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Absence of decoherence in the complex-potential approach to nuclear scattering
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Time-dependent density-matrix propagation is used to demonstrate, in a schematic model of an open quantum
system, that the complex potential approach and the Lindblad dissipative dynamics are not equivalent. While
the former preserves coherence, it is destroyed in the Lindblad dissipative dynamics. Quantum decoherence
is the key aspect that makes the difference between the two approaches, indicating that the complex potential
model is inadequate for a consistent description of open quantum-system dynamics. It is suggested that quantum
decoherence should always be explicitly included when modeling low-energy nuclear collision dynamics within
a truncated model space of reaction channels.
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Quantum coherence manifests itself through quantum
interference effects in quantum dynamical systems, which is
clearly demonstrated in double-slit experiments with single
electrons. This property of matter is diminished (decoherence)
when an external environment interacts with the system [1–3].
Quantifying the role and importance of decoherence in quan-
tum systems is now pervasive in various branches of physics
and chemistry, including studies of quantum measurement and
quantum information [4]. The concept of a reduced (but not
closed) quantum system evolving in the presence of couplings
to an environment of complex states is common throughout
disciplines.

The schematic model refers to the scattering of a wave
packet ψk0 (x) (with the mean wave number k0) off a potential
barrier V (x). This is considered a reduced quantum system,
which irreversibly interacts with a complex environment
of excluded degrees of freedom. Of interest is the effect
of such an environment on the reduced quantum-system
dynamics. It is here investigated using two descriptions:
(i) the complex potential approach [5–7], and (ii) the Lindblad
dissipative dynamics [8,9]. The key question addressed in this
Rapid Communication is: Are these approaches equivalent?
A common view in the nuclear physics community is that
they are. This general belief inhibits research into quantum
decoherence which is at the same time highly topical in
other areas of physics and chemistry. My model calculations
clearly demonstrate that quantum decoherence makes the
difference between the two descriptions, and is not accounted
for in the complex potential model. The methodology will be
highlighted first. Afterwards, the calculations are presented
and discussed, and finally a summary is given.

The Liouville–von Neumann master equation dρ̂/dt = Lρ̂

dictates the time evolution of the reduced-system density-
matrix operator ρ̂(t). Its initial value describes a pure state,
and is determined by the initial wave packet as ρ̂(0) = |ψ〉〈ψ |.
The Liouvillian Lρ̂ is different in the two descriptions studied:

(i) In the complex potential approach [5], this is

Lρ̂ = − i

h̄
(Ĥeff ρ̂ − ρ̂Ĥ

†
eff), (1)

where the effective non-Hermitian Hamiltonian Ĥeff =
Ĥs − iW (x), being Ĥs = T̂ + V (x) the Hermitian

Hamiltonian of the reduced system (T̂ is the kinetic en-
ergy operator) and W (x) > 0 describes the irreversible
environmental interaction(s).

(ii) Irreversibility in dynamics of an open quantum system
can be consistently described by the Lindblad master
equation [8]. Here the Liouvillian reads as

Lρ̂ = − i

h̄
[Ĥs, ρ̂] +

∑
α

(Ĉαρ̂Ĉ†
α − 1

2
[Ĉ†

αĈα, ρ̂]+), (2)

where [· · ·] and [· · ·]+ denote the commutator and
anticommutator, respectively. Each Ĉα is a Lindblad
operator for a dissipative coupling, physically moti-
vated according to the specific problem. We use a
spontaneous emission Lindblad operator [10], Ĉ21 =√

γ 21
xx |2〉〈1| that describes a decay from the reduced-

system state |1〉 to the environmental state |2〉. (These
states are assumed to be orthonormal.) State |2〉 is
not a reaction channel, but an auxiliary state [10]
supplying a probability drain only. This state mocks
up a high density of complex states (environment)
and irreversibly absorbs probability from the reduced
system. The absorption rate to state |2〉 is given by
γ 21

xx = W (x)/h̄ where W (x) is taken as in approach (i).
Thus, approaches (i) and (ii) refer to a single reaction
channel problem.

The Liouville–von Neumann master equation with either
Eq. (1) or Eq. (2) is then represented in a grid basis [11]. The
density-matrix elements obey the following equations:

(a) In approach (i)

ρ̇xx ′ = − i

h̄
[Ĥs, ρ̂]xx ′ + (LDρ̂)xx ′ , (3)

where

(LDρ̂)xx ′ = −1

h̄
[W (x) + W (x ′)]ρxx ′ . (4)

(b) Whereas in approach (ii)

ρ̇11
xx ′ = − i

h̄
[Ĥs, ρ̂]11

xx ′ + (LDρ̂)11
xx ′ , (5)

ρ̇22
xx ′ = (LDρ̂)22

xx ′ , (6)
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and the elements ρ12
xx ′ and ρ21

xx ′ obey equations of motion
as Eq. (6). The dissipative terms are

(LDρ̂)kl
xx ′ = δkl

2∑
j=1

√
γ

kj
xx γ

kj

x ′x ′ρ
jj

xx ′

− 1

2

2∑
j=1

(
γ jk

xx + γ
jl

x ′x ′
)
ρkl

xx ′ , (7)

where (k, l = 1, 2) and γ kk
xx = ∑

j �=k γ
jk
xx [12]. It makes

the second term of Eq. (7) equal to Eq. (4) for the
elements ρ11

xx ′ that describe the reduced system. Thus,
the first term of Eq. (7) makes the difference between
the two approaches, which is essential as shown below.
It is worth mentioning that the elements ρ22

xx ′ absorb
probabilities only, whilst ρ12

xx ′ and ρ21
xx ′ are always zero.

These are initially zero like ρ22
xx ′ .

Having obtained the dynamical evolution of the density
matrix, expectation values of an observable Ô result from the
trace relation 〈 ˆO(t)〉 = Tr[Ôρ̂(t)].

In the model calculations the grid (−50 to 50 fm) was
evenly spaced with 256 grid points. The potentials V (x) and
W (x) are the Eckart potential [13] and a Gaussian function,
both centered at zero, i.e., V (x) = V0 cosh−2(x/a0) and
W (x) = W0 exp[−x2/2σ 2

0w]. The parameters are (V0, a0) ≡
(61.1 MeV, 1.2 fm) and (W0, σ0w) ≡ (5 MeV, 1.5 fm). A
minimal-uncertainty Gaussian wave packet describes the
relative motion of two objects with mass numbers A1 = 16 and
A2 = 144. The wave packet is initially centered at x0 = 25 fm,
with width σ0 = 5 fm, and was boosted toward the potentials
with the appropriate average kinetic energy for the initial total
energy E0 = 55 MeV.

The density matrix was propagated in time using the Faber
polynomial expansion of the time-evolution operator [14],
and the Fourier method [11] for the commutator between the
kinetic energy and density operator. The time step for the
density-matrix propagation was �t = 10−22 s. The numerical
accuracy of the propagation was checked using a time-
dependent calculation without the dissipative term LDρ̂ in
Eq. (3) or Eq. (5). It was confirmed that the trace and purity
of the density matrix, Tr(ρ̂) = Tr(ρ̂2) = 1, and the expectation
value of the system energy Tr(Ĥ ρ̂) were maintained with high
accuracy over the required number of time steps, typically 130
when the centroid of the recoiled body of the wave packet
reaches 25 fm.

Figure 1 shows the time evolution of the reduced-system
energy (a) and the trace of the density-matrix (b) using
both the complex potential approach (solid line) and the
Lindblad dynamics (dashed line). These quantities show
similar features, their values declining in time as expected.
The total probability is maintained in Lindblad’s dynamics
(dotted line), while the complex potential approach cannot
guarantee its preservation. The disagreement of the solid and
dashed lines is due to the first term of Eq. (7). Removing it, the
two approaches provide the same results. However, this term
is crucial, making the two approaches physically different due
to the quantum decoherence, as shown in Fig. 2.
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FIG. 1. (a) The energy mean value of the reduced system as a
function of time in the complex potential approach (solid line) and
in the Lindblad dissipative dynamics (dashed line). (b) The same but
for the trace of the density matrix. Lindblad’s dynamics preserves the
total probability (dotted line), i.e., the sum of the probability in the
reduced system and in the environment.

The measure of coherence in the reduced system is the
ratio Tr(ρ̂2)/[Tr(ρ̂)]2 [15,16]. Its time evolution is presented
in Fig. 2 for the complex potential approach (solid line) and
the Lindblad dynamics (dashed line). The former preserves
coherence, while the Lindblad dynamics results in decoher-
ence. The complex potential leads to a coherent damping
of all the elements of the density matrix, affecting only the
amplitude of the off-diagonal elements. However, the first
term of Eq. (7) results in dephasing, destroying the initial
phase relationship between the off-diagonal elements. This is
quantum decoherence.

An interesting question arises: Does decoherence affect
observables such as the quantum tunneling probability? Yes,
it does, as shown in Fig. 3. Here, the tunneling probability
through the Eckart potential barrier is presented as a function
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FIG. 2. The same as in Fig. 1, but for the measure of coherence
[15] in the reduced system. While the complex potential approach
preserves coherence (solid line), it is destroyed in the Lindblad
dissipative dynamics (dashed line).
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FIG. 3. Tunnelling probability through the Eckart potential bar-
rier as a function of the initial total energy: analytic probabilities
(dotted line), probabilities of the wave packet with a definite energy
spread (thin solid line), and the latter within the complex potential
approach (thick solid line) and the Lindblad dissipative dynamics
(dashed line). The environment reduces the tunneling probability,
playing decoherence a crucial role (comparing the thick solid line
with the dashed line, and these with the thin solid line).

of the initial total energy E0. This probability is numerically
calculated (after a long propagation time) as the trace of
the density matrix over negative values of the x coordinate,
i.e., Tr(P̂ ρ̂) where the projector P̂ = 1̂ − �(x), �(x) being
the Heaviside step function. The dotted line represents the
analytic transmission coefficient [13], while the thin solid line
shows the tunneling probability for the wave packet with a
definite energy spread. This results in the small difference
between the two lines. With respect to these, the tunneling
probability is reduced in both the complex potential approach
(thick solid line) and the Lindblad dynamics (dashed line).
The difference between these two lines demonstrates that
decoherence substantially changes the quantum tunneling
probability, i.e., up to a factor 10 at the lowest incident energies.
The energy dependence of this probability is clearly affected
by decoherence (comparing the thick solid and dashed lines
with the thin solid line). These results provide quantitative
support to the idea [17–19] that explicit inclusion of quantum
decoherence may well be necessary to consistently describe
(within a truncated model space) low-energy nuclear collision
dynamics.

Quantum decoherence is a key aspect of irreversibility,
which is mostly overlooked in quantal models of low-energy
nuclear phenomena. It should be treated simultaneously with

energy dissipation and coherent quantum superpositions,
the latter being the basis of the coherent coupled-channels
approach to nuclear reaction dynamics around the Coulomb
barrier. Coherent quantum superpositions manifest themselves
through the measurement of the experimental fusion barrier
distributions, while energy dissipation is revealed in deep-
inelastic scattering that also occurs at near-barrier energies
[19]. While the coherent coupled channels calculations [20]
are able to explain several collision observables, major
problems are unresolved. Foremost is the inability to describe
the elastic and quasielastic scattering and fusion processes
simultaneously [21] and the related, more recent failure to
describe consistently below-barrier quantum tunneling and
above-barrier fusion yields [17]. New, precise measurements
have inevitably led to phenomenological adjustments [22,23]
(sometimes contradictory) to stationary-state coupled channels
models to fit the experimental data, but without a physically
consistent foundation. The present work suggests that quan-
tum decoherence should be taken into account seriously in
modeling fusion and nuclear scattering. This may also have
significant implications for open systems-related approaches
to phenomena in near-threshold exotic nuclei, such as contin-
uum shell models [24] and approaches to understanding the
quenching of spectroscopic factors [25,26].

In summary, the nonequivalence between the complex
potential approach and the Lindblad dissipative dynamics for
describing the time evolution of a schematic, open quantum
system has been demonstrated. Time-dependent density-
matrix propagation shows that quantum decoherence makes
the difference, which is not treated in the complex potential
model. It is inadequate for a consistent description of open
quantum system dynamics. Decoherence substantially affects
the quantum tunneling probability, and should be included in
a complete description of low-energy nuclear scattering.
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