
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 81, 041601(R) (2010)

Examining the efficacy of isotope thermometry in the S-matrix approach
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Isotope thermometry, widely used to measure the temperature of a hot nuclear system formed in energetic
nuclear collisions, is examined in the light of the S-matrix approach to the nuclear equation of state of disassembled
nuclear matter. Scattering between produced light fragment pairs, hitherto neglected, is seen to have an important
bearing on extraction of the system temperature and volume at freeze-out from isotope thermometry. Taking
due care with the scattering effects and decay of the primary fragments, a more reliable way to extract the
nuclear thermodynamic parameters, by exploiting the least-squares fit to the observed fragment multiplicities, is
suggested.
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Theoretical investigations of the equation of state of infinite
[1–4] and finite [5–10] nuclear matter predict the existence of
a liquid-gas (LG)-type phase transition in these systems. This
transition is thought to play an important role in nucleosynthe-
sis in supernova explosions [11,12]. Laboratory experiments
in collisions between energetic nuclei appear to reveal signals
of an LG phase transition in hot finite nuclear systems [13–15].
Proper identification of such a transition, however, depends on
the reliable measurement of the thermodynamic observables.
In particular, temperature plays a pivotal role. A widely used
practice to extract the temperature of hot nuclear systems is
double-isotope ratio thermometry as suggested by Albergo
et al. [16]. In an ideal scenario, the primary fragments produced
in the freeze-out volume are assumed to be in their ground
states. Particle and γ -decay corrections to the excited primary
fragments have also been built in [17]. Generally, the feeding
effect of secondary decay has been accounted for through a
correction factor [13,18–20] on the measured multiplicities.
The temperature is seen to increase by ∼10%–20% from the
ideal situation.

All these analyses were done with the assumption that
the fragment species produced are noninteracting within the
freeze-out volume. Strong interaction corrections, appropri-
ately taken up in the S-matrix approach [21], to the grand
partition function of the dilute nuclear system, where, in
addition to all the stable mass particles, the two-body scattering
channels between them can be included systematically, are
seen to modify the fragment multiplicities [22,23]. The
extracted temperature as obtained in the previous analyses
without strong interaction corrections may then differ from
the real temperature at which the fragments were produced. In
a schematic calculation [24] using the S-matrix approach in
dilute infinite nuclear matter, neglecting secondary decay, we
found that the scattering effects on the extracted temperature
and volumes are not negligible. In the present communication,
these ideas are incorporated to provide a realistic framework
for analysis of the data in an experimental multifragmentation
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setup to extract the temperature and volume of a finite
disassembling nucleus at freeze-out with explicit inclusion of
γ and particle decay as well as effects from scattering between
different fragment species.

The details of the S-matrix approach, as applied to nuclear
systems, are given in Refs. [23–25]. For completeness, a
few relevant equations are presented here highlighting the
approximations. The grand partition function Z of a system in
thermodynamic equilibrium can be written as the sum of three
terms [24]:

lnZ = lnZgr + lnZ0
ex + lnZsc. (1)

The first and second terms correspond to the contributions
from the ground states and particle-stable excited states of all
the produced fragment species behaving like an ideal quantum
gas. The last term sums up the contributions from the scattering
states, expressible in terms of the S-matrix elements. Formal
expressions for these three terms are spelled out in Ref. [23].

The scattering channels, for convenience, can be separated
into two parts, one containing only light particles and the other
heavy ones; that is,

lnZsc = lnZ l
sc + lnZh

sc. (2)

The scattering of the heavy particles is dominated by a
multitude of resonances near the threshold; the S-matrix
elements can then be approximated by resonances, which, like
the excited states, are again treated as ideal-gas terms [26].
These are the particle-unstable states. Structurally, lnZh

sc being
thus similar to lnZ0

ex, lnZ0
ex and lnZh

sc are combined to give
lnZex (≡ lnZ0

ex + lnZh
sc), which contains contributions from

particle-unstable excited states in addition to particle-stable
ones.

In lnZ l
sc, only the elastic scattering channels for the

pairs NN , Nt , N3He, Nα (N refers to the nucleon), and
αα have been included. These calculations involve virial
coefficients [23,27] that are functions of only experimental
entities, namely, phase shifts and binding energies. Once the
partition function is obtained, total fragment multiplicities Yi

for the ith fragment species with Ni neutrons and Zi protons
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can be evaluated as

Yi = ζi

(
∂

∂ζi

lnZ
)

V,T

. (3)

Here ζi[≡ ζZi,Ni
] is the effective fugacity, defined as ζZi,Ni

=
eβ[µZi ,Ni

+B(Ai,Zi )]. B(Ai, Zi) is the binding energy of the
fragment and µZi,Ni

is its chemical potential, which, from
chemical equilibrium, is µZi,Ni

= Niµn + Ziµp, µn and µp

being the neutron and proton chemical potentials obtained
from the conservation of the total neutron and proton numbers
of the system, respectively, and β the inverse temperature.

For a relatively low density and not too low a temperature,
the fugacity ζ � 1 (as is the case for the density and temper-
ature domain we have investigated). The quantal distribution
can then be replaced by a classical one; expressions for the
primary fragment multiplicities of the ith species are then
derived as

Yi = V
A

3/2
i

λ3
e[µnNi+µpZi+B(Ai,Zi )]/T

×
⎡
⎣gi

0 +
εr∑

εj =ε0

gi
j e

−εi
j /T

⎤
⎦ + Y i

sc. (4)

In Eq. (4), V is the volume of the system, λ = √
2π/mT

(we use natural units h̄ = c = 1) is the nucleon thermal
wavelength, and gi

0 and gi
j are the degeneracies of the

ground and excited states. The sum over the excited states
includes both γ and particle-decay (resonance) channels.
In different variants of the models of nuclear statistical
equilibrium, only the first term (which also implicitly contains
scattering corrections from resonances in heavy fragments)
on the right-hand side of Eq. (4) has been used to obtain the
nuclear thermodynamic observables. The last term Y i

sc is the
contribution to the fragment yield from scattering, it is nonzero
only for the fragments in the light species set. Expressions for
the multiplicity yields Yn

sc, Yp
sc, etc. (collectively written as Y l

sc),
are given in Ref. [22]. Henceforth, corrections obtained with
the use of Y l

sc in the extraction of nuclear parameters are called
scattering corrections.

The multiplicities of the primary excited fragments as
obtained in Eq. (4) undergo changes because of subsequent
particle emission. The secondary yield can be written in terms
of the variables V , µn, µp, and T at freeze-out as follows. For
light fragments (Ai � 4, Zi � 2),

Yi(Ai, Zi) = Vgi
0
A

3/2
i

λ3
e{[Niµn+Ziµp+B(Ai,Zi )]/T }

+V
∑

j

∑
kj

{
A

3/2
j

λ3
e{[Nj µn+Zj µp+B(Aj ,Zj )]/T }

×ω
kj

p (Aj ,Zj , T )x
kj

i (Aj ,Zj , T )

}
+ Y i

sc. (5)

The light fragments are assumed to be produced only in their
ground states, their multiplicities being given by the sum of
the first and last terms in Eq. (5). Their population is further
fed from decay of heavier species given by the second term.
The sum j runs over all species with Aj > 4 and Zj � 2

having particle-unstable excited states and the sum kj runs
over all the particle-decaying states of the j th species. The
quantity x

kj

i corresponds to the branching ratio of the kj th
state for emitting the ith species; it is calculated using the
Weisskopf-Ewing model [28]. The quantity ω

kj

p (Aj,Zj , T ) is
the internal partition function for the particle-unstable states,

ω
kj

p (Aj ,Zj , T ) = gkj
e
−εkj

/T
. (6)

For heavy particles (A > 4, Z � 2), the observed yield is

Y (A,Z)

= V
A3/2

λ3
e[Nµn+Zµp+B(A,Z)]/T

{
g0(A) + ωγ (A,Z, T )

+
∑
kj

6∑
i=1

(
A + ai

A

)3/2

e[niµn+ziµp+B(A+ai ,Z+zi )−B(A,Z)]/T

×ω
kj

p (A + ai, Z + zi, T )x
kj

i (A + ai, Z + zi, T )

}
. (7)

In Eq. (7), ωγ (=∑
k gke

−εk/T ) is the partition function for
γ -decaying states, and the sum i runs over the emitted ejectiles,
for which we take only n, p, d, t , and 3He, with α, ai , and
zi being their mass and charge. Kolomiets et al. [17] also
arrived at expressions of the type given in Eqs. (5) and (7),
the important difference being the absence of the scattering
correction and consideration of only the dominant decay
mode. They further considered only nucleon and α-decay
channels. Moreover, the feeding to the light-fragment yield
was neglected. Given a set of experimental yields for four
fragments, their single ratios are constructed using Eqs. (5)
and (7), resulting in a system of three independent equations.
The equations are solved iteratively in the Newton-Raphson
method, yielding values of µn, µp, and T . The volume can
then be determined with knowledge of the yield of a fragment.

To explore the effect of scattering on the extracted values of
T and V of a hot fragmenting system, we resort to a numerical
experiment. The primary fragment yields are calculated with
the given freeze-out temperature Tfz and volume Vfz in the
S-matrix approach as elucidated. The secondary yields are
then calculated using Eqs. (5) and (7). These are taken to be
observed numerical data. In Eq. (7), the first term in the curly
braces corresponds to the ideal Albergo condition, yielding
Talb and Valb; addition of the second term gives the γ -decay-
corrected values Tγ and Vγ ; and further, addition of the last
term gives γ + p (particle)-decay-corrected values Tγ+p and
Vγ+p. Only if heavy fragments are taken for multiplicity ratios,
Tγ+p = Tfz and Vγ+p = Vfz. For light fragments, to arrive at
the actual values of Tfz and Vfz, one has to further consider
contributions from scattering corrections as given by the last
term in Eq. (5).

The calculations are done with 124Sn as a representa-
tive system. For the fragment species, all the stable nu-
clei up to A = 124 and Z = 50, as well as their bind-
ing energies, are taken from Ref. [29]. All discrete lev-
els up to an excitation energy of 20 MeV with lifetimes
>200 fm/c, as well as their decay modes for 5 � A �
16, have been taken [30,31] into consideration. For still
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FIG. 1. (a, b) The extracted temperature Tapp for the fragmenting
system 124Sn as a function of the freeze-out temperature Tfz shown
for two different thermometers under different approximations using
single ratios (SRs). (c, d) The same, shown using the least-squares
method (LS) for two sets of isotopes as mentioned in the text. Dash-
dotted, dotted, dashed, and solid lines correspond to T alb, Tγ , Tγ+p ,
and Tγ+p+sc = Tfz, respectively.

heavier nuclei, the sum over excited states in Eqs. (5)
and (7) is replaced by an integral convoluted with the single-
particle level density ω(A,E) [23,32]. The integration limits
are taken to be between 2 MeV (approximated for the first
excited state) and 8 MeV (the last particle-stable state) for the
γ -decaying levels; the resonance limit is taken as 20 MeV.
The calculations done at different temperatures in a freeze-out
volume 4V0 (V0 is the normal volume of 124Sn) are presented.
We have chosen two sets of four fragments, namely, 3He,
4He, 6Li, 7Li and 3He, 4He, 10Be, 11Be, which we refer to
as the He-Li and He-Be thermometers. The extracted apparent
temperatures Tapp are found to be quite sensitive to the different
approximations as displayed in Figs. 1(a) and 1(b). Except for
Talb, the other temperatures are not very sensitive to the choice
of thermometer. Successive improvement of approximations
is seen to bring the apparent temperature closer to the real
one. With the inclusion of effects owing to (γ + p) decay and
scattering, the apparent temperature Tγ+p+sc, when calculated,
yields the actual temperature Tfz. The effect of scattering is
seen to be substantial.

The volume Vapp (measured in units of Vfz) extracted in
different approximations is displayed in Figs. 2(a) and 2(b)
as a function of Tfz for the aforementioned thermometers.
Scattering has a comparatively more significant role here than
that observed in the determination of temperature. Its inclusion
collapses the apparent volumes Vapp/Vfz to unity.

The method so discussed suffers from two limitations. For
many thermometers, there may not be convergence for the
solution, as noted earlier [17]. We also found that there may
be multiple solutions. We have presented those solutions that
are robust in the sense that taking a considerable range of
initial guess values in the iterative method, the same solutions
are obtained. To overcome these limitations, we propose that
the least-squares fit to the secondary multiplicities may be
more fruitful for extracting the temperature and volume. Given
the experimental yields for a chosen number of fragment
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FIG. 2. The same as Fig. 1, for the extracted volume Vapp in units
of freeze-out volume Vfz.

species niso, the least-squares fit to
niso∑
i=1

[
Y

exp
i − Yi(T , V,µn, µp)

]2 = χ2 (8)

has been performed. The quantities Y
exp
i are the experimental

multiplicities, which are functions of the thermodynamic
variables at freeze-out and Yi(T , V,µn, µp) are the yields
calculated from Eqs. (5) and (7) with various approximations
as explained earlier. In our calculations, Y

exp
i are taken from

our numerical experiment. The extracted temperatures Tapp

in the least-squares method for the system 124Sn at different
given Tfz values and at a freeze-out volume Vfz = 4V0 under
different approximations are displayed in Figs. 1(c) and 1(d).
The calculations were performed using a set of light isotopes
with niso = 6 (n, p, d, t , 3He, and 4He). The calculations
were repeated with a broader set (niso = 13) that includes,
besides the light set, also the nuclei 6Li, 7Li, 9Be, 10B,
12C, 14N, and 16O. The γ -decay-corrected temperature Tγ

is found to be insensitive to the choice of fragment set
and underestimates Tfz (= Tγ+p+sc) considerably. Inclusion of
particle decay narrows the gap from Tfz significantly, partic-
ularly for the broader set of fragment species. Figures 2(c)
and 2(d) display the extracted volume Vapp as a function of
the freeze-out temperature. The γ -decay-corrected volume Vγ

overestimates Vfz significantly. Inclusion of particle decay
brings it closer to Vfz, particularly for the larger set. The
uncertainty in the (γ + p)-corrected value for the volume, with
niso = 13, is seen to be at most 25%, and that for temperature
is at most 5%. Inclusion of heavier species in the fitting
procedure masks the scattering effects. The calculations have
been repeated for Vfz = 6V0 and 8V0; the conclusions do not
change for this range of freeze-out volumes.

Along with temperature and volume, the nucleon chemical
potentials µn and µp are also extracted in this method, but
they are not shown here. With the knowledge of these four
thermodynamic parameters, it is straightforward to determine
the entropy of the disassembling system. Thus the evolution
of entropy with Tfz can be determined, which acts as an
important signature for the LG-type phase transition. This will
be reported elsewhere.

041601-3



RAPID COMMUNICATIONS

S. K. SAMADDAR AND J. N. DE PHYSICAL REVIEW C 81, 041601(R) (2010)

In this paper, limitations of the currently used isotope
thermometry for determining the temperature and volume
of a hot fragmenting nuclear system have been pointed out.
It is stressed that the strong interaction effects left out in
such a determination leaves a sizable uncertainty. This has
an important bearing on many predictions of the properties
of hot finite nuclear matter. A new method, namely, the

least-squares fit to the fragment multiplicities, for extracting
the thermodynamic observables is proposed here. We find
this more promising in a numerical experiment, and it can
be readily implemented in a realistic experimental situation.

The authors acknowledge support from the Department of
Science & Technology, Government of India.

[1] A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev. C
30, 851 (1984).

[2] H. Stocker and W. Greiner, Phys. Rep. 137, 277 (1986).
[3] H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[4] S. J. Lee and A. Z. Mekjian, Phys. Rev. C 63, 044605

(2001).
[5] D. H. E. Gross, Rep. Prog. Phys. 53, 605 (1990).
[6] J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and

K. Sneppen, Phys. Rep. 257, 133 (1995).
[7] J. N. De, S. Das Gupta, S. Shlomo, and S. K. Samaddar, Phys.

Rev. C 55, R1641 (1997).
[8] S. Das Gupta, A. Z. Mekjian, and M. B. Tsang, Adv. Nucl. Phys.

26, 91 (2001).
[9] P. Chomaz, V. Duflot, and F. Gulminelli, Phys. Rev. Lett. 85,

3587 (2000).
[10] J. N. De, S. K. Samaddar, S. Shlomo, and J. B. Natowitz, Phys.

Rev. C 73, 034602 (2006).
[11] D. Q. Lamb, J. M. Lattimer, C. J. Pethick, and D. G. Ravenhall,

Nucl. Phys. A 360, 459 (1981).
[12] C. Ishizuka, A. Ohnishi, and K. Sumiyoshi, Nucl. Phys. A 723,

517 (2003).
[13] J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).
[14] J. A. Hauger et al., Phys. Rev. Lett. 77, 235 (1996).
[15] J. B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).
[16] S. Albergo, S. Costa, E. Costanzo, and A. Rubbino, Nuovo

Cimento A 89, 1 (1985).

[17] A. Kolomiets et al., Phys. Rev. C 54, R472 (1996).
[18] W. Trautmann et al., Phys. Rev. C 76, 064606 (2007).
[19] C. Sfienti et al., Phys. Rev. Lett. 102, 152701 (2009).
[20] M. B. Tsang, W. G. Lynch, H. Xi, and W. A. Friedman, Phys.

Rev. Lett. 78, 3836 (1997).
[21] R. Dashen, S-k. Ma, and H. J. Bernstein, Phys. Rev. 187, 345

(1969).
[22] C. J. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55 (2006).
[23] S. Mallik, J. N. De, S. K. Samaddar, and S. Sarkar, Phys. Rev.

C 77, 032201(R) (2008).
[24] S. K. Samaddar and J. N. De, Phys. Rev. C 79, 051602(R) (2009).
[25] S. K. Samaddar, J. N. De, X. Vinas, and M. Centelles, Phys.

Rev. C 80, 035803 (2009).
[26] R. Dashen and R. Rajaraman, Phys. Rev. D 10, 694 (1974); 10,

708 (1974).
[27] K. Huang, Statistical Mechanics (John Wiley and Sons,

New York, 1963), p. 307.
[28] V. F. Weisskopf and P. H. Ewing, Phys. Rev. 57, 472 (1940).
[29] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141 (1996);

LBL report LBL-36803.
[30] F. Ajenberg-Selove, Nucl. Phys. A 490, 1 (1988); 506, 1 (1990);

523, 1 (1991).
[31] D. R. Tilley, H. B. Weller, and C. M. Cheves, Nucl. Phys. A 564,

1 (1993).
[32] A. Bohr and B. R. Mottelson, Nuclear Structure (W. A.

Benjamin, Reading, MA, 1969), Vol. I.

041601-4

http://dx.doi.org/10.1103/PhysRevC.30.851
http://dx.doi.org/10.1103/PhysRevC.30.851
http://dx.doi.org/10.1016/0370-1573(86)90131-6
http://dx.doi.org/10.1103/PhysRevC.52.2072
http://dx.doi.org/10.1103/PhysRevC.63.044605
http://dx.doi.org/10.1103/PhysRevC.63.044605
http://dx.doi.org/10.1088/0034-4885/53/5/003
http://dx.doi.org/10.1016/0370-1573(94)00097-M
http://dx.doi.org/10.1103/PhysRevC.55.R1641
http://dx.doi.org/10.1103/PhysRevC.55.R1641
http://dx.doi.org/10.1103/PhysRevLett.85.3587
http://dx.doi.org/10.1103/PhysRevLett.85.3587
http://dx.doi.org/10.1103/PhysRevC.73.034602
http://dx.doi.org/10.1103/PhysRevC.73.034602
http://dx.doi.org/10.1016/0375-9474(81)90157-3
http://dx.doi.org/10.1016/S0375-9474(03)01324-1
http://dx.doi.org/10.1016/S0375-9474(03)01324-1
http://dx.doi.org/10.1103/PhysRevLett.75.1040
http://dx.doi.org/10.1103/PhysRevLett.77.235
http://dx.doi.org/10.1103/PhysRevC.65.034618
http://dx.doi.org/10.1007/BF02773614
http://dx.doi.org/10.1007/BF02773614
http://dx.doi.org/10.1103/PhysRevC.54.R472
http://dx.doi.org/10.1103/PhysRevC.76.064606
http://dx.doi.org/10.1103/PhysRevLett.102.152701
http://dx.doi.org/10.1103/PhysRevLett.78.3836
http://dx.doi.org/10.1103/PhysRevLett.78.3836
http://dx.doi.org/10.1103/PhysRev.187.345
http://dx.doi.org/10.1103/PhysRev.187.345
http://dx.doi.org/10.1016/j.nuclphysa.2006.05.009
http://dx.doi.org/10.1103/PhysRevC.77.032201
http://dx.doi.org/10.1103/PhysRevC.77.032201
http://dx.doi.org/10.1103/PhysRevC.79.051602
http://dx.doi.org/10.1103/PhysRevC.80.035803
http://dx.doi.org/10.1103/PhysRevC.80.035803
http://dx.doi.org/10.1103/PhysRevD.10.694
http://dx.doi.org/10.1103/PhysRevD.10.708
http://dx.doi.org/10.1103/PhysRevD.10.708
http://dx.doi.org/10.1103/PhysRev.57.472
http://dx.doi.org/10.1016/0375-9474(95)00509-9
http://dx.doi.org/10.1016/0375-9474(88)90124-8
http://dx.doi.org/10.1016/0375-9474(90)90271-M
http://dx.doi.org/10.1016/0375-9474(91)90446-D
http://dx.doi.org/10.1016/0375-9474(93)90073-7
http://dx.doi.org/10.1016/0375-9474(93)90073-7

