M

1

E + |EB | = − A2
B

p2 + γ 2
B

. (83)

A simple way of subtracting such a bound state without
spoiling unitarity and preserving the value of the amplitude
at threshold f0(0) = F0(0) = −α0 is to modify the real part of
the inverse amplitude as follows,

1

F0(p)
= 1

f0(p)
− p2

A2
B

, (84)

which has no pole at E = −|EB |, since F0(iγB) = A2
B/γ 2

B .
Using the relation between amplitude and phase shift F0(p) =
1/[p cot 	0(p) − ip] we get the modified phase shift,

p cot 	0(p) = p cot δ0(p) + p2

A2
B

, (85)

which corresponds to a change in the effective range

	r0|B = 2

A2
B

. (86)

For the values of the two spurious bound states we get 	r0|B =
0.008, 0.002 fm, a tiny amount. The change in the phase shift
never exceeds 0.1◦. Of course, this is not the only procedure
to remove spurious bound states, but the result indicates that
the effect should be small.

Another practical way to verify this issue is to study the
influence of changing the cutoff rc from the lowest value
not generating any spurious bound state and the origin,
corresponding to look for u0(a) = 0. This point is clearly
identified as the outer zero of the wave function, which takes
place at about a = 0.5 fm. Thus, if we choose rc = a, there will
be no bound state. For this particular point, the orthogonality
of states, Eq. (71), implies that up(a) = 0, resembling the
standard hard core picture, if we assume up(r) = 0 for r � a.
Thus, at this rc our method would correspond to infinite
repulsion below that scale. In other words, the boundary
condition does incorporate some effective repulsion that need
not be necessarily visualized as a potential. The advantage
of using a boundary condition is that we need not require
modeling nor deep understanding on the inaccessible and
unknown short-distance physics.

The contribution to the effective range from the origin to
the “hard core” radius a is r in

0 ∼ 0.04 fm, while the change in
the phase shift at the maximum energy due to the inner region
0 � r � a is 	δ0 = 60 to be compared with the error estimate
	δ0 = 0.70 from the PWA analysis of the Nijmegen group
[14] or the 	δ0 = 20 from the corresponding high-quality
potentials [64]. If we identify this hard core radius to the
breakdown scale of the potential, these differences might
be interpreted as a systematic error of the renormalization
approach for our OBE potential and, as we see, they turn out
to be rather reasonable.
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VI. THE TRIPLET CHANNEL

A. Equations and boundary conditions

The 3S1-3D1 wave function in the pn center-of-mass system
can be written as

�(�x) = 1√
4πr

[
u(r)σp · σn

+ w(r)√
8

(3σp · x̂σn · x̂ − σp · σn)
]
χsms

pn (87)

with the total spin s = 1 and ms = 0,±1 and σp and σn the
Pauli matrices for the proton and the neutron, respectively.
The functions u(r) and w(r) are the reduced S- and D-wave
components of the relative wave function respectively. They
satisfy the coupled set of equations in the 3S1-3D1 channel

− u′′(r) + U3S1 (r)u(r) + UE1 (r)w(r) = MEu(r),

−w′′(r) + UE1 (r)u(r) +
[
U3D1 (r) + 6

r2

]
w(r) = MEw(r),

(88)

with U3S1 (r), UE1 (r), and U3D1 (r) the corresponding matrix
elements of the coupled-channels potential

U3S1 = M(VC − 3WS), UE1 = −6
√

2MWT ,
(89)

U3D1 = M(VC − 3WS + 6WT ).

At short distances one has the leading singularity

U3S1 = O(r−1), UE1 = −4
√

2R

r3
+ O(r−1),

(90)

U3D1 = −12R

r3
+ O(r−1),

where

±R = g2
πNN − f 2

ρNN

32πMN

. (91)

This is very similar to the pure OPE case treated in Ref. [45]
but with the important technical difference that for fρNN <

gπNN and fρNN > gπNN there is a turnover of repulsive-
attractive eigenchannels since the effective short-distance scale
R changes sign. Thus, we must distinguish two different
cases.16 At short distances we have for gπNN > fρNN the plus
sign in Eq. (91) yielding

uA(r) =
√

2

3
u(r) + 1√

3
w(r),

(92)

uR(r) = − 1√
3
u(r) +

√
2

3
w(r),

whereas for gπNN < fρNN the minus sign in Eq. (91) is taken
and the solutions are interchanged

uR(r) =
√

2

3
u(r) + 1√

3
w(r),

(93)

uA(r) = − 1√
3
u(r) +

√
2

3
w(r),

16The exceptional case, gπNN = fρNN corresponds to a regular
potential and will be treated in Appendix B.

yielding an attractive singular potential UA → −4R/r3 for uA

and UR → 8R/r3 for uR , which solutions are

uR(r) →
( r

R

)3/4
[C1Re+4

√
2
√

R
r + C2Re−4

√
2
√

R
r ],

(94)
uA(r) →

( r

R

)3/4
[C1Ae−4i

√
R
r + C2Ae4i

√
R
r ].

The constants C1R , C2R , C1A, and C2A depend on both γ and η

and the OBE potential parameters. As it was discussed in Ref.
[45] we must define a common domain of wave functions to
select a complete solution of the Hilbert space in this 3S1-3D1

channel. This is achieved taking

uR(r) → CR(γ )
( r

R

)3/4
e−4

√
2
√

R
r ,

(95)

uA(r) → CA(γ )
( r

R

)3/4
sin

[
4

√
R

r
+ ϕ

]
.

Here, the short-distance phase ϕ is energy independent. This
can be done by matching the numerical solutions to the
short-distance expanded ones, a cumbersome procedure in
practice [45]. It is far more convenient to use an equivalent
short-distance cutoff method with a boundary condition. Thus,
at the cutoff boundary, r = rc we can impose a suitable
regularity condition depending on the sign of g2

πNN − f 2
ρNN . A

set of possible auxiliary boundary conditions was discussed in
Ref. [45], showing that the rate of convergence was dependent
on the particular choice. Actually, there are infinitely many
auxiliary boundary conditions that converge toward the same
renormalized value, as we discuss below.

B. The deuteron

In this case we have a negative-energy state

E = −γ 2

M
, (96)

and we look for regular solutions of the coupled equations (88)
normalized to unity,∫ ∞

0
dr[u(r)2 + w(r)2] = 1, (97)

which asymptotically behave as

uγ (r) → ASe
−γ r ,

(98)

wγ (r) → ASηe−γ r

[
1 + 3

γ r
+ 3

(γ r)2

]
,

where AS is the asymptotic wave-function normalization and
η is the asymptotic D/S ratio. To solve this problem it is useful
to invoke the superposition principle, as suggested in Ref. [45]
(see also Appendix C).

The short-distance regularity conditions (see below) must
be imposed in a cutoff radius rc in order to determine the
value of η(rc). Then, for a given solution we compute several
properties as a function of the cutoff radius, rc. From the
normalization condition, Eq. (97), in rc � r � ∞ we get
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AS(rc). In this article we also compute the matter radius,

r2
m = 〈r2〉

4
= 1

4

∫ ∞

rc

r2(u(r)2 + w(r)2)dr, (99)

the quadrupole moment (without meson exchange currents)

Qd = 1

20

∫ ∞

rc

r2w(r)[2
√

2u(r) − w(r)]dr, (100)

the D-state probability

PD =
∫ ∞

rc

w(r)2dr, (101)

which in the impulse approximation and without meson-
exchange currents can be related to the deuteron magnetic
moment. Finally, we also compute the inverse moment

〈r−1〉 =
∫ ∞

rc

r−1(u(r)2 + w(r)2)dr, (102)

which appears, e.g., in the multiple expansion of the π -
deuteron scattering length.

As mentioned, there are infinitely many possible auxiliary
conditions. This is an important point we wish to illustrate.
For instance, we could take

sin αu(rc) + cos αw(rc) = 0, (103)

where we may choose the parameter α arbitrarily.17 This is
illustrated in Fig. 8. Note that despite possible wild behavior
all choices converge to the same value, although at a quite
different rate. This is indeed another reason for removing the
cutoff although it may be appealing and less demanding to
choose one particular scheme where stability is found at the
largest possible distances.

17This arbitrariness is not exclusive to this boundary condition;
it is also present when the standard from factor regularization is
introduced. The exponential, Eq. (30), and monopole, Eq. (29), form
factors are just two possible choices that do not cover the most general
form that might allow a theoretical estimate on the systematic error.

Here we will take the smoothest auxiliary condition (labeled
as BC6 in Ref. [45])

u′(rc) −
√

2w′(rc) = 0, g2
πNN − f 2

ρNN > 0,
(104)√

2u′(rc) + w′(rc) = 0, g2
πNN − f 2

ρNN < 0.

Clearly, for the values that we will be using the convergence
is determined by the size of the short-distance scale charac-
terizing the most singular component of the potential. As we
see from Eq. (91) it depends strongly on the combination
g2

πNN − f 2
ρNN . This is an important point since the short-

distance cutoffs, rc, for which convergence is achieved may
change by orders of magnitude.18 An additional numerical
problem arises due to undesired amplification of the short
distance growing exponential, setting some limitations to the
numerics due to roundoff errors. In all our calculations we
have payed particular attention to these delicate issues.

The cutoff dependence of these observables is shown in
Fig. 9 for the case of π only (Ref. [45]), π + σ , and π +
σ + ρ + ω and, as we see, good convergence can be achieved
as rc → 0. As already mentioned, the rate of convergence
depends on the scale of the singularity.

The resulting coordinate space deuteron wave functions,
u and w, are depicted in Fig. 10 for the case of π only
(Ref. [45]), π + σ , and π + σ + ρ + ω and compared to the
wave functions of the high-quality Nijmegen potential [64].
As we see, after inclusion of the scalar and vector mesons, the
agreement is quite remarkable in the region above 1.4–1.8 fm,
their declared range of validity. Similarly to the singlet case,
we observe oscillations in the region below 1 fm. The first node
is allowed since we are dealing with a bound state; the second
node occurs already below 0.5 fm, indicating, similarly to the
1S0 channel, the appearance of infinitely many spurious bound
states, as we see from the short-distance oscillatory behavior
of the wave function, Eq. (95). To compute such states we
proceed similarly to the singlet channel. We solve Eq. (88)
with negative energy EB = −γ 2

B/M , the asymptotic behavior
in Eq. (98) and impose the regularity conditions to obtain η(rc),
Eq (104). Then, orthogonality to the deuteron state, namely

uγ u′
B − u′

γ uB + wγ w′
B − w′

γ wB |r=rc
= 0, (105)

determines γB . For instance, for the scalar parameters in
Eq. (78) and fρNN = 15.5 we identify the first spurious
bound state (uB1, wB1) having one node less than the deuteron
wave functions (ud,wd ) taking place at γB1 = 3.438 fm−1.
The corresponding energy is EB1 = −γ 2

B1/M = −490 MeV,
S-wave normalization AB1 = 13.58 fm−1/2 matter radius
rB1 = 0.49 fm and asymptotic D/S ratio ηB1 = 0.1656. This
state is clearly beyond the range of applicability of the present
framework. Subtracting this pole to the 3S1 amplitude would
result, according to Eq. (86), in 	r0 = 0.01 fm. The next
spurious state has EB2 < −18 GeV! Note that if the scale
where the second unphysical node takes place was to be

18An extreme example is given by the exceptional case fρNN = gπNN

since the 1/r3 singularity turns into a slowly and logarithmically
converging Coulomb singularity. This case is treated specifically in
Appendix B.
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FIG. 9. Short-distance cutoff dependence of deuteron properties for the cases with π , π + σ , and π + σ + ρ + ω. We show the dependence
of the asymptotic D/S normalization η (upper left panel), the S-wave normalization AS (in fm−1/2, upper middle panel), the matter radius rm

(in fm, upper right panel), the quadrupole moment Qd (in fm2, lower left panel), the D-state probability (lower middle panel), and the inverse
radius 〈r−1〉 (in fm−1 lower right panel). Experimental or recommended values can be traced from Ref. [68].

interpreted as a (“hard core”) breakdown distance scale of our
approach for the deuteron, it is certainly beyond the accessible
region at the maximal energy in elastic NN scattering. This
issue is relevant for the calculation of phase shifts where such
oscillations also occur. The variation of the observables from
this breakdown scale to the origin could be interpreted as a
source of systematic error coming from the fact that there is
only one bound state and not infinitely many. As we see from
Fig. 9 the effect is indeed small.

Numerical results for renormalized quantities can be looked
up in Table II. As we see, the inclusion of σ provides some
overall improvement while ρ and ω yield a fairly accurate
description of the deuteron for the choice fρNN = 15.5 and

gωNN = 9 [this latter value complies to the SU(3) relation
gωNN = 3gρNN when gρNN ∼ 2.9].

We show in Fig. 11 the dependence of (renormal-
ized) deuteron properties as a function of fρNN for sev-
eral values of the effective coupling constant g∗

ωNN =√
g2

ωNN − f 2
ρNNm2

ρ/2M2
N featuring the strong correlation in

the 1S0 channel pointed out in Sec. V. The scalar coupling
gσNN and scalar mass mσ are always readjusted to fit the 1S0

phase shift since the corresponding potential depends on g∗
ωNN .

As we see, for the asymptotic D/S ratio, η, there is a wide
range of possible values within the experimental uncertainties
but we obtain the bounds fρNN � 15 and gωNN � 15. It is
amazing that the value of the tensor-ρ coupling is so well
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FIG. 10. Deuteron wave functions, u (left) and w (right), as a function of the distance (in fm) in the OBE. We show π , π + σ , and
π + σ + ρ + ω compared to the Nijmegen II wave functions [64]. The asymptotic normalization u → e−γ r has been adopted and the
asymptotic D/S ratio is obtained to be ηπ = 0.2633 and ηπσωρ = 0.2597 (see Table II).
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TABLE II. Deuteron properties and low-energy parameters in the 3S1-3D1 channel for OBE potentials, including π , π + σ ,
π + σ + ρ + ω. We use the nonrelativistic relation γ = √

2µnpB with B = 2.224575(9) and take m = 138.03 MeV and gπNN =
13.1083 [65]. From a fit to the 1S0 channel we have mσ = 501 MeV and gσNN = 9.1. The simplifying relation gωNN = fρNNmρ/

√
2MN

is used throughout. πσρω corresponds to take fρNN = 15.5 and gωNN = 9.857 while πσρω∗ corresponds to take fρNN = 17.0 and
gωNN = 10.147.

γ (fm−1) η AS (fm−1/2) rm (fm) Qd (fm2) PD 〈r−1〉 α0 (fm) α02 (fm3) α2 (fm5) r0 (fm)

π Input 0.02633 0.8681 1.9351 0.2762 7.88% 0.476 5.335 1.673 6.169 1.638
πσ Input 0.02599 0.9054 2.0098 0.2910 6.23% 0.432 5.335 1.673 6.169 1.638
πσρω Input 0.02597 0.8902 1.9773 0.2819 7.22% 0.491 5.444 1.745 6.679 1.788
πσρω∗ Input 0.02625 0.8846 1.9659 0.2821 9.09% 0.497 5.415 1.746 6.709 1.748

NijmII Input 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502 5.418 1.647 6.505 1.753
Reid93 Input 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515 5.422 1.645 6.453 1.755

Exp.a 0.231605 0.0256(4) 0.8846(9) 1.9754(9) 0.2859(3) 5.67(4) 5.419(7) 1.753(8)

aNonrelativistic; see, e.g., Ref. [68] and references therein.

determined to be fρNN ∼ 16–17 and corresponds to the strong
κρ situation described by Machleidt and Brown [69]. Note that
results depend in a moderate fashion on fρNN for not too large
values, as one would expect from the short range of the ρ

meson.

C. Zero energy

At zero energy, the asymptotic solutions to the coupled
equations (88) are given by

u0,α(r) → 1 − r

α0
, w0,α(r) → 3α02

α0r2
, (106)

u0,β (r) → r

α0
,

(107)

w0,β(r) →
(

α2

α02
− α02

α0

)
3

r2
− r3

15α02
,

where α0, α2, and α02 are low-energy parameters obtained from
the phase shifts (see subsection VI D). Using these zero-energy
solutions the 3S1 effective range

r0 = 2
∫ ∞

0

[(
1 − r

α0

)2

− u0,α(r)2 − w0,α(r)2

]
dr, (108)
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FIG. 11. Dependence of the deuteron observables as a function of fρNN for several values of the the effective coupling constant g∗
ωNN =√

g2
ωNN − f 2

ρNNm2
ρ/2M2

N . gσNN and mσ are always readjusted to fit the 1S0 phase shift. We show the dependence of the asymptotic D/S

normalization η (upper left panel), the S-wave normalization AS (in fm−1/2, upper middle panel), the matter radius rm (in fm, upper right panel),
the quadrupole moment Qd (in fm2, lower left panel), the D-state probability (lower middle panel), and the inverse radius 〈r−1〉 (in fm−1 lower
right panel). The leading Nc contributions to the OBE (σ + π + ρ + ω) potential are considered. Experimental or recommended values can be
traced from Ref. [68].

044002-17
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can be determined. Moreover, the orthogonality constraints
between the deuteron and the zero energy α and β states read
in this case

uγ u′
0,α − u′

γ u0,α + wγ w′
0,α − w′

γ w0,α|r=rc
= 0 (109)

uγ u′
0,β − u′

γ u0,β + wγ w′
0,β − w′

γ w0,β |r=rc
= 0 (110)

A further condition that should be satisfied is the α-β
orthogonality

u0,αu′
0,β − u′

0,αu0,β + w0,αw′
0,β − w′

0,αw0,β |r=rc
= 0

(111)

as well as the short-distance regularity conditions, Eq. (104).
In all we have an overdetermined system with five equations
and three unknowns, α02, α2, and α0. Solving the equations
in triplets we have checked the numerical compatibility at the
0.01% level for the shortest cutoffs, rc ∼ 0.02 fm typically
used. The values of α02 and α2 are not so well known,
although they have been determined from potential models
in Ref. [70].

In Fig. 12 we show the dependence of the low energy param-
eters of the leading Nc contributions to the OBE (σ + π + ρ +
ω) potential as a function of fρNN for several values of the the

effective coupling constant g∗
ωNN =

√
g2

ωNN − f 2
ρNNm2

ρ/2M2
N

being gσNN and mσ always readjusted to fit the 1S0 phase shift.

Similarly to the deuteron case we observe stronger dependence
on fρNN and a relative insensitivity on the effective coupling
g∗

ωNN . We remind that along any of these curves the 1S0 phase
shift is well reproduced with an acceptable χ2/DOF < 1. As
we see, the values fρNN = 17.0 and g∗

ωNN = 0 reproduce
quite well the low-energy parameters, corresponding to the
reasonable gωNN = 10.4.

Numerical results for the low-energy parameters are shown
in Table II. Again, the inclusion of σ provides some overall
improvement while ρ and ω yield a better description of
the deuteron for the choice fρNN = 15.5 and gωNN = 9.0.
There is nonetheless a small mismatch to the experimental
or recommended potential values when the zero-energy wave
functions are obtained from the orthogonality relations to the
deuteron, Eq. (110). As one can see, further improvement is
obtained when fρNN = 17.0 and gωNN = 10.3. In this case
we get a SU(3) violation; gωNN = 3.5gρNN , which actually
agrees with the expectations from radiative decays ω → e+e−
and ρ → e+e− (see, e.g., Ref. [71]).

D. Phase shifts

Finally, in the case of positive energy we consider Eq. (88)
with

E = p2

M
, (112)
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FIG. 12. Dependendence of the low-energy parameters as a function of fρNN for several values of the the effective coupling constant
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N . gσNN and mσ are always readjusted to fit the 1S0 phase shift. We show the dependence of the 3S1 scattering
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044002-18



RENORMALIZATION VERSUS STRONG FORM FACTORS . . . PHYSICAL REVIEW C 81, 044002 (2010)

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.2  0.4  0.6  0.8  1

P
ha

se
 S

hi
ft

 [
de

g]

rc [fm]

3S1 Channel

pc.m. = 100 MeV
pc.m. = 200 MeV
pc.m. = 300 MeV
pc.m. = 400 MeV

-5

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

P
ha

se
 S

hi
ft

 [
de

g]

rc [fm]

E1 Channel

pc.m. = 100 MeV
pc.m. = 200 MeV
pc.m. = 300 MeV
pc.m. = 400 MeV

-60

-50

-40

-30

-20

-10

 0

 0  0.2  0.4  0.6  0.8  1

P
ha

se
 S

hi
ft

 [
de

g]

rc [fm]

3D1 Channel

pc.m. = 100 MeV
pc.m. = 200 MeV
pc.m. = 300 MeV
pc.m. = 400 MeV

FIG. 13. Convergence of the np spin-triplet eigenphase shifts for the total angular momentum j = 1 as a function of the short-distance
cutoff radius rc (in fm) for several fixed values of the center-of-mass momentum p = 100, 200, 300, and 400 MeV.

with p the corresponding center-of-mass momentum. We solve
Eq. (88) for the α and β positive-energy-scattering states and
choose the asymptotic normalization

uk,α(r) → cos ε

sin δ1
[ĵ0(kr) cos δ1 − ŷ0(kr) sin δ1],

wk,α(r) → sin ε

sin δ1
[ĵ2(kr) cos δ1 − ŷ2(kr) sin δ1],

(113)
uk,β(r) → − 1

sin δ1
[ĵ0(kr) cos δ2 − ŷ0(kr) sin δ2],

wk,β(r) → tan ε

sin δ1
[ĵ2(kr) cos δ2 − ŷ2(kr) sin δ2],

where ĵl(x) = xjl(x) and ŷl(x) = xyl(x) are the reduced
spherical Bessel functions and δ1 and δ2 are the eigen-phases
in the 3S1 and 3D1 channels and ε is the mixing angle E1.

In the low-energy limit ε → −α02k
3, δα → −α0k, and

δβ → −(α2 − α2
02/α0)k5 and the zero-energy solutions dis-

cussed in subsection VI C are reproduced. The use of the
orthogonality constraints to the deuteron wave analogous to
Eq. (71) yields

uγ u′
k,α − u′

γ uk,α + wγ w′
k,α − w′

γ wk,α|r=rc
= 0

(114)
uγ u′

k,β − u′
γ uk,β + wγ w′

k,β − w′
γ wk,β |r=rc

= 0,

which together with the short-distance regularity condi-
tions, Eq. (104) allow us to deduce the corresponding
3S1-3D1 phase shifts. A further condition is the α-β

orthogonality

uk,αu′
k,β − u′

k,αuk,β + wk,αw′
k,β − w′

k,αwk,β |r=rc
= 0.

(115)

In all we have again an overdetermined system with five
equations and three unknowns. We have checked that almost
any choice yields equivalent results with an accuracy of 0.001◦
for the highest center-of-mass momenta and the shortest cutoff,
rc ∼ 0.02 fm.

As we have mentioned, the numerical solution of the
problem requires taking care of spurious amplification of the
undesired growing exponential at any step of the calculation.
The situation is aggravated by the fact that for the phase
shifts the maximum momentum p = 400 MeV explores
the region around 0.1–0.5 fm, so it is important to make
sure that we do not see cutoff effects in this region. To
provide a handle on the numerical uncertainties we show in
Fig. 13 the results for the phase shifts δ1, δ2, and ε as a function
of the cutoff radius rc and for several fixed center-of-mass
pn momenta, p = 100, 200, 300, and 400 MeV. As we see,
there appear clear plateaus between 0.1 and 0.2 that somewhat
steadily shrink when the momentum is increased. Note that
these values of the short-distance cutoff translates into a
center-of-mass momentum space cutoff range � = π/(2rc) =
1.5–3 GeV.

The results for the 3S1-3D1 phase shifts as a function of
the center-of-mass momentum are depicted in Fig. 14 for π ,
π + σ , and π + σ + ρ + ω and compared to the Nijmegen
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FIG. 15. Convergence of the np spin-singlet 1S0 phase shift (in degrees) as a function of the short distance cutoff radius rc (in fm) for several
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We also add the error bands related to the Nijmegen PWA and high quality potentials [14,64]. All other meson parameters in the OBE potential
are kept the same.

analysis [14,64]. We use gσNN = 9.1, mσ = 501 MeV, and
when vector mesons are included we take fρNN = 15.5 and
gωNN = 9 or fρNN = 17.0 and gωNN = 10.147, correspond-
ing to sets πσρω and πσρω∗ in Table II, respectively. At
first glance we see an obvious improvement in both the
3S1 and 3D1 phases and not so much in the mixing angle
E1 as compared to the simple OPE case. One should note,
however, that besides describing by construction the single
phase shift 1S0 (see Fig. 4) we also improve on the deuteron
(see Table II). Obviously, it would be possible to provide
a better description of triplet phase shifts, however, at the
expense of worsening the deuteron properties and the singlet
channel. Clearly, there is room for improvement, and our
results call for consideration of subleading large Nc corrections
in the OBE potential. This would incorporate, the relative to
leading 1/N2

c relativistic corrections, spin-orbit effects, finite
meson widths, nonlocalities, and so on.

VII. INFLUENCE OF STRONG FORM FACTORS IN THE
RENORMALIZATION PROCESS

Given the reasonable phenomenological success of the
renormalization approach one may naturally wonder what

would be the effect of the form factors in our calculation. In
this section we discuss the influence of strong form factors in
the calculated properties on top of the renormalization process.
Our main quest is to find out whether they lead to observable
physical effects after renormalization. An equivalent way of
posing the question is to determine whether finite nucleon
size effects can be disentangled from meson exchange effects
explicitly in NN scattering in the elastic region.

To analyze this important issue in detail, in Fig. 15 we
show the phase shift in the 1S0 channel for fixed LAB energy
values as a function of the short-distance cutoff radius rc

when the scattering length is fixed to its experimental value,
α0 = −23.74 fm as we explained in Sec. V. We use the same
parameters as for the renormalized solution without the vertex
function for several fixed values of the LAB energy and for the
cutoff values �πNN = 1300 MeV and �πNN = 2000 MeV,
all others fixed to �σNN = �ρNN = �ωNN = 2 GeV. As one
clearly sees, strong form factors are invisible for rc > 0.3
fm. For lower values of the short-distance cutoff rc both
monopole and exponential form factors agree with each other
but deviate strongly from the Nijmegen database. Note that
the lines should be supplemented with estimates of theoretical
errors, which are not shown to avoid cluttering the plot. When
those errors are included the Nijmegen data are basically

TABLE III. Fits to the renormalized 1S0 phase shift of the Nijmegen group [64] using the OBE potential without or with
strong exponential and monopole form factor. We fix α0 = −23.74 fm and take m = 138.03 MeV, gπNN = 13.1083 [65]
and mρ = mω = 770 MeV and fit mσ , gσNN fixing g∗

ωNN = 0. We use �πNN = 1300 MeV and �σNN = �ρNN = �ωNN =
2000 MeV. EB represents the energy of the (spurious) bound state when it does exist.

rc (fm) mσ (MeV) gσNN g∗
ωNN χ 2/DOF α0 (fm) r0 (fm) EB (MeV)

�(q2) = 1 0 501(25) 9(1) 0(3) 0.12 Input 2.695 −777

�(q2) = �exp(q2) 0 526(20) 10.4(8) 0(3) 0.19 Input 2.692 −790
�(q2) = �exp(q2) 0.1 523(27) 10.2(1.1) 0(3) 0.18 Input 2.491 −834

�(q2) = �mon(q2) 0 532(20) 10.7(7) 0(3) 0.20 Input 2.691 −796
�(q2) = �mon(q2) 0.1 528(28) 10.5(1.1) 0(3) 0.19 Input 2.490 −853
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FIG. 16. Short distance cutoff rc dependence of deuteron properties for the πσρω case (see Table II). We compare the purely renormalized
calculation with the cases for both exponential, Eq. (30), and monopole Eq. (29) form factors taking �πNN = 1300 MeV, all other cutoffs
being kept to �σNN = �ρNN = �ωNN = 2000 MeV. We show the dependence of the asymptotic D/S normalization η (upper left panel), the
S-wave normalization AS (in fm−1/2, upper middle panel), the matter radius rm (in fm, upper right panel), the quadrupole moment Qd (in
fm2, lower left panel), the D-state probability (lower middle panel) and the inverse radius 〈r−1〉 (in fm−1 lower right panel). Experimental or
recommended values can be traced from Ref. [68].

compatible with the theoretical curves in the flat preasymptotic
region around 0.3–0.5 fm (see also the discussion around
Fig. 5). Of course, one may attribute the discrepancy to
the choice of parameters, which have been chosen to fit
the renormalized solution without form factors. A somewhat
complementary way of seeing this is by refitting the parameters
using both exponential and monopole vertex functions but
fixing by construction the scattering length α0. The results
for �πNN = 1.3 GeV and �σNN = �ρNN = �ωNN = 2 GeV
are displayed in Table III. As we see, the parameters change
almost within the uncertainties, showing the marginal effect of
the vertex functions after renormalization. Due to the presence
of nonlinear correlations, difficult to handle by standard means,
we have fixed g∗

ωNN to its minimum value (compatible with
zero) and estimated its error by varying it independently from
its mean value to values still giving an acceptable fit, yielding
g∗

ωNN = 0(3). We also show the effect of the short distance
cutoff rc which, as we see, is rather small. Overall, these results
provide a further confirmation of our naive expectations;
nucleon finite size effects and vector mesons do not provide
the bulk in NN scattering in central waves and actually cannot
be clearly resolved. Of course, this should be checked in higher
partial waves, but those are expected in fact to be less sensitive
to short distances.

Finally, in Fig. 16 the influence of the vertex functions is
analyzed for some of the computed deuteron properties. As
we see there is a fair coincidence of the purely renormalized
solution with no form factors with the equally renormalized
solution including the form factors in the potential in the region
around rc ∼ 0.3–0.6 fm. The deviation below 0.3 fm signals

the onset of the irregular D-wave solution, which behaves as
w(r) ∼ r−2 at small distances and hence yields eventually a
divergent result. Note that in order to have a smooth behavior
at short distances when renormalization is overimposed to
the potential with form factors we should choose the regular
D-wave solution w(r) ∼ r3 but then the potential parameters,
either couplings or form factor cutoff parameters, should also
be fine-tuned.

While it is fairly clear that vertex functions do exist and are
of fundamental importance, it is also true that they start playing
a role as soon as the probing wavelength resolves the finite
nucleon size. Our calculations suggest on a quantitative level
that provided the NN-scattering data are properly described
with form factors, they will be effectively irrelevant under
the renormalization process, and for center-of-mass momenta
below 400 MeV, vertex functions are expected to play a
marginal role.

VIII. CONCLUSIONS AND OUTLOOK

In the present article we have analyzed the OBE potential
from a renormalization point of view. As we have shown,
the meson-nucleon Lagrangian does not predict the S matrix
beyond perturbation theory. The nonperturbative nature of low
partial waves and the deuteron in the NN problem suggests
resuming OBE diagrams by extracting the corresponding
potential. The OBE potential, however, presents short-distance
divergences that make the solution of the corresponding
Schrödinger equation ambiguous. The traditional remedy for
this problem has been the inclusion of phenomenological form
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factors which parametrize the vertex functions and hence the
finite nucleon size within the meson-exchange picture. We
have shown that the meson-exchange potential with form
factors generates spurious deeply bound states for natural
values of the coupling constants. The price to remove those
is to fine-tune the potential at all distances, and in particular
at short distances. Thus, while vertex functions implement the
finite nucleon size, it is very difficult to disentangle this from
meson dressing and many other effects where the meson theory
does not hold.

The renormalization approach suggests that extracting
this detailed short-distance information need not be crucial
for the purposes of nuclear physics and the verification of
the meson-exchange picture. Contrarily to what one might
naively think, renormalization is a practical and feasible
way of minimizing short-distance ambiguities by imposing
conditions that are fixed by low-energy data independently on
the potential. We have argued that within this approach we
face from the start our inability to pin down the short-distance
physics below the smallest de Broglie wavelength probed in
NN scattering. Indeed, the central scattering waves and the
deuteron can be described reasonably well and with natural
values of the meson-nucleon couplings. Within the standard
approach this could only be achieved in the past by fine-
tuning meson parameters or postulating the meson-exchange
picture to even shorter ranges than 0.5 fm. In our case the
inclusion of shorter-range mesons induces moderate changes,
due to the expected short-distance insensitivity embodied by
renormalization, despite the short-distance singularity and
without introducing strong meson-nucleon-nucleon vertex
functions. If phenomenological vertex functions are added
on top of the renormalized calculations, minor effects are
observed confirming the naive expectation that finite nucleon
size ∼0.5 fm need not be explicitly introduced within the OBE
calculations for center-of-mass momenta corresponding to the
minimal wavelength 1/p ∼ 0.5 fm.

The renormalization process introduces spurious deeply
bound states regardless of whether the potential is regular
or singular. This can be appreciated in the excessive number
of nodes of the wave function close to the origin, in the
region below 0.5 fm. We have checked that the corresponding
center-of-mass energies are in absolute values much higher
than the maximum scattering center-of-mass energies, and
hence the role played by these spurious states is completely
irrelevant. We note that within the standard approach with
form factors those spurious bound states also take place when
natural values of the coupling constants are taken.

One of the problems with potential model calculations is
the ambiguity in form of the potential, since it is determined
from the on-shell S matrix in the Born approximation and an
off-shell extrapolation becomes absolutely necessary. In the
large Nc limit the spin-isospin and kinematic structure of the
NN potential simplifies tremendously yielding a nonrelativistic
and uniquely defined local and energy-independent function.
Relativistic effects, spin-orbit, nonlocalities, as well as meson
widths or other mesons, enter as subleading corrections to the
potential with a relative order 1/N2

c . However, it consists of an
infinite tower of multimeson-exchanged states, which range
is given by the Compton wavelength of the total multimeson

mass. One of the advantages of the large Nc expansion is
that it is not particularly restricted for low energies. This is
exemplified by several recent calculations of NN potentials
using the holographic principle based on the AdS/CFT
correspondence [72–74].19 A truncation of the infinite number
and range of exchanged mesons is based on the assumption
that the hardly accessible high-mass states are irrelevant for NN
energies below the inelastic pion production threshold. This
need not be the case, unless a proper renormalization scheme
makes this short-distance insensitivity manifest. Actually,
within such a scheme the counterterms include all unknown
short-distance effects but enter as free parameters that do not
follow from the potential and that must be fixed directly from
NN-scattering data or deuteron properties. In the present work
we have implemented a boundary condition regularization and
carried out the necessary renormalization. This allows, within
the OBE potential, to keep only π , σ , ρ, and ω mesons and to
neglect effectively higher-mass effects for the lowest central
s waves as well as the deuteron wave function. In many ways
we see improvements that come with very natural choices
of the couplings and are compatible with determinations from
other sources. From this viewpoint, the leading Nc contribution
to the OBE potential where π , σ , ρ, and ω mesons appear
on equal footing, seems superior than the leading chiral
contribution which consists just on π .

The value of the σ mass was fixed by a fit to the 1S0 phase
shift yielding mσ = 501(25) MeV. The values obtained from
the coupling constants reproducing the 1S0 and 3S1-3D1 chan-
nels are very reasonable taking into account the approximate
nature of our calculation, gσNN = 9(1), gωNN = 9.5(5), and
fρNN = 16.3(7); the range is compatible with the putative
10% accuracy of the 1/N2

c corrections. For the accepted
value gρNN = 2.9(1) this yields gωNN/gρNN = 3.27(17) a
value in between the SU(3) prediction gωNN/gρNN |SU (3) = 3
and the one from the e+e− → ρ and e+e− → ω decay
ratios, gωNN/gρNN |e+e− = 3.5. We also get fρNN/gρNN =
κρ = 5.6(3); a value in agreement from tensor coupling
studies. It is noteworthy that the repulsion triggered by the
ω meson is not as strong and important as required in the
conventional OBE approach where usually a strong violation
of the SU(3) relation is observed as well. The reason is that,
unlike the traditional approach, the renormalization viewpoint
stresses the irrelevance of small distances. This is done by
the introduction of counterterms that are fixed by threshold-
scattering parameters at any given short-distance cutoff scale
rc. For the minimal de Broglie wavelength probed in NN
scattering below pion production threshold, 1/p ∼ 0.5 fm,
a stable result is obtained generally when rc = 0.1–0.2 fm.
Any mismatch to the observables can then be attributed to
missing physical effects. While the present calculations are
encouraging there is of course room for improvement.

One serious source of complications and limitations for
renormalization in general lies in its difficult marriage with the

19In this calculations only π , ρ, ω, and A1 mesons and their radial
excitations contribute. Note, however, that the only contribution to
the central force VC stems from the tower ω,ω′, ω′′, . . . which is
generally repulsive.
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variational principle [75]. The existence of two-body spurious
deeply bound states drives naturally the energy of the system
to its lowest-energy state, if allowed to. On the other hand, one
should recognize that the existence of a minimum is tightly
linked to a subtle balance between kinetic and potential energy,
which undoubtedly exists but may well take place beyond the
applicability range of the meson-exchange picture requiring an
artificial fine-tuning. This clearly influences the three-, four-,
etc., body problems if they would be treated in the standard
and variational fashion but not necessarily so if the few-body
problem is consistently renormalized. Our results show that
one has to choose between fine-tuning and renormalization.
The standard approach has traditionally been sensitive to short-
distance details and has required an unnatural fine-tuning of
the vector mesons coupling constants to larger values than
expected. In contrast, the renormalization approach is free of
fine-tuning and allows to fix the meson constant from other
sources to their natural values.

While we have been using the leading large Nc contributions
to the full OBE as a simplifying book-keeping reduction, we
do not expect that such an approximation becomes crucial
regarding the main conclusions on form factors. However, the
most speculative prospective of the present calculation lies in
the possibility of promoting it to a model-independent large
Nc result. One should bear in mind, however, that we have
only kept leading Nc OBE contributions. There is, of course,
the delicate question on which 2π , 3π , and 	 contributions
should be considered, first, to avoid double counting with the
collective σ , ρ, and ω states and, second, to comply with the
large Nc requirements. To our knowledge, the expectations of
Ref. [54] of a large Nc consistent multimeson-exchange picture
have not been explicitly realized for the chiral potentials
without [76] and with [77] 	-isobar contributions as they
do not scale properly with Nc; one has gA ∼ Nc, fπ ∼ √

Nc

and there are terms scaling as V ChPT
2π ∼ g4

A/f 4
π ∼ N2

c and
not as ∼Nc as found in Refs. [50,53]. Our results suggest
a scenario where the multimeson contributions invoked in
Ref. [54] would indeed be small, but this should be checked
explicitly. One further complication comes from the fact that
in the large Nc limit the nucleon-delta splitting becomes
small and in fact lighter than the pion mass. According to
the Regge theory formula M2

	 − M2
N = m2

ρ − m2
π [78] and

assuming the scaling MN = Ncmρ/2, the crossover between
both mass parameters happens at about Nc ∼ 6. Actually, in
the strict limit one should consider not only NN but at least
also N	 and 		 channels as well, as they become degenerate.
The calculation of Refs. [53,79] includes only the restriction
of the baryon-baryon interaction to the NN sector. In a more
elaborate treatment one should include the 	 as intermediate
dynamical states that in the elastic NN region contribute as
subthreshold effects [80] that decouple for large N	 splitting
but that become degenerated when the N	 splitting is driven
to zero. In addition, it would also be interesting, still within the
OBE framework, to see what is the effect of the relative 1/N2

c

corrections, which include in particular relativistic, nonlocal,
finite-size, spin-orbit, finite meson width corrections as well
as other mesons.

Finally, let us also note that besides the many possible
improvements mentioned above to the present calculation, the

possibility of making a good phenomenology while replacing
strong form factors in the NN potential for renormalization
conditions has further and important benefits. In particular, it
makes the discussion of gauge invariance much simpler, as
we are effectively dealing with local theories with no cutoff.
Under this circumstance, the cumbersome gauging proce-
dures involving path-dependent link operators that become
necessary in order to minimally implement gauge invariance
would not be needed. In a recent communication [57]
we have evaluated electromagnetic deuteron form factors in
the impulse approximation and using the renormalization
scheme presented in this article, with a reasonable momentum
transfer-dependent behavior up to about q ∼ 800 MeV and
definitely improving over OPE. Actually, these form factors as
well as some of the presently computed deuteron properties are
expected to have significant corrections from MEC. Let us note
that MEC are a genuine consequence of the meson-exchange
picture in the NN interaction but in fairness also require
constructing exact NN wave functions from the corresponding
Hamiltonian, as we have done here. The present article shows
that renormalization for the OBE potential is not only feasible
as a previous and theoretically appealing step to evaluate
matrix elements of electroweak currents but also, and perhaps
surprisingly, yields a sound phenomenologically. It also helps
in reducing the impact of the hardly accesible short-distance
region of the nucleon-nucleon interaction, thereby reducing
standard and much debated ambiguities. It remains to be seen
if this holds true also for low-energy electroweak reactions
where the meson-exchange picture is traditionally expected to
work.
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APPENDIX A: OVERVIEW OF COUPLING CONSTANTS

A crucial point in the present framework corresponds to the
choice of coupling constants, gπNN , gσNN , fρNN , and gωNN

(for an older review see, e.g., Ref. [71]), and masses, mπ ,
mσ , mρ , and mω, entering the calculation. We review here
reasonable ranges on the basis of several sources but bearing
in mind that we are keeping only the leading Nc contributions
to the OBE potential.

(i) gπNN . According to the Goldberger-Treiman relation
(subjected to pion mass corrections and/or higher me-
son states), the pion nucleon coupling constant should
be gπNN = gAMN/fπ = 12.8 for the axial coupling
constant gA = 1.26. A phase-shift analysis of NN scat-
tering [65] yields gπNN = 13.1083. Nevertheless, the
latest determinations from the Goldberger-Miyazawa-
Oehme (GMO) sum rule [81] yields the value gπNN =
13.3158; this variation at the 5% level dominates the
uncertainties in the 1π exchange calculations.
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(ii) gσNN . For the scalar coupling constant, the Goldberger-
Treiman relation for scalar mesons yields gσNN =
MN/fπ = 10.1. However, if we consider contributions
from excited scalar mesons we may expect a somewhat
different number. Actually, QCD sum rules yield
[82] gσNN = 14.4 ± 3.7 for the Ioffe current nucleon
interpolator and a smaller value gσNN = 7 ± 3 for
more general interpolators [83]. A recent quark model
calculation yields gσNN = 14.5 ± 2 [84].

(iii) gρNN . The vector gρNN coupling constant is after
Sakurai’s universality gρNN = gρππ/2 while the
current-algebra KSFR relation provides gρππ =
mρ/(

√
2fπ ), yielding gρNN = 2.9. The ρNN vertex

in vector dominance models was also determined in the
old analysis [85] yielding yields gρ = 2.9(1) a value
confirmed in Ref. [86].

(iv) fρNN . The tensor fρNN coupling is usually given by the
ratio to the vector coupling fρNN = κρgρNN . In single
vector-meson dominance models κρ = µp − µn − 1
with µp = 2.79 and µn = −1.91 the magnetic mo-
ments [in nuclear magneton units e/(2Mp)] of proton
and neutron respectively, yielding κρ = 3.7 and hence
fρNN = 10.7(4) for gρNN = 2.9(1).

(v) gωNN . The relation gωNN = 3gρNN [= 8.7(3) for
gρNN = 2.9(1)] is the SU(3) prediction for the ideal
ω-φ mixing case corresponding to the OZI rule, where
gφNN = 0 as well. Vector-meson electromagnetic de-
cays ω → e+e− and ρ → e+e− account for SU(3)
breaking as gωNN = 3.5gρNN [=10.2(4) for gρNN =
2.9(1)].

(vi) fωNN . The tensor fωNN coupling is also given by its the
ratio to the vector coupling fωNN = κωgωNN . In single
vector-meson dominance models κω = µp + µn − 1
yielding κω = −0.12 and hence fωNN = −0.3(1) for
gωNN = 3 − 3.5.

Nucleon electromagnetic form factors with high-energy
QCD constraints also provide information on vector-meson
couplings. Reference [87] yields gωNN = 20.86(25) and
fωNN = −3.41(24) and κρ = 6.1(2), and more recently [88] it
was found that gωNN = 20(3) and fωNN = 3(7). On the other
hand, QCD sum rules yield for the ρNN coupling a spread
of values gρNN = 2.4 ± 0.6 and fρNN = 7.7 ± 1.9 [89] and
gρNN = 3.2 ± 0.9 and fρNN + gρNN = 36.8 ± 13.0 [90].

Phase-shift analyzes of NN scattering below 160 MeV based
on the ε1 mixing angle were argued to be an indication for
a strong tensor force [91], an issue further qualified in Ref.
[69]. The strong tensor coupling is κρ = fρNN/gρNN = 6.1(6)
and the weak is κρ = µp − 1 − µn = 3.7, corresponding to
vector-meson dominance saturated with a single state. Note
that the value fρNN = gπNN = 13.1 for which the tensor force
1/r3 singularity disappears corresponds to κρ = 4.5(2) a value
in between weak and strong.

APPENDIX B: THE EXCEPTIONAL NONSINGULAR CASE

As mentioned in subsection II B there is an exceptional
situation, fρNN = gπNN , where the OBE potential is not
singular, Eq. (16), and the use of form factors would not be

necessary. If we keep gπNN = 13.1 that means fρNN = 13.1,
a not completely unrealistic value lying in between the single
vector-meson dominance estimate and the usual OBE value
(see Appendix A), so it is worth analyzing this case separately.
Since the singularity affects mainly the coupled spin-triplet
channel, one may wonder what would be the consequences for
the deuteron. We will show that our conclusions are not ruled
out by this exceptional case.20

Note that within the renormalization approach this particu-
lar situation has been scanned through in Fig. 11 where nothing
particularly noticeable happens. Actually, at short distances
we have a coupled-channels Coulomb problem where the
short-distance behavior can generally be written as a linear
admixture of regular and irregular solutions,

u(r) ∼ a1r + a2
(B1)

w(r) ∼ b1r
3 + b2r

−2.

In order to get a normalizable wave function we must impose
the regular solution for the D wave, meaning b2 = 0. The
renormalized solution corresponds then to fix the deuteron
binding energy as explained in detail in Sec. VI and integrate
in with the result that the S wave may have an admixture of the
irregular solution. The regular solution takes the value a2 = 0.
The bound-state properties are now predicted completely from
the potential.

In practice we deal with arbitrarily small but finite cutoffs,
rc → 0. In this situation it is simplest to use the superposition
principle of boundary conditions given by Eq. (C8) for a given
energy or γ . From the regularity condition of the D wave we
get

rc

w′(rc)

w(rc)
= 3 (regular D wave), (B2)

which yields the asymptotic D/S ratio

η(rc) = −3wS(rc) + rcw
′
S(rc)

3wD(rc) − rcw
′
D(rc)

. (B3)

This provides a relation between γ and η. The renormalized
condition yields an arbitrary value of u at the origin, so the
energy may be fixed arbitrarily, and thus

rc

u′(rc)

u(rc)

= 1 (irregular S wave). (B4)

The regular solution corresponds to

rc

u′(rc)

u(rc)
= 1 (regular S wave), (B5)

which in general will not be satisfied by the physical deuteron
binding energy. Thus, for the regular solution we will have
either a wrong value of the energy or the potential parameters
must be readjusted. A value of rc = 0.001 fm proves more
than enough.

20A compelling scenario where the singularity cancels might happen
for an infinite tower of exchanged mesons fulfilling the sum rule
g2

πNN + g2
π ′NN

+ · · · = f 2
ρNN + f 2

ρ′NN
+ · · · =. Even if this was the

case the implications after renormalization are meager.
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TABLE IV. Deuteron properties for the exceptional case fρNN = gπNN of nonsingular large Nc OBE potentials. In
all cases we take rc = 0.001 fm. We compare renormalized vs. regular solutions for similar choices of parameters. We
use γ = √

2µnpBd with Bd = 2.224575(9) and take gπNN = 13.1083, mπ = 138.03 MeV, mρ = mω = 782 MeV. The fit
to the 1S0 phase shift gives mσ = 501 MeV and gσNN = 9.1. Experimental or recommended values can be traced from
Ref. [68].

g∗
ωNN rc

u′(rc )
u(rc ) rc

w′(rc )
w(rc ) γ (fm−1) η AS(fm−1/2) rm (fm) Qd (fm2) PD 〈r−1〉

Renormalized 0 −0.1274 3 Input 0.02567 0.8986 1.9949 0.2830 5.87% 0.470
Regular 0 1 3 0.6615 1.1502 0.0925 2.2523 0.1215 10.77% 0.851
Renorm.=Reg. 3.74 1 3 Input 0.02567 0.8979 1.9935 0.2827 5.88% 0.491
Renorm. 2×3.74 0.0297 3 Input 0.02569 0.8957 1.9890 0.2817 5.92% 0.517

NijmII( [64]) – – – Input 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502
Reid93( [64]) – – – Input 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515

Exp. ( [68]) – – – 0.231605 0.0256(4) 0.8846(9) 1.9754(9) 0.2859(3) 5.67(4)

Numerical results for a fixed parameter choice with g∗
ωNN =

0 are presented in Table IV. As we see, the regular solution
generates a bound state with EB ∼ −16 MeV which is clearly
off the deuteron with equally bad properties. In order to
achieve the correct deuteron binding energy we just increase
the coupling to g∗

ωNN = 3.75 in the regular solution case.
In this case both renormalized and regular solution would
coincide accidentally. However, if we increase to twice
this value g∗

ωNN = 2 × 3.75 we observe tiny changes in the
deuteron properties as compared to the g∗

ωNN = 0 case when
the renormalized solution is considered, whereas the regular
solution becomes unbound. These results illustrate further the
sharp distinction between regular and renormalized solutions
where one chooses between fine-tuning and short-distance
insensitivity respectively. The corresponding wave functions
to both the renormalized and regular solutions with the same
meson parameters are depicted in Fig. 17. In both cases inner
nodes of the wave functions exihibit the existence of deeply
bound states, as dictated by the oscillation theorem.

Finally, we might try to analyze the consequences of taking
V3S1 (r) = V1S0 (r) in the exceptional case fρNN = gπNN =
13.1 and other parameters from the case with no form factor,
� = 1, of Table I for the 1S0 channel. Let us note that two
possible scenarios arise in such a case, one with no bound

state and another one with a spurious deeply bound state.
For the 3S1-3D1 channel, this complies with the standard
picture that the deuteron becomes bound due to the additional
binding introduced by the small tensor force mixing with
the D wave, basically shifting the S-wave potential to an
effective one V3S1 (r) ∼ V1S0 (r) + WT (r)2/V3D1 (r). While in
the case with no spurious bound state for the 1S0 we do not
get any deuteron bound state, in the case with the spurious
bound state the binding energy is EB ∼ −50 MeV. This is
another manifestation of the fine-tuning discussed at length in
subsection III B.

In summary, although the 1/r3 singularity makes renor-
malization process mandatory to implement the physical
requirement of short-distance insensitivity, the important
aspect here is that this requirement remains equally valid even
if there are no singularities at all.

APPENDIX C: SUPERPOSITION PRINCIPLE AND
RENORMALIZATION

To carry out the renormalization program, we sumarize the
superposition principle of boundary conditions, which makes
the discussion more transparent since the potential and the
renormalization conditions can be explicitly disentangled (see
Refs. [45,46,56]).
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FIG. 17. Normalized deuteron wave functions, u (left) and w (right), as a function of the distance (in fm) in the OBE for the exceptional
nonsingular case fρNN = gπNN . We show π + σ + ρ + ω both renormalized and the regular solution with the same parameters g∗

ωNN = 0. We
compare to the Nijmegen II wave functions [64] (see Table IV).
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In the case of the 1S0 channel one has at zero energy

u0(r) = u0,c(r) − 1

α0
u0,s(r), (C1)

where u0,c(r) → 1 and u0,s(r) → r correspond to cases where
the scattering length is either infinity or zero respectively.
Using this decomposition one gets for the effective range,
Eq. (77),

r0 = A + B

α0
+ C

α2
0

, (C2)

where

A = 2
∫ ∞

0
dr

(
1 − u2

0,c

)
, (C3)

B = −4
∫ ∞

0
dr(r − u0,cu0,s), (C4)

C = 2
∫ ∞

0
dr

(
r2 − u2

0,s

)
, (C5)

depend on the potential parameters only. The interesting thing
is that all dependence on the scattering length α0 is displayed
explicitly by Eq. (C2). A similar use for finite-energy
states yields an explicit formula for the phase shift (see
Refs. [46,56]).

In the case of the deuteron one introduces the auxiliary
problems(

uS

wS

)
→

(
1

0

)
e−γ r , (C6)

(
uD

wD

)
→

(
0

1

)
e−γ r

[
1 + 3

γ r
+ 3

(γ r)2

]
, (C7)

which solutions depend on the deuteron binding energy
through γ and the OBE potential. Further, we can use the
superposition principle of boundary conditions to write

u(r) = uS(r) + ηuD(r),
(C8)

w(r) = wS(r) + ηwD(r).

In the zero-energy case in the 3S1-3D1 channel we may
write the solutions as

u0,α(r) = u1(r) − 1

α0
u2(r) + 3α02

α0
u3(r),

w0,α(r) = w1(r) − 1

α0
w2(r) + 3α02

α0
w3(r),

u0,β(r) = 1

α0
u2(r) +

(
3α2

α02
− 3α02

α0

)
u3(r) − 1

15α02
u4(r),

w0,β(r) = 1

α0
w2(r) +

(
3α2

α02
− 3α02

α0

)
w3(r) − 1

15α02
w4(r),

(C9)

where the functions u1,2,3,4 and w1,2,3,4 are zero-energy
solutions independent on α0, α02, and α2 and fulfill suitable
boundary conditions [46].

Using the superposition principle decomposition of the
bound state, Eq. (C8), and for the zero-energy states, Eq. (C10),
one can make the orthogonality relations explicit in α0, α02,
α2 [46].

For the finite-energy scattering 3S1-3D1 states we define the
four auxiliary problems

(
uk,1

wk,1

)
→

(
ĵ0(kr)

0

)
,

(
uk,2

wk,2

)
→

(
ŷ0(kr)

0

)
,

(C10)(
uk,3

wk,3

)
→

(
0

ĵ2(kr)

)
,

(
uk,4

wk,4

)
→

(
0

ŷ2(kr)

)
,

which depend solely on the potential and can be obtained by
integrating in. Thus, the general solution satisfying the α and
β asymptotic conditions can be written as

uk,α(r) =
4∑

i=1

ci,αuk,i(r), wk,α(r) =
4∑

i=1

ci,αwk,i(r),

(C11)

uk,β(r) =
4∑

i=1

ci,βuk,i(r), wk,β(r) =
4∑

i=1

ci,βwk,i(r).

Fixing the constants to the asymptotic conditions Eq. (113) we
get

uk,α(r) = cos ε

sin δα

[u1(r) cos δα − u2(r) sin δα]

+ sin ε

sin δα

[cos δαu3(r) − u4(r) sin δα],

wk,α(r) = cos ε

sin δα

[w1(r) cos δα − w2(r) sin δα]

+ sin ε

sin δα

[cos δαw3(r) − w4(r) sin δα],

uk,β(r) = 1

sin δα

[u1(r) cos δβ − u2(r) sin δβ]

− tan ε

sin δα

[cos δβu3(r) − u4(r) sin δβ],

wk,β(r) = 1

sin δα

[w1(r) cos δβ − w2(r) sin δβ],

− tan ε

sin δα

[cos δβw3(r) − w4(r) sin δβ]. (C12)
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